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Zusammenfassung

Die Regelung komplexer Systeme ohne Kenntnis eines detaillierten physikalisch-ma-
thematischen Modells, wie es die meisten gängigen Ansätze erfordern, ist ein erstre-
benswertes Ziel. In Anbetracht der Tatsache, dass die Komplexität moderner Systeme
ständig zunimmt, wächst der Bedarf an einer universellen Regelungsstrategie. Fliess
und Join (2009, 2013) haben einen signalbasierten Ansatz vorgeschlagen, der weder ein
physikalisch motiviertes Modell des Systems benötigt noch auf zeitaufwändiges und
datenintensives Training angewiesen ist. Die systematische Auslegung dieser so ge-
nannten modellfreien Regler stellt jedoch weiterhin eine anspruchsvolle Aufgabe dar.
In dieser Arbeit wird mit dem Abtasten des Parameterraums für ein Proportionalventil
und eine magnetisch gelagerte Platte die Grundlage für eine systematische Auslegung
des betrachteten Reglers gelegt. Es wird gezeigt, dass die Stabilität des geschlosse-
nen Regelkreises mit Hilfe des verallgemeinerten Hermite-Biehler-Theorems analysiert
werden kann. Theoretische Grenzen für die Reglerparameter werden am Beispiel eines
Gleichstrommotors berechnet und durch diverse Experimente validiert. Zusätzlich wird
die Parametrierung der algebraischen Ableitungsschätzer untersucht, die zur Schätzung
der unbekannten Größen sowie für die Implementierung des Regelgesetzes verwendet
werden. Mit diesen neuen Erkenntnissen werden Leitlinien abgeleitet, die zu einer
systematischen Parametrierung des modellfreien Reglers führen.





Abstract

The control of complex systems without the need of deriving a detailed physics-based
mathematical model of the system, which is a necessity for most of the common control
approaches, is a desirable goal. Considering the fact that the complexity of modern
systems is ever increasing, the need for a universal control solution is also growing.
Fliess and Join (2009, 2013) have proposed a signal-based control approach that neither
requires a physically-motivated model of the system considered nor relies on time-
consuming and data-intensive training. However, the systematic tuning of these so-
called model-free controllers is still a challenging task. In this thesis, the sampling
of the control parameter set for a proportional valve and a magnetically supported
plate lay the foundation for a systematic tuning approach of the proposed control
method. It is shown that the stability of the closed loop can be analysed using the
generalised Hermite-Biehler theorem. Theoretical bounds for the controller parameters
are calculated for a DC motor as a basic example and validated by various experiments.
Additionally, the parametrisation of the algebraic differentiators used to estimate the
unknown quantities required for the implementation of the control law is investigated.
With these new findings, guidelines can be formulated leading to a systematic tuning
of the model-free control law.
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Chapter 1

Introduction

Established model-based control approaches such as flatness-based control (see, e.g.
Fliess et al. (1992, 1995) and for an introduction see Rudolph (2021)), model preditive
control (cf. Qin and Badgwell (2003) for a survey on this topic) or passivity-based
control (see, e.g. Willems (1972) for an introduction), just to name a few, rely on
physically motivated mathematical models of the systems considered. These models
are often derived using conservation laws, e.g. conservation of mass, momentum or
energy. As the complexity of modern systems increases, so does the effort required
to describe them with corresponding mathematical models. Especially effects such as
friction, magnetic hysteresis or ageing are often cumbersome to derive up to a point at
which the benefit of the additional accuracy is overshadowed by the modelling effort
required. Another aspect of the model-based control approaches, beside the acquisition
of the model, is the parameter identification, i.e. the search for numerical values of the
parameters such that the model of the system approximates the experimental data well
enough. Not only that an additional step for the implementation of the control law
is required, the parameter identification brings its own difficulties and the number of
parameters to be identified also increases with the complexity of the model and so does
the effort for identifying them.

So-called model-free control (MFC) approaches, i.e. approaches that do not rely on
physically motivated mathematical models, e.g. proportional integral derivative (PID)
control, fuzzy control (see, e.g. Zadeh (1965) for an introduction to fuzzy sets and Mam-
dani (1974) for an early application of fuzzy control) or neuronal networks (cf. Yeşildirek
and Lewis (1995)) represent an alternative to model-based control. In contrast to the
latter methods, Fliess and Join (2009, 2013)1 have proposed a signal-based approach
that neither relies on physically motivated models of the systems nor requires time
consuming and data intensive training. For the proposed algorithm, the system under
consideration is locally approximated for a short period of time by a so-called ultra-

1In the following, the acronym MFC will refer only to the method proposed by Fliess and Join
(2009, 2013).

1



2 Chapter 1. Introduction

local model, i.e. a low-order differential equation with unknown parts. The unknown
part of the system combines unmodelled dynamics as well as disturbances, whereas no
distinction between the latter is considered. To realise a controller based on an ultra-
local model, the unknown parts have to be estimated for a subsequent compensation.
Algebraic differentiators as first introduced in Mboup et al. (2007, 2009) are closely
linked to the MFC method considered, as they can be used for the estimation task.
In recent years, the algebraic differentiators have proven to be a powerful tool (see,
e.g. Othmane et al. (2022, Sec. 6) for an overview of possible applications) and with
that different viewpoints emerged on how to parametrise them. Kiltz and Rudolph
(2013) and Mboup and Riachy (2014, 2018), for example, consider a frequency-domain
interpretation of the algebraic differentiators that is, to the best of the author’s knowl-
edge, not explicitly considered for the design of the MFC laws. With the works Kiltz
(2017) and Othmane (2022b) a systematic parametrisation of the algebraic differentia-
tors with specific frequency-domain characteristics such as cutoff frequency and filter
order is possible. The additional insight gained for the algebraic differentiators should
also lead to a better understanding of the MFC approach considered, e.g. regarding
the parametrisation and the stability of the closed loop, but has up until now not been
considered in the literature.

In Section 1.1, the state of the art regarding MFC is briefly presented, followed by the
motivation and the aim of the thesis in Section 1.2. After that, the contribution of this
work is stated and two peer-reviewed and published journal papers are summarised in
Section 1.3. The chapter concludes with a short presentation of the thesis structure in
Section 1.4.

1.1 State of the art

The MFC approach proposed by Fliess and Join (2009, 2013) has already been applied
in numerous applications ranging from different technical domains. In the field of elec-
tronics, recent examples of a successful implementation of the MFC method considered
are discussed in Zhang et al. (2022) for AC/DC converters, in Li et al. (2022) for buck
converters, and in Wachter et al. (2023) for grid-tied inverters. Besides the use in the
control of electronic systems, automotive applications are also of interest, e.g. active
suspensions in Haddar et al. (2019) or direct fuel injection systems in Carvalho et al.
(2024). Nonetheless, a more important field is autonomous driving which is consid-
ered in Villagra and Herrero-Pérez (2012), Menhour et al. (2017), Polack et al. (2017,
2019), and Hegedűs et al. (2022). The works of Al Younes et al. (2014), Bekcheva et al.
(2018), and Barth et al. (2020), show that the control of unmanned aerial vehicles is
also possible with the methods introduced by Fliess and Join (2009, 2013). Successful
simulation studies in the field of renewable energy can be found in Bara et al. (2017)
for photovoltaic energy generation and in Lafont et al. (2020) for the control of wind
turbines. More exotic applications of the MFC approach are found in Gédouin et al.
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(2011) for shape memory alloys, in De Miras et al. (2013) and Moraes and da Silva
(2015) for magnetic levitation, in Ziane et al. (2023) for alkaline water electrolysis, in
Lafont et al. (2015) for green houses, and in Fliess and Join (2023) for video streaming.
This vast list of examples shows the capabilities of this powerful method that can be
incorporated in various domains.

Besides the application of the approach, various authors have published insightful con-
tributions to the topic of MFC. In d’Andréa-Novel et al. (2010) the connection of the
MFC approach to a classical PID controller is presented. Therein, the integral part
is approximated by a Riemann sum and the derivative part using the difference quo-
tient. With these approximations, a parameter combination can be found, leading to
an identical parametrisation of both approaches.

A so-called adaptive model-free approach is proposed in Doublet et al. (2016) and
Polack et al. (2017). In these contributions, the input gain is adapted online by an
estimation using the ultra-local model under the assumption of a piece-wise constant
input gain. This approach ultimately leads to better simulation results for systems
with unknown delay and varying velocities of the considered 7 degree of freedom vehicle
model, in Doublet et al. (2016) and Polack et al. (2017), respectively.

The importance of the input gain is also discussed in Gédouin et al. (2011). Therein,
the input gain function y 7→ αg(y) of the ultra-local model

ẏ(t) = F (t) + αg (y(t)) u(t) (1.1)

is a polynomial of degree three. This choice leads to an increased performance of the
MFC law based on (1.1). The parameters of the polynomial are identified using steady-
state displacements y(t) and constant inputs u(t) of the considered shape memory alloy.

Another combination of MFC with model information is presented in Bekcheva et al.
(2018). This contribution presents a cascaded-model-free control approach for a quad-
copter. The slower outer-loop, comprising MFC of the positions, is providing reference
trajectories for the desired orientation of the copter in combination with model informa-
tion in the form of a simplified model of the horizontal-plane dynamics considering the
orientation of the copter. The obtained orientation trajectories are then the reference
for the underlying attitude control which is also based on MFC laws.

In Polack et al. (2019) the brake and velocity control of an autonomous driving car
is considered. The effects of the discretisation of the algebraic differentiators used is
analysed and in addition to that a tuning procedure for the input gain is presented.

Another systematic tuning approach in the context of vehicle control is suggested in
Hegedűs et al. (2022). Therein, a so-called error-based ultra-local model approach is
presented which uses a priori model information in the form of a nominal model, in this
case the single-track bicycle model. To find a nominal input gain, several simulations
are made and the value resulting in the lowest lateral error is chosen. Furthermore, an
optimal input gain depending on the lateral velocity is acquired in the same way using



4 Chapter 1. Introduction

the nominal value as a baseline. Consequently, the used input gain in the MFC law is
a function of the lateral velocity. Additionally, a decision tree for choosing the input
gain is added to ensure the stability of the closed loop.

The contributions Li et al. (2022) as well as Zhang et al. (2022) are analysing the MFC
approach with classical control theoretical tools in the frequency domain. In both
cases, the analysis is backed with experiments on a buck converter in Li et al. (2022)
and a single-phase AC/DC converter in Zhang et al. (2022), showing the robustness of
the approach against parameter variations.

In Delaleau (2014) and Belhadjoudja et al. (2023) the stability of the MFC approach
is analysed. Methods from linear systems and the influence of time delays are consid-
ered in Belhadjoudja et al. (2023) and tested on an electronic throttle valve, whereas
Delaleau (2014) considers a nonlinear single-input single-output (SISO) system with
linear input dependence and without occurring input derivatives for the analysis.

The contribution Othmane et al. (2021b) considers a pendulum on cart where the
force of the pendulum is regarded as an unknown disturbance to the cart dynamics.
The tuning of algebraic differentiators used for the approximation of the unknown
part of the ultra-local model is investigated by comparison to an approach based on a
disturbance observer. Using the algebraic differentiators results in a better disturbance
rejection for the simulated system.

Hereafter, the motivation and aim of the present work can be stated in light of the
current literature.

1.2 Motivation and aim of the work

Fliess and Join (2009, 2013) are giving a new point of view on the topic of MFC result-
ing in very powerful tools that are capable of handling control problems from various
domains as discussed in Section 1.1. The works of, e.g. Polack et al. (2019) and Hegedűs
et al. (2022) are illustrating that there is a need for a systematic parametrisation of
the MFC approach. In the opinion of the author, this demand should be pursued and
in addition to that more details concerning the implementation should be added to
the current literature to fully unleash the potential of this powerful control method,
leading to an increased accessibility for a broader audience. Kiltz and Rudolph (2013)
and Mboup and Riachy (2014, 2018) opened an insightful perspective, by interpret-
ing the algebraic differentiators used as filters in the frequency domain. Based on
the latter contributions, the works Kiltz (2017) and Othmane (2022b) proposed the
parametrisation of the filters with specific frequency-domain characteristics such as
cutoff frequency and a filter order, concepts that are on a basic level from an engineer-
ing perspective. With this interpretation, the parametrisation of the MFC in the sense
of Fliess and Join (2009, 2013) can be further simplified. The contributions Polack
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et al. (2019) and Scherer et al. (2023, 2024) already shed some light on a systematic
parametrisation approach. Nevertheless, the latter contributions are still missing a for-
mal stability analysis depending on the input gain as well as the controller parameters,
i.e. proportional and differential gains, for systems approximated with first-order and
second-order ultra-local models.

1.3 Contributions of this work

The main contribution of this work is the insight that the stability analysis of systems
controlled by MFC laws based on ultra-local models of first or second order can be
done by using methods from the domain of time-delay systems (TDSs). In addition
to that, systematic tuning guidelines of the MFC law can be derived, further simpli-
fying the use of the powerful control approach as first introduced by Fliess and Join
(2009, 2013). The stability analysis of the TDS, depending on the parameters of the
controller, is done using the generalised Hermite-Biehler theorem (see, e.g. Silva et al.
(2005, Ch. 5)) and a mathematical model of the system under investigation. By doing
so, theoretical bounds of the controller parameters can be derived. The theoretical
findings are validated by experimental results obtained from a DC motor. This work
differs from existing research in explicitly considering new tuning methods for the al-
gebraic differentiators used for the estimation of unknown quantities necessary for the
implementation of the MFC law. The results of these new findings have implications
for a broader use of the MFC approach which is important, as the complexity of mod-
ern systems continues to increase and at a certain point the cost of modelling exceeds
its benefits. The application of the stability analysis is constrained by the necessity of
a mathematical model of the system under consideration, which is contradictory to the
implementation of a MFC approach. Additionally, the influence of neglected dynamics
and nonlinearities is not explicitly considered in this thesis and has to be analysed in
future work as this would contribute to a more comprehensive understanding. How-
ever, the basic example of a DC motor can be viewed as a first step to get a deeper
insight of the MFC approach used. The theory employed provides a framework for
understanding the observed phenomena in the parameter set already investigated in
the two peer-reviewed and published journal papers Scherer et al. (2023) and Scherer
et al. (2024) which are an essential part of this thesis and included in Chapter 5. A
short summary of each paper is given in the following as well as an overview on recently
gained insights concerning the stability of the closed loop of a system controlled by a
MFC law based on first-order and second-order ultra-local models.
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1.3.1 Combining model-based and model-free approaches for
the control of an electro-hydraulic system

In the contribution Scherer et al. (2023) (see Section 5.1), a combination of model-
based and model-free approaches is proposed for the control of an electro-hydraulic
system consisting of a piston and four proportional valves (see Fig. 1.1). Details are
given on the systematic tuning and the implementation of algebraic differentiators as
well as the MFC law using a first-order ultra-local model.
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Fig. 1.1: Photo (a) and hydraulic circuit diagram (b) of the system considered,
© 2023 Elsevier. These figures were published in Scherer, P. M., Othmane, A.,
and Rudolph, J. (2023). Combining model-based and model-free approaches for the
control of an electro-hydraulic system. Control Engineering Practice, 133:105453.
DOI: 10.1016/j.conengprac.2023.105453

A model of the double-acting hydraulic piston actuator is presented and it is shown
that this model is flat with the flat output y = (z, pΣ). The quantity z denotes the
position of the piston with respect to the middle of the cylinder and the quantity pΣ
denotes the sum of the pressures in each chamber. The inputs of the cylinder subsystem
are the flow rates qc, c ∈ {1, 2} into each chamber. The mathematical formulation of
the subsystem is utilised for a model-based nonlinear control law for the flat output y,
which results in desired flow rates qd,c, c ∈ {1, 2}. A nonlinear disturbance observer,
with linear error dynamics, is used to estimate the state of the cylinder subsystem
required for the model-based feedback law.

Four pilot-operated proportional valves provide the flow rates that are needed for the
cylinder subsystem as an input. These valves are cumbersome to model due to their
design with main and pilot spool as well as due to effects such as hysteresis of the

https://doi.org/10.1016/j.conengprac.2023.105453
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magnets and friction. Nevertheless, exploiting an approximate model relating flow rate
q(t), pressure difference and electrical current i(t), a feed-forward control is designed.
Alternatively, circumventing the modelling of the valves, they can be approximated
with the first-order ultra-local model

q̇(t) = f(t) + γi(t),

with γ > 0 and the unknown part f(t), to design the MFC law

i(t) = 1
γ

( ˙̂qd(t) − kpê(t) − f̂(t)),

with the estimates

˙̂qd(t) =
∫ t−ε

t−T −ε
ġ(t − τ)qd(τ)dτ, T, ε > 0

ê(t) =
∫ t

t−T
g(t − τ)e(τ)dτ, e(t) = q(t) − qd(t),

and

f̂(t) =
∫ t−ε

t−T −ε
ġ(t − τ)q(τ) − γg(t − τ)i(τ)dτ,

where g is an algebraic differentiator in the sense of Mboup et al. (2007, 2009) as
introduced in Section 2.1.

At first, the MFC law is tested only on the valves using a flow rate sensor. To do so, a
parametrisation of the algebraic differentiators, used to realise the MFC law, is chosen
and the parameters kp and γ are varied, to determine a parameter combination that
leads to a stable closed-loop behaviour. The parameters of the algebraic differentiators,
namely α = β and the cutoff frequency ωc, are also varied to show that not only one
specific parametrisation leads to a stable closed loop. Inspecting some experiments
made, which are on specific lines in the kp-γ parameter set, it is revealed that only
the ratio of kp and γ is important for the parametrisation of the MFC law. Intensive
testing and comparison of the proposed algorithms, i.e. the MFC law and the feed-
forward control, shows that the MFC law clearly outperforms the feed-forward control.

To be able to use the MFC law in the overall system, the individual flow rates for
each chamber are required but not measured. Therefore, the mathematical model of
the cylinder subsystem is utilised together with an observer to provide an estimate
of the needed values without the use of a flow rate sensor. For the valve subsystem
two control strategies are presented. On one hand, each individual valve is controlled
and on the other hand, each pair of valves is controlled leading to comparable results.
Experiments on the overall system are showing that especially for low piston velocities,
the MFC law can achieve a high position accuracy. For increasing piston velocity, the
results degrade. Nevertheless, the MFC law still outperforms the feed-forward control.
The reason for the degrading performance is the estimation of the flow rates that is
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mainly dependent on the piston velocity. Due to the limited distance that the cylinder
rod can travel, the starting and ending phases of the respective velocity trajectories are
resulting in a dominant error. Nevertheless, the latter mentioned observation is not a
drawback of the proposed combination of model-based and model-free control.

Furthermore, the robustness of the proposed algorithms is tested by simulating the
leakage of a valve in the overall system. In comparison to the feed-forward controller,
the MFC law shows a much better performance when the leakage applies, proving the
capabilities of the chosen approach.

The contributions of this work are listed in the following:

• Control of a pilot-operated proportional valve with a MFC law based on a first-
order ultra-local model and comparison to a model-based feed-forward control.

• Variation of the parametrisation of the algebraic differentiators used to estimate
the unknown quantities.

• Investigating the influence of the parameters γ and kp of the MFC law on the
stability of the closed loop by sampling of the parameter set.

• Observing that only the ratio of γ and kp has an influence on the tracking be-
haviour.

• Controlling either the individual valve or the pair of valves with a MFC law that
feeds back the reconstructed flow rate.

• Division of the system into parts that can be analysed by model-based and model-
free approaches.

1.3.2 Model-free control of a magnetically supported plate

In the contribution Scherer et al. (2024) (see Section 5.2), the MFC of a magnetically
supported plate is presented (see Fig. 1.2). Therein, the systematic design and tuning of
algebraic differentiators and MFC algorithms based on a second-order ultra-local model
is investigated for a multiple-input multiple-output (MIMO) system. The test bed
considered consists of a rigid outer frame with four electromagnets and a rectangular
aluminium plate with four laminated iron packs at each corner, located under the
magnets.

At first, a mathematical representation of the system is presented. This model is
utilised to design a model-based feedback control law in combination with a simple
linear disturbance observer as a benchmark for the proposed MFC approach. After
that, four MFC algorithms with varying inputs are designed using different degrees of
model information. In each step, the used second-order ultra-local model is compared
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Fig. 1.2: Photo (a) and schematic drawing (b) of the magnetically supported plate
borrowed from Scherer et al. (2024).

with the already determined and more detailed mathematical model, to get a better
understanding of estimated disturbances and to choose the input gain of the controllers.
Consequently, designing the MFC laws can be simplified.

After the control design, it is shown that the proposed estimation of the unknown part is
a generalisation of the approach commonly used in the literature (see, e.g. Bekcheva
et al. (2018)). It can be seen that this generalisation is sometimes needed to reduce
discretisation errors of the algebraic differentiators used. Once more, the main focus of
parametrising the algebraic differentiators is set at the cutoff frequency ωc and the filter
order µ = min(α, β) + 1 with α = β, which are concepts that are easy to understand
from an engineering perspective and can be set in a systematic way. Varying these
parameters shows an interesting behaviour. For some parameter combinations, i.e. for
low values of α = β and for high values of ωc, the closed-loop system is unstable.
The reason for this still needs further investigation. To parametrise the MFC law, the
input gain of the algorithm using the highest amount of model information is chosen
according to the model of the system and the parameters kp and kd are varied.

To get a fair comparison of the model-based control and the MFC approach, the cutoff
frequencies of both estimation approaches are chosen equal and additional low-pass
filters are added to the disturbance observer used to realise the model-based algorithm.
With this, the transfer functions of both approaches have the same filter order.

The capabilities of each presented algorithm with respect to trajectory tracking and
robustness against sensor and actuator faults are extensively tested in several experi-
ments. Overall, the results show that the performance of the MFC approach degrades
using less model information. Nevertheless, the latter algorithm can outperform the
model-based approach in almost all experiments, especially if an actuator fault occurs.
Only for abrupt sensor fault, the model-based control shows a better performance which
is due to the additional low-pass filters, smoothening the reaction of the controller. The
latter becomes clear by comparing the reaction of the filters to a unit step.
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The contributions of this work are listed in what follows:

• Control of a magnetically supported plate by a MFC law based on a second-order
ultra-local model using different amounts of model information.

• It is shown that using the algebraic differentiators with α = β ̸= 2 is a generali-
sation of the approach commonly used in the literature to estimate the unknown
part.

• Investigating the effects of discretisation errors on the tracking error and how to
eliminate these errors.

• Investigating the influence of the parametrisation of the algebraic differentiators
on the closed-loop behaviour of the proposed MFC laws.

• Fair comparison of the model-based control with a MFC law, by designing filters
with the same frequency-domain characteristics.

• Investigating the influence of the parameters kp and kd of the MFC law on the
stability of the closed loop by sampling of the parameter set.

1.3.3 Additional results

In the Chapters 2 and 3, the system under consideration is a DC motor. The latter
system is controlled by a MFC law based on a first-order and second-order ultra-local
model. It is shown that the resulting closed loop is a TDS, the stability of which is
analysed using the generalised Hermite-Biehler theorem (see, e.g. Silva et al. (2005,
Ch. 5)). Using the mathematical model of the DC motor, theoretical bounds on the
parameters of the MFC laws considered can be calculated with the latter theorem.
These boundaries are validated by extensive experiments on a real test bed. Addi-
tionally, the influence of the algebraic differentiators used to estimate the unknown
quantities needed for the feedback is analysed. Furthermore, guidelines for the design
of the MFC laws are given.

1.4 Structure of the thesis

This work is organised as follows. Chapter 2 starts with a short overview on the alge-
braic differentiators, as first introduced by Mboup et al. (2007, 2009), used to estimate
the unknown quantities needed for the feedback. Moreover, the control based on first-
order and second-order ultra-local models is briefly recalled and the estimation of the
unknown part is derived using different points of view leading to a generalisation of the
approach commonly used in the literature. After that, the system under consideration,
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a DC motor with a three stage gearbox and a load, is presented and a mathematical
model of the system is derived. The theoretical considerations are followed by the
application of MFC to the DC motor. It can be shown that the differential equation
of the tracking error is a TDS, the stability of which is analysed using the generalised
Hermite-Biehler theorem (see, e.g. Silva et al. (2005, Ch. 5) as well as Appendix A).
With this approach, theoretical bounds on the controller parameters are calculated.

Chapter 3 contains a presentation of the experimental setup as well as the parameter
identification used. Besides that details concerning the implementation are shared.
Furthermore, the influence of the algebraic differentiators on the stability of the closed-
loop system is analysed by varying their cutoff frequency as well as the filter order.
The theoretical findings obtained through the application of the generalised Hermite-
Biehler theorem are validated by a sampling of the parameter set. Moreover, guidelines
for the parametrisation of the algebraic differentiators as well as the controller design
based on first-order and second-order ultra-local models are formulated to enable a
systematic design of the MFC. Additionally, the formulated guideline for first-order
ultra-local models is compared to the approach proposed by Polack et al. (2019).

A conclusion of the thesis can be found in Chapter 4. Therein, a brief summary of the
findings is presented and open research problems are discussed.

The two peer-reviewed and published journal papers, Scherer et al. (2023) and Scherer
et al. (2024), are included in Chapter 5 and the contribution of each author is listed in
detail.





Chapter 2

Model-free control

In this chapter, the model-free control (MFC) approach as introduced in Fliess and
Join (2009, 2013) is presented and applied to a DC motor. At first, a very brief intro-
duction to algebraic differentiators, which are used to estimate the unknown quantities
employed for a successful application of the MFC, is given. This introduction is fol-
lowed by the discussion of the control based on ultra-local models of the first and
second order, including the estimation of the unknown part. After that, a short intro-
duction of the system under consideration, a DC motor, is given and the mathematical
model used to describe the motor is presented. Finally, it is shown how the MFC
approach considered can be applied to the DC motor, where the stability depending
on the parameters plays a key role.

2.1 On algebraic differentiators

Estimating the n-th derivative of a signal t 7→ x(t), denoted by x(n), is a common
problem in control engineering, met, e.g. in state feedback control or parameter identi-
fication (see, e.g. Othmane et al. (2022, Sec. 6)). Simple methods such as the difference
quotient can be used to get an estimate. However, if the signal of interest is corrupted
by additive disturbances η(t), i.e. y(t) = x(t) + η(t), the ill-posed character of the
problem comes to light, since small disturbances can lead to significant distortions in
the estimates, especially when using simple methods such as the difference quotient
(see, e.g. Fig. 2.1 (a) and (b) for the estimation of the first derivative of a disturbed
signal). Thus, filtering the signal, e.g. with low-pass filters of order µ and with cutoff
frequency ωc, becomes inevitable, which imposes its own challenges such as phase dis-
tortion. More elaborate methods such as algebraic differentiators, initially developed in
Mboup et al. (2007, 2009) and discussed, e.g. in Kiltz (2017) or Othmane (2022b) are
available, combining estimation and filtering (see, e.g. Fig. 2.1 (c) for the application
of the algebraic differentiators, parametrised in a similar fashion as the filter used in

13



14 Chapter 2. Model-free control

(b)). The interested reader is referred to Othmane et al. (2022) for an excellent survey
of this topic. Nevertheless, the deployment of such techniques necessitates a profound
knowledge of mathematical concepts, which typically constrains their implementation
in practical contexts. To circumvent this, the easy to use open-source toolbox AlgDiff
(see Othmane (2022a)) is used for the implementation of the differentiators. Therein,
all calculations regarding the design and discretisation is already done, such that only
the needed filter coefficients have to be exported for further use. The tutorial like
contribution Othmane and Rudolph (2023) gives a good introduction on how to use
AlgDiff. In the following, a brief introduction on the algebraic differentiators is given,
highlighting the important topics to apply them systematically in the context of MFC.

Consider the square Lebesgue integrable function x and its derivatives up to a finite
order n ∈ N, denoted by x(n). This function and its derivatives up to the order
n < min(α, β) + 1, with real scalar parameters α, β > −1, can be approximated by the
N -th order truncated generalised Fourier expansion as

x̂(n)(t) =
∫ t

t−T
g(n)(t − τ)x(τ)dτ, (2.1)

on a sliding time window [t − T, t] with the filter window length T . In (2.1), the kernel

g(τ) = g
(α,β)
N,T,ϑ(τ) =


2w(α,β)(ν(τ))

T

∑N
j=0

P
(α,β)
j (ϑ)∥∥∥P

(α,β)
j

∥∥∥2 P
(α,β)
j (ν(τ)), τ ∈ [0, T ],

0, otherwise,

(2.2)

depends on the quantity ϑ (all quantities occurring in (2.2) are discussed in Re-
mark 2.2), which parametrises the small but known estimation delay

δt =


α+1
α+β+2T, N = 0,
1−ϑ

2 T, N ̸= 0,
(2.3)

leading to the estimate x̂(n)(t) ≈ x(n)(t − δt). An estimation without any delay is
possible for a parametrisation of the algebraic differentiators with N > 0 and ϑ = 1
but according to Mboup et al. (2009) allowing a small but known delay increases the
accuracy of the approximation.

Remark 2.1 Consider the signal of interest t 7→ x(t), an additive disturbance t 7→ η(t)
and the measurement t 7→ y(t) = x(t) + η(t). Using the algebraic differentiators, the
estimates x̂(t) and ˙̂x(t) can be obtained by

ŷ(n)(t) =
∫ t

t−T
g(n)(t − τ)y(τ)dτ,

ŷ(n)(t) =
∫ t

t−T
g(n)(t − τ)x(τ)dτ +

∫ t

t−T
g(n)(t − τ)η(τ)dτ,

ŷ(n)(t) ≈
∫ t

t−T
g(n)(t − τ)x(τ)dτ,
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Fig. 2.1: High frequency disturbances t 7→ η(t) = ∑3
j=1 Aη,j sin(2πfη,jt) with small

amplitude corrupting the signal of interest t 7→ x(t) = ∑2
j=1 Ax,j sin(2πfx,jt), leading

to the measurement y(t) = x(t)+η(t). The estimation of the first derivative ˙̂ydiff.quot.(t),
realised by the difference quotient, is heavily affected by the disturbance. By using a
low-pass filter, the resulting estimate ˙̂ydiff.quot.filt.(t) can be smoothed but the phase
distortion of the filter occurs. Applying the algebraic differentiators leads to the more
accurate but also delayed estimate ˙̂yalg.diff.(t) ≈ ẋ(t − δt). The parameters are chosen
according to Table 2.1.

resulting in ŷ(n)(t) ≈ x̂(n)(t), with n ∈ {0, 1}. As depicted in Fig. 2.2, the influence of
the disturbance η(t) is suppressed but the estimation is delayed by the known δt which
results in the approximations x̂(t + δt) ≈ x(t) and ˙̂x(t + δt) ≈ ẋ(t), or x̂(t) ≈ x(t − δt)
and ˙̂x(t) ≈ ẋ(t − δt), respectively.

The algebraic differentiators can also be interpreted in two different ways. For example,
as shown in Kiltz and Rudolph (2013); Kiltz (2017); Mboup and Riachy (2014, 2018)
and Othmane et al. (2022), the kernel g

(α,β)
N,T,ϑ(τ) from (2.2) can be interpreted in the

frequency domain as a low-pass filter with the Fourier transform ω 7→ G(α,β)
N,T,ϑ(jω) of the
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Fig. 2.2: Visualisation of the known delay δt on the estimates x̂(t) and ˙̂x(t) obtained by
the algebraic differentiators. The used measurement y(t) = x(t) + η(t) is corrupted by
the disturbance t 7→ η(t) = ∑3

j=1 Aη,j sin(2πfη,jt), the influence of which is suppressed
by the estimators. The parameters are chosen according to Table 2.1.

kernel. The filter window length T can be associated with a desired cutoff frequency
ωc (see, e.g. Othmane et al. (2022, Sec. 4.2.2, Eq. (31))) and the parameters α and β
yield a desired filter order µ = 1+min(α, β) (see, e.g. Fig. 2.3). According to Othmane
et al. (2022, Sec. 4.2.2), the algebraic differentiator for the n-th order derivative has
a stopband slope of 20(µ − n) dB (see, e.g. Fig. 2.4 for a comparison of an ideal and
an algebraic differentiator). From an engineering prospective, this interpretation has
the benefit that it makes the filter design much more intuitive. Another possible
interpretation is that the estimate of x(n) is the output of a finite impulse response
(FIR) filter with window length T driven by the input x.

Up until now, the derivative approximation problem has been considered solely in the
continuous-time setting. However, in most real-world applications x(t) is only available
at discrete sampling instants. Therefore, the convolution integral in (2.1) has to be
approximated with an appropriate quadrature method. In the following, equidistant
sampling with time ts is assumed. In this context, the notation x[k] = x(kts), k ∈ N, for
x evaluated at the time kts is introduced. Because of the sampling, the filter window
length T is chosen as an integral multiple of the sampling time ts, i.e. T = nsts. By
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Fig. 2.3: Comparison of the continuous amplitude spectra of algebraic differentiators
with different parametrisations and N = 1. Parametrisation in (a) α = β and in (b)
α = β = 2.
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Fig. 2.4: Comparison of the continuous amplitude spectra of an ideal and an algebraic
differentiator with the parametrisation N = 1, α = β = 1, and ωc = 100 rad/s for the
first derivative of a signal.

using this notation, the convolution (2.1) can be approximated with

x̂(n)[k + θ] = 1
Φn

L−1∑
j=0

wn[j]x[k − j], (2.4)

Φn = tn
s

n!

L−1∑
j=0

wn[j](−j)n,

where the quantities θ, L, and wn[j] depend on the numerical integration method used,
as described in Othmane et al. (2022, Sec. 4.3). For example using the mid-point rule
these parameters are θ = 1/2, L = ns and wn[j] = tsg

(n)[j + 1/2]. Luckily, the most
important discretisation methods like mid-point, trapezoidal, and Simpson’s rule, to
name just a few, as well as analytic integration methods are already implemented in
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AlgDiff (see Othmane (2022a), see also Kiltz (2017, Sec. 3.4.2) and Othmane et al.
(2022, Sec. 4.3) for more information about the discretisation). To quantify the quality
of the discretisation, Kiltz (2017, Sec. 3.4.2) (see also (Othmane et al., 2022, Sec. 4.3))
introduced the cost function Jn, with the order n of the derivate to be estimated. As
shown in Polack et al. (2019, Sec. 3.1), Othmane et al. (2022, Sec. 4.3) and Scherer
et al. (2024, Sec. 4.1) it is important to check the discretisation especially for low
frequencies, as it results in a bad estimation. Increasing the parameters α and β can
reduce this discretisation error, but according to (2.3) it will increase the delay of the
resulting filter.

Remark 2.2 Introduce the orthogonal Jacobi polynomial of degree N ∈ N

P
(α,β)
N (τ) =

N∑
k=0

(
N
k

)
c

(α,β)
k (τ − 1)k,

c
(α,β)
k = Γ(α + N + 1)Γ(α + β + N + k + 1)

2kN !Γ(α + β + N + 1)Γ(α + k + 1)

on the interval [−1, 1], with the associated weight function

w(α,β)(τ) =
(1 − τ)α(1 + τ)β, τ ∈ [−1, 1]

0, otherwise,

with real scalar parameters α, β > −1 and Γ denoting the gamma function. In the
following, ∥z∥ =

√
⟨z, z⟩ is the norm induced by the inner product

⟨z, y⟩ =
∫ 1

−1
w(α,β)(τ)z(τ)y(τ)dτ

and

ν(τ) = 1 − 2τ/T.

According to, e.g. Ushirobira (2018) or Othmane (2022b), the Jacobi polynomials are
not the only orthogonal polynomials that can be used for the estimation. The Laguerre
or the Hermite polynomials can also be a suitable choice.

Remark 2.3 The algebraic differentiators based on the Jacobi polynomials have an
additional property that can be utilised in the filter design. For the parametrisation
α = β and N = 0 the transfer function has zeros which correspond to those of the
Bessel function of the first kind and order α + 1/2 as mentioned in Kiltz and Rudolph
(2013) and Kiltz (2017, Sec. 3.3.3). With this, the characteristics of a notch filter are
already included into the differentiator without additional effort. This can for example
be utilised for quantised signals as shown in Othmane et al. (2021a).

With the introduction of algebraic differentiators in this section, an investigation into
their use in MFC based on ultra-local models can now be conducted.
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Table 2.1: Chosen parameters of the signals t 7→ η(t) and t 7→ x(t) as well as the
algebraic differentiators for Fig. 2.1 and Fig. 2.2.

parameter value for Fig. 2.1 value for Fig. 2.2
Aη,1 5 · 10−3 1 · 10−2

Aη,2 1 · 10−3 1 · 10−2

Aη,3 1 · 10−4 2 · 10−2

Ax,1 5 · 10−1 1
Ax,2 5 · 10−1 -
fη,1 20 Hz 25 Hz
fη,2 50 Hz 5 Hz
fη,3 65 Hz 10 Hz
fx,1 0.8 Hz 1 Hz
fx,2 1 Hz -
fs 200 Hz 200 Hz
ωc 30 rad/s 100 rad/s

α = β 1 30
N 0 0

discretisation method mid-point mid-point

2.2 Control based on ultra-local models

In the following, the control based on so-called ultra-local models as introduced by
Fliess and Join (2009, 2013) is presented. To this end, consider an arbitrary SISO sys-
tem, the input-output behaviour of which can be described by the differential equation

E(y(t), ẏ(t), . . . , y(n)(t), u(t), u̇(t), . . . , u(m)(t)) = 0 (2.5)

with n, m ∈ N, the input u(t) and the output y(t), whereas E is assumed to be a
sufficiently smooth polynomial function of its arguments with real coefficients. Fur-
thermore, it is assumed that an integer ν ∈ [0, n] exists such that

∂E

∂y(ν) (y(t), ẏ(t), . . . , y(n)(t), u(t), u̇(t), . . . , u(m)(t)) ̸= 0

holds. Applying the implicit function theorem yields the local representation

y(ν)(t) = E(y(t), ẏ(t), . . . , y(ν−1), y(ν+1), . . . , y(n)(t), u(t), u̇(t), . . . , u(m)(t)) (2.6)

of the system described by (2.5). For a short period of time (2.6) can be approximated
with a so-called ultra-local model

y(ν)(t) = f(t) + ρu(t), (2.7)
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with the input gain ρ and the quantity f(t) that consists of the input and output
dynamics from the right hand side of (2.6) as well as unmodelled dynamics and dis-
turbances, without any distinction between the latter. For the sake of simplicity, the
quantity f(t) is called unknown part for the rest of this work. Commonly in the liter-
ature the cases ν = 1 (see, e.g. Gédouin et al. (2011) or Ziane et al. (2023)) or ν = 2
(see, e.g. Bekcheva et al. (2018) or Neves and Angélico (2021)) are considered and will
be discussed in the following.

2.2.1 First-order ultra-local models

Based on the latter considerations, a SISO system of arbitrary order can be approx-
imated at least locally, during a short period of time, with the first-order ultra-local
model

ẏ(t) = f(t) + ρu(t), (2.8)

whereas the input gain ρ is assumed to be positive to simplify the discussion. The
representation of a system approximated by the ultra-local model (2.8) is beneficial in
comparison to an approach that relies on a physical model of the system because a
cumbersome modelling and a parameter identification is obsolete. Nonetheless, a value
for the input gain ρ is still necessary.

Remark 2.4 As shown in several publications like Gédouin et al. (2011); Doublet et al.
(2016); Hegedűs et al. (2022) or Scherer et al. (2024), just to name a few, the input
gain ρ does not have to be constant and can be time dependent.

Assuming, that an estimate f̂(t) of f(t) at each time instant t is available, a simple
feedback law for (2.8) can be designed as

u(t) = 1
γ

(
ẏr(t) − kpe(t) − f̂(t)

)
, (2.9)

with the tracking error e(t) = y(t) − yr(t), a sufficiently smooth reference trajectory
t 7→ yr(t) and the design parameters γ > 0 and kp. The choice of γ and kp has a
significant influence on the performance of the control law (2.9) and has to be discussed
in the following. Therefore, the error dynamics of the system (2.8) controlled by (2.9)

ẏ(t) − ρ

γ
ẏr(t) + ρ

γ
kpe(t) = f(t) − ρ

γ
f̂(t). (2.10)

has to be analysed. For a constant reference trajectory t 7→ yr(t), (2.10) simplifies to

ė(t) + ρ

γ
kpe(t) = f(t) − ρ

γ
f̂(t).
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If a priori knowledge of the input gain is available, i.e. γ ≈ ρ is chosen, the error
dynamics further simplifies to

ė(t) + kpe(t) ≈ f(t) − f̂(t),

showing that a good approximation f̂(t) of the unknown part f(t) is necessary to get
the first-order differential equation of the error

ė(t) + kpe(t) ≈ 0.

The latter equation suggests that kp > 0 is a necessary condition for stability, if the
assumptions γ ≈ ρ and f(t) ≈ f̂(t) hold.

The approximation using a first-order ultra-local model can be applied to many dif-
ferent systems such as a green house in Lafont et al. (2015), an alkaline electrolysis
system in Ziane et al. (2023), or a grid-tied inverter in Wachter et al. (2023). However,
in many cases, the proposed approximation with a first-order ultra-local model (2.8) is
insufficient. A solution to that problem is discussed in the next section.

2.2.2 Second-order ultra-local models

Especially for mechatronic systems such as a magnetically supported body in Moraes
and da Silva (2015), a quadcopter in Bekcheva et al. (2018), an active suspension in
Haddar et al. (2019) as well as a reaction wheel inverted pendulum and a 2-DOF
Helicopter in Neves and Angélico (2021), the approach presented in Section 2.2.1 is
inadequate. Then, the considered system can be approximated using a second-order
ultra-local model

ÿ(t) = f(t) + ρu(t) (2.11)

with the input gain ρ > 0. A feedback law for (2.11) can be designed in the same
manner as in Section 2.2.1 under the assumption that an estimate f̂(t) of the unknown
part f(t) is available, yielding

u(t) = 1
γ

(
ÿr(t) − kdė(t) − kpe(t) − f̂(t)

)
, (2.12)

with the tracking error e(t) = y(t) − yr(t) and the design parameters γ > 0, kp, and
kd. The influence of the design parameters on the error dynamics can be analysed by
substituting the feedback law (2.12) into (2.11) which leads to

ÿ(t) − ρ

γ
ÿr(t) + ρ

γ
kdė(t) + ρ

γ
kpe(t) = f(t) − ρ

γ
f̂(t).

For a constant reference trajectory t 7→ yr(t), the error dynamics reads

ë(t) + ρ

γ
kdė(t) + ρ

γ
kpe(t) = f(t) − ρ

γ
f̂(t),
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and with a priori model knowledge, i.e. an approximation of the input gain ρ ≈ γ, the
influence of the estimated unknown part in

ë(t) + kdė(t) + kpe(t) ≈ f(t) − f̂(t)

is clearly visible. Assuming that the available estimate satisfies f̂(t) ≈ f(t) yields

ë(t) + kdė(t) + kpe(t) ≈ 0.

The latter suggests that kd, kp > 0 is a necessary condition for stability, if the assump-
tions γ ≈ ρ and f(t) ≈ f̂(t) hold.

2.2.3 Remarks and open questions

With the approaches presented in Section 2.2.1 and Section 2.2.2 many complex control
problems can be solved (see, e.g. Section 1.1). To the authors knowledge, the case ν = 3
for the ultra-local model (2.7), has not been considered in the literature but might lead
to better results if an approximation based on a second-order ultra-local model is
insufficient. Furthermore, the Sections 2.2.1 and 2.2.2 show that the controller design
based on ultra-local models is straightforward. However, the tuning of the controller
parameters, i.e. γ, kp and kd, might be challenging. Based on the considerations from
Section 2.2.1 and Section 2.2.2, the following three questions arise:

Open Questions

1. What are the necessary steps to obtain the estimate f̂(t) required for a
successful implementation of feedback laws such as (2.9) and (2.12)?

2. How can the parameter γ in the feedback laws (2.9) and (2.12) be chosen?

3. Is the approximation f̂(t) ≈ f(t) justified or respectively, is kd, kp > 0
sufficient for a stable closed loop?

The subsequent sections will address the aforementioned questions.
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2.3 Estimation of the unknown part

In this section, the estimation of the unknown part f(t) that is used in the MFC laws
(2.9) and (2.12) is analysed from different view points.

2.3.1 Estimation for first-order ultra-local models

In the following, the estimate f̂(t) is derived using Laplace transformation. Thereafter,
it is shown that the estimate can also be derived using the algebraic differentiators
presented in Section 2.1, which generalises the first approach.

An algebraic point of view

Following Fliess and Join (2013), consider the ultra-local model (2.8) and assume that
the unknown part t 7→ f(t) is constant. Applying the Laplace transform (see, e.g.
Doetsch (1974)) to (2.8) yields

sY (s) − y(0) = ρU(s) + 1
s

F, (2.13)

with Y, U , and F the Laplace transforms of y, u, and f , respectively, and y(0) the
initial condition of (2.8). To eliminate the influence of the initial condition y(0), (2.13)
is differentiated with respect to s, resulting in the relation

Y (s) + s
dY

ds
(s) = ρ

dU

ds
(s) − 1

s2 F, (2.14)

which cannot be implemented because of the occurrence of the variable s in sdY
ds

(s).
To get rid of this quantity and increase the attenuation of high-frequency disturbances
on the measurement, both sides of (2.14) are multiplied by s−2 yielding

1
s2 Y (s) + 1

s

dY

ds
(s) = ρ

s2
dU

ds
(s) − 1

s4 F. (2.15)

The relation (2.15) has to be transformed back into the time domain using the inverse
transformations

dn

dsn
X(s) t d(−t)nx(t) (2.16a)

1
sn

t d tn−1

(n − 1)! (2.16b)

X(s)
s

t d ∫ t

0
x(σ)dσ, (2.16c)



24 Chapter 2. Model-free control

according to Doetsch (1974, App.) and it follows that

t3

3!f = −
∫ t

0

∫ σ1

0
y(τ)dτdσ1 +

∫ t

0
τy(τ)dτ − ρ

∫ t

0

∫ σ1

0
τu(τ)dτdσ1.

Using the Cauchy-formula for repeated integration (see, e.g. Doetsch (1974, Ch. 11))
simplifies the latter expression, yielding

f = −3!
t3

∫ t

0
(t − 2σ)y(σ) + ρ(t − σ)σu(σ)dσ.

Hereafter, considering only the arbitrary bounded interval [0, T ] instead of [0, t] leads
to

f = − 3!
T 3

∫ T

0
(T − 2σ)y(σ) + ρ(T − σ)σu(σ)dσ.

Introducing a moving time window [t−T −ε, t−ε] with ε > 0 by evaluating the signals
y and u at σ + t − T − ε instead of σ yields

f(t) = − 3!
T 3

∫ T

0
(T − 2σ)y(σ + t − T − ε) + ρ(T − σ)σu(σ + t − T − ε)dσ,

which is now a function of time. After that, the substitution τ = σ + t − T − ε and
further trivial simplifications are leading to

f(t) = 3!
T 3

∫ t−ε

t−T −ε
(T − 2(t − τ − ε))y(τ) − ρ(t − τ − ε)(T − (t − τ − ε))u(τ)dτ.

(2.17)

However, in reality the unknown part is not constant in opposition to the assumption
previously stated and the input gain ρ of the ultra-local model (2.8) is not known.
Under these aspects, (2.17) leads to the estimate

f̂(t) = 3!
T 3

∫ t−ε

t−T −ε
(T − 2(t − τ − ε))y(τ) − γ(t − τ − ε)(T − (t − τ − ε))u(τ)dτ

(2.18)

of the unknown part f(t). This means that the unknown part f(t) is approximated
by a constant on the moving time window [t − T − ε, t − ε]. The expression (2.18)
is frequently found in the literature, e.g. in De Miras et al. (2013), except that the
current time t appears in the filter kernel, the parameter ε is explicitly considered and
the sign of the expression (T − 2(t − τ − ε)) differs.

A system theoretic point of view

To get a more general estimate of the unknown part f(t) as in the previous paragraph,
the estimation techniques as introduced in Section 2.1 can be used, leading to

f̂(t) =
∫ t−ε

t−T −ε
g(t − τ − ε)f(τ)dτ, ε > 0, (2.19)
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y

n = 1
alg. diff. ˙̂y

n = 0
alg. diff.u û

ρ
ρû

−

f̂

Fig. 2.5: Diagram of the proposed estimation algorithm for the disturbance f(t) based
on the first-order ultra-local model (2.8).

with g = g
(α,β)
N,T,ϑ denoting the kernel of an algebraic differentiator. This means that the

unknown part is approximated by the N -th order truncated generalised Fourier expan-
sion using Jacobi polynomials on a sliding time window [t − T − ε, t − ε]. Nonetheless,
the unknown part f(t) is not directly accessible. Instead the ultra-local model (2.8)
can be used to get

f(t) = ẏ(t) − ρu(t)

and with the latter equation, the estimate (2.19) yields

f̂(t) =
∫ t−ε

t−T −ε
ġ(t − τ − ε)y(τ) − ρg(t − τ − ε)u(τ)dτ, (2.20)

which is only depending on the known signals u and y as depicted in Fig. 2.5. However,
for the use of (2.20) in a MFC law, the unknown input gain ρ has to be replaced by γ.

The special parametrisation of the algebraic differentiators N = 0 (see, e.g. Othmane
(2024)), leads to

g
(α,β)
0,T,ϑ(τ) =


(α+β+1)!

α!β!T α+β+1 τα(T − τ)β, τ ∈ [0, T ],
0, otherwise,

and further choosing α = β = 1 yields

ḡ(τ) := g
(1,1)
0,T,ϑ(τ) =


3!
T 3 τ(T − τ), τ ∈ [0, T ],
0, otherwise.

(2.21)

Calculating the first derivative of ḡ with respect to τ reads

dḡ

dτ
(τ) =


3!
T 3 (T − 2τ), τ ∈ [0, T ],
0, otherwise.

(2.22)

Finally, using (2.21) and (2.22) in (2.20) leads to the same estimate as in (2.17). The
latter analysis shows that a generalisation of the results that are commonly used in the
literature is possible using the estimation techniques introduced in Section 2.1.

With the latter findings, the unknown part f(t) of a first-order ultra-local model can
be estimated. In the following section, the estimation using a second-order ultra-local
model is considered.
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2.3.2 Estimation for second-order ultra-local models

The same reasoning, i.e. using the Laplace transformation, as in Section 2.3.1 can be
applied to the second-order ultra-local model (2.11). Consequently, this results in the
estimate (see, e.g. Scherer et al. (2024))

f̂(t) = 5!
2T 5

∫ t−ε

t−T −ε

(
T 2 − 6Tσ + 6σ2

)
y(τ) − ρ

2σ2(T − σ)2u(τ)dτ, ε > 0, (2.23)

with σ = t − τ − ε, on the moving time window [t − T − ε, t − ε].

Using the estimation techniques as presented in Section 2.1, the approximation of f(t)
can be generalised yielding

f̂(t) =
∫ t−ε

t−T −ε
g(t − τ − ε)f(τ)dτ, (2.24)

with the kernel g = g
(α,β)
N,T,ϑ of the algebraic differentiator. Since the unknown part

cannot be measured directly, the ultra-local model (2.11) can be used to express f(t)
in (2.24) leading to the estimate

f̂(t) =
∫ t−ε

t−T −ε
g̈(t − τ − ε)y(τ) − ρg(t − τ − ε)u(τ)dτ, (2.25)

which only depends on the known signals u and y. As shown in Scherer et al. (2024,
App.), the approximation f̂(t) of f(t) in (2.25) can be realised with the special param-
etrisation of the algebraic differentiator g = g

(2,2)
0,T,ϑ, leading to the expression (2.23) and

proving that the proposed estimation (2.25) generalises the approach commonly used
in the literature (see, e.g. Bekcheva et al. (2018)). For the use in the MFC law (2.12)
the parameter ρ has to be replaced by γ.

The findings from the Sections 2.3.1 and 2.3.2 provide an answer to Question 1 raised in
Section 2.2.3 on how to get an estimate of the unknown part required for the successful
implementation of the MFC laws considered. The remaining questions will be answered
in the following.

2.4 Application to the DC motor

In the following, the considerations made in Section 2.2.1 are applied to a DC motor,
the mathematical model of which is presented in Section 2.4.1. In Sections 2.4.2 and
2.4.3, the MFC of the angular velocity and the angle, respectively, are presented.

2.4.1 System under consideration

The system under consideration is a DC motor with a three-stage gearbox and load
as shown in Fig. 2.6. This system is chosen as an illustrative example because it is
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Fig. 2.6: Photo of the considered test bed, consisting of a DC motor with gearbox,
load, and couplings as well as the necessary electronics for power supply and control
of the system.

R z

L

u uind

r2

r4

DC motor gearbox load sensor

bearingsΩ1

Ω2

Ω3

Ω4

r1 r5

r3 r6

Fig. 2.7: Equivalent circuit diagram of the considered DC motor and sketch of the
gearbox with load. The couplings between gearbox and load as well as load and sensor
are neglected.

well understood, easy to model and it can be interpreted as a first-order or second-
order model, if either considering the angular velocity or the angle of the load as its
output, respectively. An advantage of this system is that occurring effects regarding
the parametrisation of the MFC approach can be assigned more easily. In the following,
a mathematical model of the DC motor is derived which relates the input voltage to
the angle of the load.
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Applying Kirchhoff’s voltage law to the equivalent circuit diagram in Fig. 2.7 results
in

u(t) = Lż(t) + Rz(t) + uind(t), (2.26)

with the input voltage u(t), the current z(t), the electromotive force uind(t), and the
parameters R and L describing the electrical resistance and the inductance of the coil,
respectively. Under the assumptions that each shaft in Fig. 2.7 is a rigid body and the
coupling between gearbox and load (see Fig. 2.6) is neglected, the torques applied to
each shaft can be calculated, which yields

J1Ω̇1(t) = r1F1(t) + τel(t), (2.27a)
J2Ω̇2(t) = r3F2(t) − r2F1(t), (2.27b)
J3Ω̇3(t) = r5F3(t) − r4F2(t), (2.27c)
J4Ω̇4(t) = −r6F3(t), (2.27d)

with the radii of the gears rj, j ∈ {1, 2, . . . , 6}, the motor torque τel(t) as well as
Ωj(t), j ∈ {1, 2, 3, 4} and Jj, j ∈ {1, 2, 3, 4} the angular velocities and moments of iner-
tia of each shaft with respect to the rotational axis, respectively. Under the assumption
of an ideal transmission the radial velocities of each individual gear are related by

r1Ω1(t) = r2Ω2(t), (2.28a)
r3Ω2(t) = r4Ω3(t), (2.28b)
r3Ω3(t) = r6Ω4(t). (2.28c)

The mechanical and electrical parts of the motor are connected, assuming a constant
field flux, by the relations (see, e.g. Krishnan (2001, Sec. 2.2 and 2.3))

uind(t) = kmΩ1(t), (2.29a)
τel(t) = kmz(t), (2.29b)

with the motor constant km. Since only a dependence of the input voltage u(t) and
the load velocity Ω4(t) is of interest, (2.26)–(2.29) can be combined to

Ω̇4(t) = −aΩ4(t) + bu(t) − cż(t), (2.30)

with the positive parameters

d = J1
r2r4r6

r1r3r5
+ J2

r1r4r6

r2r3r5
+ J3

r1r3r6

r2r4r5
+ J4

r1r3r5

r2r4r6
,

a = 1
d

k2
mr2r4r6

Rr1r3r5
,

b = 1
d

km

R
,

c = 1
d

Lkm

R
.



2.4. Application to the DC motor 29

In the sequel, the index of the load velocity Ω4(t) is dropped and in addition to that,
the corresponding load angle θ(t) is introduced. Thereafter, the quantity cż(t) in
(2.30) is replaced by η(t) to additionally account for modelling errors and disturbances,
stemming from the couplings and the friction of the gearbox as well as the backlash in
the gearbox, resulting in

θ̇(t) = Ω(t) (2.31a)
Ω̇(t) = −aΩ(t) + bu(t) + η(t). (2.31b)

From here on out, (2.31) will be the basis of further considerations and the system
comprising of the motor, the gearbox and the load is only referred to as the DC motor.
Being able to approximate the system with a mathematical model will be a huge
benefit later on, to understand the effects that are occurring during parametrisation of
the MFC laws.

2.4.2 Control of the angular velocity

To control the angular velocity Ω(t), the ultra-local model

Ω̇(t) = fΩ(t) + ρΩu(t) (2.32)

is considered, which reveals, by comparing (2.32) with (2.31b), the unknown part
fΩ(t) = η(t) − aΩ(t) and the input gain ρΩ = b. According to (2.9) the corresponding
MFC law for the angular velocity Ω(t) reads

u(t) = 1
γΩ

(
Ω̇r(t) − kpeΩ(t) − f̂Ω(t)

)
, (2.33)

with the tracking error eΩ(t) = Ω(t) − Ωr(t) and the sufficiently smooth reference
trajectory t 7→ Ωr(t). With the control law (2.33) and the estimation techniques from
Section 2.3.1 the control design is completed. Nevertheless, the acquisition of the
angular velocity must be discussed.

Obtaining the angular velocity

Typically, incremental encoders are used to measure the angle θ(t) of the load. This
grants access to the angular velocity by different methods. The simplest way to obtain
the angular velocity Ω(t) is to use the difference quotient

Ω(kts) ≈ θ[k] − θ[k − 1]
ts

. (2.34)

Considering the resolution w of the sensor, the smallest angle increment to detect is
∆θmin = 2π/w. Thus, the resulting error from the quantisation of the sensor, corrupt-
ing the obtained values of Ω(kts), is at least ∆θmin/ts using (2.34). The latter value
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is increasing if the sampling time ts is reduced which is a drawback of the difference
quotient (2.34). Exploiting the low-pass filter characteristic of the algebraic differen-
tiator, the influence of the error from the quantisation can be reduced, which leads to
the MFC law

u(t) = 1
γΩ

(
Ω̇r(t) − kpêΩ(t) − f̂Ω(t)

)
(2.35)

with

êΩ(t) =
∫ t

t−T
g(t − τ)eΩ(τ)dτ, (2.36)

and the kernel g = g
(α,β)
N,T,ϑ of the algebraic differentiator as discussed in Section 2.1.

Remark 2.5 Using a simple low-pass filter is also a valid solution to decrease the
influence of the error stemming from the quantisation. Nonetheless, a simple low-pass
filter introduces a phase distortion which depends on the frequency of the filter input
signal. This is in contrast to the signal independent time delay δt of the algebraic
differentiators which is known in advance and can be calculated according to (2.3).

Another method to get access to the angular velocity Ω(t), is to apply the algebraic
differentiators directly on the measurement of the angle θ(t) by

Ω̂(t) =
∫ t

t−T
ġ(t − τ)θ(τ)dτ.

If this is done, two aspects have to be considered. Firstly, it is necessary to delay the
reference trajectory t 7→ Ωr(t) as discussed in Scherer et al. (2024, Sec. 4.3.1) by δt.
Otherwise, the system is ahead of the reference. Secondly, to get the estimation of
the unknown part, the angular acceleration θ̈(t) = Ω̇(t), has to be estimated based
on the measurement θ(t), which has an impact on the parametrisation of the alge-
braic differentiators. The order n of the derivative to be estimated, i.e. in this case
n = 2, is restricting parameters α and β according to n − 1 < min(α, β), denying the
parametrisation α = β = 1.

However, the first method using the difference quotient is considered in the following be-
cause in general a direct measurement of the output for a first-order ultra-local model is
available. The parametrisation of the algebraic differentiators with α = β = 1 is taken
into account in Section 3.4.1 which would not be possible otherwise as 1 < min(α, β)
must hold.

The subsequent part of this section addresses the tuning of the input gain γΩ and its
effect on the choice of the parameter kp. Therefore, two cases are considered:

Case 1: the error dynamics resulting from the ultra-local model (2.32) controlled by
the MFC law (2.35),

Case 2: the error dynamics resulting from of the DC motor model (2.31) controlled
by the MFC law (2.35).
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Case 1: Considerations based on the ultra-local model

If no model information of the system under consideration is available, the ultra-local
model (2.32) has to be considered. Using the MFC law (2.35) in (2.32) leads to

Ω̇(t) = fΩ(t) + ρΩ

γΩ

(
Ω̇r(t) − kpêΩ(t) − f̂Ω(t)

)
. (2.37)

After that, subtracting Ω̇r(t) from both sides of (2.37) and rearranging the expressions
yields

ėΩ(t) + kp
ρΩ

γΩ

êΩ(t) =
(

ρΩ

γΩ

− 1
)

Ω̇r(t) + fΩ(t) − ρΩ

γΩ

f̂Ω(t). (2.38)

For a constant reference trajectory t 7→ Ωr(t), the error dynamics (2.38) can be simpli-
fied to

ėΩ(t) + kp
ρΩ

γΩ

êΩ(t) = fΩ(t) − ρΩ

γΩ

f̂Ω(t). (2.39)

Assuming that the estimate of the unknown part is f̂Ω(t) ≈ γΩ

ρΩ
fΩ(t) leads to an

autonomous error dynamics. In a next step, the time delay δt according to (2.3)
introduced by the algebraic differentiator is explicitly considered. In addition to
that, effects such as approximation errors and disturbances are neglected leading to
êΩ(t) ≈ eΩ(t − δt) (see Remark 2.6).

Remark 2.6 Consider the error eΩ(t) = Ω(t)−Ωr(t) used in the MFC law (2.35). As
the angular velocity Ω(t) is not directly measured an estimate is obtained by using the
difference quotient (2.34), i.e. Ωdiff.(t) = Ω(t) + ζ(t) is considered for the calculation
of the error. In the latter equation, ζ(t) is used to denote a disturbance introduced by
the approximation (2.34). Applying the algebraic differentiator to the error as stated
in (2.36) leads to

êΩ(t) =
∫ t

t−T
g(t − τ)

(
Ω(τ) + ζ(τ) − Ωr(τ)

)
dτ

=
∫ t

t−T
g(t − τ)Ω(τ)dτ +

∫ t

t−T
g(t − τ)ζ(τ)dτ −

∫ t

t−T
g(t − τ)Ωr(τ)dτ

= Ω̂(t) + ζ̂(t) − Ω̂r(t)

In consideration of the low-pass characteristics of the algebraic differentiator, i.e.
ζ̂(t) ≈ 0, as well as the time delay δt, the latter equation can be approximated as follows

êΩ(t) ≈ Ω̂(t) − Ω̂r(t)
≈ Ω(t − δt) − Ωr(t − δt) = eΩ(t − δt).
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With the latter assumptions, (2.39) reads

ėΩ(t) + kp
ρΩ

γΩ

eΩ(t − δt) ≈ 0. (2.40)

The stability of this TDS, depending on the parameters ρΩ, γΩ, kp and δt, can be
analysed, e.g. by using the generalisation of the Hermit-Biehler theorem as presented
for instance in Silva et al. (2000, 2002) or Silva et al. (2005). Following the calculations
in Appendix A.1, the proportional gain has to satisfy

0 < kp <
π

2
γΩ

ρΩδt

(2.41)

in order to obtain asymptotic stability of the error dynamics (2.40). As stated in Frid-
man (2014), the time delay in (2.40) changes its character from an ordinary differential
equation to a functional differential equation, which is an infinite-dimensional system.
Consequently, assigning an initial value, i.e. eΩ(0) = eΩ,0 ∈ R, is no longer sufficient
as an initial condition and must be replaced by an initial profile, i.e. eΩ(τ) = eΩ,0(τ),
τ ∈ [−δt, 0]. Since the experiments considered in this work are designed such that they
start from a stationary regime, it is assumed that all initial profiles are always zero.

With the latter finding, Question 3 in Section 2.2.3 is answered, choosing kp > 0 is not
sufficient for a stable closed loop using the proposed MFC law (2.35). However, it is
still up to discuss whether more precise conditions on the parameter kp can be found
by using the mathematical model of the DC motor. Therefore, case 2 is considered.

Case 2: Considerations based on the mathematical model of the DC motor

In the following, the effects of the MFC law (2.35) on the DC motor (2.31b) are
analysed. The resulting closed loop dynamics reads

Ω̇(t) = −aΩ(t) + b

γΩ

(
Ω̇r(t) − kpêΩ(t) − f̂Ω(t)

)
+ η(t). (2.42)

As previously stated, comparing the ultra-local model (2.32) with the model of the DC
motor (2.31b) reveals that

fΩ(t) = η(t) − aΩ(t),

and the input gain of the ultra-local model is ρΩ = b. If known in advance, the
parameter γΩ of the MFC law (2.35) should be chosen such that γΩ ≈ b which addresses
Question 2 in Section 2.2.3. If the approximation error of the algebraic differentiators
as well as the effect of disturbances on the measurement are neglected, the estimation
of the unknown part used in the MFC law (2.35) reads

f̂Ω(t) ≈ η̂(t) − aΩ̂(t) (2.43a)
≈ η(t − δt) − aΩ(t − δt). (2.43b)
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Remark 2.7 As discussed in Appendix A.3, the approximation (2.43a) is justified for
the considered DC motor. Without this simplification, the error eΩ would obey a neutral
delay differential equation, the stability of which cannot be analysed by the generalised
Hermite-Biehler theorem (see, e.g. Assumption (A1) in Appendix A).

Subtracting aΩr(t) as well as b
γΩ

aΩr(t − δt) on both sides of (2.42) and using (2.43b)
yields

ėΩ(t) + aeΩ(t) + b

γΩ

(kp − a) eΩ(t − δt) ≈ gΩ(Ωr(t), Ω̇r(t)) + qΩ(η(t)) (2.44)

with

gΩ(Ωr(t), Ω̇r(t)) =
(

b

γΩ

− 1
)

Ω̇r(t) − aΩr(t) + b

γΩ

aΩr(t − δt),

qΩ(η(t)) = η(t) − b

γΩ

η(t − δt).

To simplify the discussion, assuming a constant reference t 7→ Ωr(t) = Ωr,0 ∈ R leads to
gΩ(Ωr,0, 0) =

(
1 − b

γΩ

)
aΩr,0. Additionally, if a steady state is reached, the disturbance

is assumed to be constant, i.e. t 7→ η(t) = η0 ∈ R, yielding qΩ(η0) =
(
1 − b

γΩ

)
η0. With

these assumptions, the right hand side of (2.44) reads

gΩ(Ωr,0, 0) + qΩ(η0) =
(

1 − b

γΩ

)
(aΩr,0 + η0) .

Finally, for gΩ(Ωr,0, 0) + qΩ(η0) ≈ 0, the TDS (2.44) yields

ėΩ(t) + aeΩ(t) + b

γΩ

(kp − a) eΩ(t − δt) ≈ 0. (2.45)

To analyse the asymptotic stability of (2.45), the results of Silva et al. (2000, Sec. 3.1)
can be applied using substitutions and assumptions according to Appendix A.2, leading
to the limits of the proportional gain

a
(

1 − γΩ

b

)
< kp < a + γΩ

bδt

√
z̃2 + (δta)2, (2.46)

where z̃ is the solution of

tan(z̃) = − z̃

aδt

in the interval [π/2, π].

Remark 2.8 If the system under consideration is unstable, i.e. a < 0 and b > 0, the
results of Silva et al. (2000, Sec. 3.2) have to be applied, leading to

a + γΩ

bδt

√
z̃2 + (δta)2 < kp < a

(
1 − γΩ

b

)
,
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where z̃ is the solution of

tan(z̃) = − z̃

aδt

in the interval [0, π/2] and γΩ < 0.

Regarding Question 3 in Section 2.2.3, the calculations made in this section show
that the first suggestion kp > 0 might not be enough for a stable closed loop. The
proportional gain kp has an upper and lower bound according to the considerations
based on the mathematical model of the DC motor. The remaining question on how
good the approximation based on the ultra-local model (2.41) is will be answered in
Chapter 3. In the following section the control of the angle θ(t) is discussed.

2.4.3 Control of the angle

To control the angle θ(t) using the MFC method presented, consider the ultra-local
model

θ̈(t) = fθ(t) + ρθu(t). (2.47)

Once more, a comparison of the ultra-local model (2.47) with mathematical model of
the DC motor (2.31) reveals fθ(t) = η(t) − aθ̇(t) and ρθ = b. A MFC law for (2.47)
can simply be designed according to Section 2.2.2 as

u(t) = 1
γθ

(
θ̈r(t) − kdėθ(t) − kpeθ(t) − f̂θ(t)

)
, (2.48)

with the tracking error eθ(t) = θ(t) − θr(t) and the sufficiently smooth reference tra-
jectory t 7→ θr(t). In contrast to the considerations in Section 2.4.2, the tracking error
in (2.48) can be calculated directly because the angle θ(t) is accessible. However,
the quantity ėθ(t) = θ̇(t) − θ̇r(t) has to be derived. The difference quotient (2.34) is
still a valid solution but considering the aforementioned drawbacks and the fact that
1 < min(α, β) is not a restriction in this case, the algebraic differentiators can be used
yielding

˙̂eθ(t) =
∫ t

t−T
ġ(t − τ)eθ(τ)dτ.

To further reduce the influence of disturbances on the measurement θ(t), the error eθ(t)
is filtered as well yielding the MFC law

u(t) = 1
γθ

(
θ̈r(t) − kd ˙̂eθ(t) − kpêθ(t) − f̂θ(t)

)
. (2.49)

Once more, the selection of the parameters kd, kp and γθ is essential for the stability
of the closed-loop system and must be analysed in the following. Therefore, the cases
1 and 2 presented in Section 2.4.2 are considered again.
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Remark 2.9 For the estimation of the unknown part fθ(t), the second derivative of the
angle θ(t) has to be estimated. Therefore, the parameters of the algebraic differentiators
used to realise the MFC law (2.49) have to obey 1 < min(α, β).

Case 1: Considerations based on the ultra-local model

If the ultra-local model (2.47) is the only source of information that is available, the
error dynamics using (2.49) after subtracting θ̈r(t) on both sides reads

ëθ(t) + kd
ρθ

γθ

˙̂eθ(t) + kp
ρθ

γθ

ê(t) = fθ(t) − ρθ

γθ

f̂θ(t) +
(

ρθ

γθ

− 1
)

θ̈r(t). (2.50)

Once more, for a constant reference trajectory, the right hand side of (2.50) can be
simplified yielding

ëθ(t) + kd
ρθ

γθ

˙̂eθ(t) + kp
ρθ

γθ

ê(t) = fθ(t) − ρθ

γθ

f̂θ(t). (2.51)

Assuming the estimate f̂θ(t) ≈ γθ

ρθ
fθ(t) and neglecting the errors stemming from the

estimation and the measurement disturbances using the algebraic differentiator, the
error dynamics (2.51) reads

ëθ(t) + kd
ρθ

γθ

ėθ(t − δt) + kp
ρθ

γθ

eθ(t − δt) ≈ 0. (2.52)

In Appendix A.4, the asymptotic stability of the TDS (2.52) depending on the param-
eters is analysed resulting in the bound for the differential gain

0 < kd <
γθ

δtρθ

z̃ sin(z̃), (2.53)

with z̃ being the solution of

z̃ = − tan(z̃)

in the interval [π/2, π], leading to z̃ ≈ 2.088. Furthermore, the proportional gain has
to satisfy

0 < kp < min
j=1,3,5,...

(
γθ

ρθδ2
t

z2
j cos(zj)

)
, (2.54)

with zj being the roots, arranged in ascending order of magnitude, of

ρθkd

sin(zj)
= γθ

δt

zj,

which have to be determined numerically once kd is chosen by (2.53).

Once more, a detailed analysis of the error dynamics can be derived using the mathe-
matical model of the DC motor.
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Case 2: Considerations based on the mathematical model of the DC motor

In the following, the influence of the MFC law (2.49) on the model of the DC motor
(2.31) is investigated. Comparing the ultra-local model (2.47) with (2.31) reveals that

fθ(t) = η(t) − aθ̇(t)

and if the parameter b is known in advance, the input gain should be chosen as γθ ≈ b.
According to Remark 2.7 it is assumed that the estimate of the unknown part in (2.49)
reads

f̂θ(t) ≈ η̂(t) − a
˙̂
θ(t).

Additionally, neglecting the effects from measurement disturbances as well as the ap-
proximation errors of the algebraic differentiators, leads to the differential equation

θ̈(t) = −aθ̇(t) + b

γθ

(
θ̈r(t) − kdėθ(t − δt) − kpeθ(t − δt) + aθ̇(t − δt) − η(t − δt)

)
+ η(t).

(2.55)

Subtracting θ̈r(t), aθ̇r(t) and b
γθ

aθ̇r(t − δt) from both sides of (2.55) yields

ëθ(t) + aėθ(t) + b

γθ

(kd − a) ėθ(t − δt) + b

γθ

kpeθ(t − δt) = gθ(θ̇r(t), θ̈r(t)) + qθ(η(t))

(2.56)

with

gθ(θ̇r(t), θ̈r(t)) =
(

b

γθ

− 1
)

θ̈r(t) − aθ̇r(t) + b

γθ

aθ̇r(t − δt),

qθ(η(t)) = η(t) − b

γθ

η(t − δt).

For a constant reference t 7→ θr(t) = θr,0 ∈ R and the assumption of a constant distur-
bance t 7→ η(t) = η0 ∈ R, the right hand side of (2.56) reads

gθ(0, 0) + qθ(η0) =
(

1 − b

γθ

)
η0.

If qθ(η0) ≈ 0, the TDS

ëθ(t) + aėθ(t) + b

γθ

(kd − a) ėθ(t − δt) + b

γθ

kpeθ(t − δt) ≈ 0 (2.57)

results from (2.56). Therefore, the finding from Farkh et al. (2009) can be applied to
determine the asymptotic stability of the TDS (2.57). In Appendix A.5 the notation
of Farkh et al. (2009) is adjusted leading to the range of the differential gain as

a
(

1 − γθ

b

)
< kd < a + γθ

bδt

√
z̃2 + (δta)2, (2.58)
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with z̃ the solution of

tan(z̃) = − z̃

aδt

in the interval [π/2, π]. The range of the proportional gain is

0 < kp < min
j=1,3,5,...

(
aγθzj

bδt

(
sin(zj) + zj

aδt

cos(zj)
))

(2.59)

with zj, the roots, arranged in ascending order of magnitude of

γθ

b
(kd − a) + a cos(zj) = zj

δt

sin(zj),

the latter have to be determined numerically. With these results, the admissible param-
eter set of the MFC law (2.49) leading to a stable closed-loop system can be calculated.

Remark 2.10 In Appendix A.6, the stability depending on the parameters for the
second-order system

ÿ(t) = bu(t) − a1ẏ(t) − a0y(t)

with a1, a0, b > 0 which is controlled by the MFC law (2.49) is analysed and it is shown
that the admissible parameter set is limited.

Subsequently, with the help of experiments on a real test bed, a validation process will
be undertaken in order to verify the theoretical findings thus far.





Chapter 3

Experimental results

In the following, the findings of Chapter 2 are evaluated using a DC motor as a test
bed. First, the experimental setup is presented in Section 3.1 and it is shown how
the parameters of the model (2.31) are identified in Section 3.2. Details concerning
the implementation of the control laws are shared in Section 3.3. Thereafter, the
parametrisation of the algebraic differentiators is analysed in Section 3.4 as well as
the stability of the closed-loop system depending on the parameters of the MFC laws
considered in Section 3.5. During the discussion of the experimental results, three
guidelines are presented for the parametrisation of the algebraic differentiators used
as well as the MFC laws based on first-order and second-order ultra-local models.
Additionally, the derived guidelines are compared to the systematic parametrisation
approach presented in Polack et al. (2019).

3.1 Experimental setup

The following experiments are carried out on the test bed depicted in Figure 2.6. A
DC gear motor modelcraft RB350018-2A723R with a transmission ratio of 1:18 is used
as the core element of the test bed. The required input voltage, which is limited to
±12 V, is provided by the DC driver MD10C R3 from Cytron. A Voltcraft USPS-2250
is used as the power supply for the whole setup. The angle of the load is measured by
the incremental encoder 05.2420.1222.1024 from Kübler with two channels, each having
a 10-bit resolution resulting in an 11-bit resolution using both. The proposed control
laws are running on a STM32F407ZGT6 microcontroller with a 168 MHz processor
that is used to run the algorithms with different sampling times. The load, which is
supported by two ball bearings, consist of a 3D printed housing, containing small metal
cylinders to increase its weight and inertia, respectively.

The system considered can be approximated by the mathematical model (2.31), the
parameters of which are identified in the next section.

39
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3.2 Parameter identification

To get a better understanding of the system under consideration presented in Sec-
tion 2.4.1, experiments are conducted to perform a parameter identification. With
this, numerical values for the parameters a and b of the model (2.31) can be found
such that the mathematical model approximates the behaviour of the real system. As
discussed in Chapter 2, the information about the parameters can help to find the
region in the parameter set leading to a stable closed-loop system.

Consider the model (2.31) which can also be written as

θ̈(t) =
(
u(t) −θ̇(t)

)(b
a

)
=
(
u(t) −θ̇(t)

)
p.

Assuming that the derivatives of θ are known, a simple least squares minimisation
problem can be solved to get access to the parameter vector p. By using the algebraic
differentiators as discussed in Othmane et al. (2022, Sec. 5.1), the identification task
can be simplified, because with their help the needed derivatives can be estimated
yielding

¨̂
θ(t) =

(
û(t) − ˙̂

θ(t)
)

p̂, (3.1)

with the estimated parameters p̂ = (â, b̂)T. In (3.1), the input signal t 7→ u(t) is
also filtered such that all signals are affected by the same delay δt of the algebraic
differentiator. Collecting K estimates in the matrix

G =


û[1] − ˙̂

θ[1]
û[2] − ˙̂

θ[2]
... ...

û[K] − ˙̂
θ[K]


and the vector

y =



¨̂
θ[1]
¨̂
θ[2]

...
¨̂
θ[K]


allows to formulate the simple least squares minimisation problem

min
p̂

J(p̂) (3.2)
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with the cost function

J(p̂) = (Gp̂ − y)T(Gp̂ − y).

The solution of the minimisation problem (3.2) is

p̂ = (GTG)−1GTy,

which only depends on known or estimated values.

For the parameter identification, four step responses with an input of −12 V, −6 V,
+6 V, and +12 V are measured with a sampling frequency of 100 Hz. The required
derivatives of the measurement are estimated by algebraic differentiators with the
parametrisation of N = 0, ωc = 50 rad/s, and α = β = 6, discretised using the
mid-point rule. The latter parameter combination is chosen since it resulted in a small
deviation of simulation and experiment. A more systematic way for the parametrisa-
tion of the algebraic differentiators used for parameter identification can be found in
Othmane et al. (2022, Sec. 5.1). For each experiment, the least squares minimisation
problem (3.2) is solved, leading to four sets of parameters (âj, b̂j), j ∈ {1, 2, 3, 4}. After
that, the mean of the identified parameters is calculated, leading, under an abuse of
notation, to a = 1/4∑4

j=1 âj = 39.44 s−1 and b = 1/4∑4
j=1 b̂j = 108.55 rad/(Vs2). To

verify the results, a different experiment is done using a sinusoidal input trajectory
t 7→ u(t) = A sin (2πft), with A = 6 V and f = 1 Hz. Thereafter, this experiment
is compared to a simulation of (2.31) using the solver ode45, leading to the results
depicted in Fig. 3.1. Therein, the angular velocity is approximated using the difference
quotient (2.34). In Fig. 3.1 the unmodelled effects such as friction and the backlash of
the gearbox are clearly visible, especially if a change in the sign of the angular velocity
occurs, as highlighted in the figure. Nevertheless, the approximation of the DC motor
using the model (2.31) is sufficiently accurate for the following analysis. With the
identified parameters of the model (2.31), the theoretical findings of Sections 2.4.2 and
2.4.3 can be verified.

3.3 Implementation details

All considerations regarding the MFC from Chapter 2 are based in a continuous-time
setting. Nonetheless, for an implementation of the algorithms on the proposed micro-
controller, the discretisation techniques from Section 2.1 have to be applied. Therefore,
based on the MFC law for the angular velocity (2.35), details concerning the imple-
mentation are shared. It should be noted that the following comments can be applied
to the MFC law of the angle (2.49) as well.
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Fig. 3.1: Comparison of the experimental data and the corresponding simulation of the
DC motor using a sinusoidal input trajectory t 7→ u(t) = A sin (2πft), with A = 6 V
and f = 1 Hz as well as the parameters a = 39.44 s−1 and b = 108.55 rad/(Vs2).

Implementation of the control law

As stated in Section 2.4.2, the angular velocity Ω at sampling instant k is obtained by
the difference quotient

Ω[k] = θ[k] − θ[k − 1]
ts

.

Using this quantity, the MFC law (2.35) can be written in discrete time as

u[k] = 1
γΩ

(
Ω̇r[k] − kpêΩ[k + θ] − f̂Ω[k + θ]

)
. (3.3)

It is assumed that the window length T of the differentiator is an integral multiple of
the sampling time ts, i.e. T = nsts and the parameter ε in (2.20) is chosen equal to
ts. Following the discussions from Sections 2.1 and 2.3, the quantities f̂Ω[k + θ] and
êΩ[k + θ] in (3.3) can be computed as

f̂Ω[k + θ] = 1
Φ1

L−1∑
j=0

w1[j]Ω[k − j − 1] − γΩ
1
Φ0

L−1∑
j=0

w0[j]u[k − j − 1], (3.4)

and

êΩ[k + θ] = 1
Φ0

L−1∑
j=0

w0[j] (Ω[k − j] − Ωr[k − j]) ,
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with

Φn = tn
s

n!

L−1∑
j=0

wn[j](−j)n.

According to Othmane et al. (2022), applying the mid-point rule for example, the
parameters of the latter equations are θ = 1/2, wn[j] = tsg

(n)[j + 1/2], and L = ns.
The open-source toolbox AlgDiff (see Othmane (2022a)) already provides wn[j] as well
as Φn which simplifies the use of the algebraic differentiators.

Input saturation

Since the input voltage of the DC motor is limited, the discrete-time input u[k] in (3.3)
is saturated such that the applied voltage usat[k] is in the interval usat[k] ∈ [−umax, umax]
with umax = 12 V. Then, usat[k] is used for the motor at each sampling instant k.

Safety routine

Preliminary experiments showed that a sampling of the parameter sets for the algebraic
differentiator and the MFC laws, can quickly lead to a failure of the DC motor. Due
to fast oscillations of the commanded input voltage, especially for parameter combi-
nations leading to an unstable closed loop, the wear of the DC motor is dramatically
increased. To avoid damaging the setup a safety routine is implemented which stops the
experiment if |u̇[k]| ≥ 120 V/s. During the preliminary experiments it has been shown
that 120 V/s is a good trade-off between safety and normal operation of the motor.
The derivative u̇[k] is obtained by an algebraic differentiator with the parametrisation
α = β = 6, ωc = 200 rad/s, N = 0, discretised using the mid-point rule. The latter
is determinant manually such that the discretisation error is small as well as the re-
sulting computational burden of the routine is low. Assuming a sampling frequency of
fs = 200 Hz, the latter combination leads to a discrete window of length ns = 9 for the
estimator.

The implementation of the proposed MFC laws can be achieved based on the latter
considerations. Subsequently, the parametrisation of the algebraic differentiators used
to realise (3.3) is analysed.

3.4 Parameters of algebraic differentiators

In this section, the parametrisation of the algebraic differentiators and their effect on
the stability of the closed loop is investigated. According to Mboup and Riachy (2018)
and Othmane et al. (2022, Sec. 4) the parameters α and β are chosen equal because
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this results in a high rejection of the additive measurement disturbance. Additionally,
with the choice N = 0 the estimation delay δt is equal to half of the filter window
length T , i.e. δt = T/2. The parameters ωc and α = β are varied. For each experiment,
a polynomial of degree 5 is used as a reference trajectory (see, e.g. Fig. 3.4 for the
reference of the angular velocity t 7→ Ωr(t)) for the respective control variable. At the
end of this section, the collected findings are summarised in Guideline 1.

3.4.1 Control of the angular velocity

The objective of the following experiments is to investigate the stability of the DC
motor (2.31) controlled by the MFC law (2.35) with respect to the parameters of the
algebraic differentiators. To this end, several different parameter combinations for
ωc ∈ {25, 50, . . . , 200} rad/s and α = β ∈ {1, 2, . . . , 8} are tested using the mid-point
rule as the discretisation method. According to Chapter 2, the first derivate of the
angular velocity Ω(t) is needed for the estimation of the unknown part fΩ(t). For
this reason, the correct discretisation of the kernel ġ

(α,β)
N,T,ϑ is crucial for a good result

of the algorithm. For each parameter combination, the mid-point rule is capable of
approximating the continuous kernel up to the cutoff frequency ωc, and the resulting
discretisation errors are low (see, e.g. Fig. 3.2). For further considerations, the root
mean square (RMS) value of the error eΩ is introduced for each parametrisation con-
sidered. The parameters of the MFC law (2.35) are chosen as kp = 50 s−1 and γΩ = b.
According to the considerations in Section 2.4.2, this choice should result in a stable
closed loop for every delay δt of the estimators resulting from the combinations in the
analysed parameter set. The sampling frequency is chosen to fs = 200 Hz. With this
choice, some flexibility in choosing ωc is available, because the cutoff frequency ωc is
limited by the Nyquist frequency ωny = πfs. A variation of the sampling frequency
fs is investigated for the control of the angle θ(t), covered in Section 3.4.2. This ap-
proach is not employed for the following experiments since the difference quotient (2.34)
is used to estimate the angular velocity Ω(t), which increases the quantisation error
significantly if the sampling frequency fs is increased as discussed in Section 2.4.2.

In Fig. 3.3, the RMS values of the error eΩ are depicted depending on the parametri-
sation of the estimator, whereas each red cross marks a tested combination. Several
effects can be observed in the latter mentioned figure. On one hand, the limited sam-
pling frequency of fs = 200 Hz results in a mismatch of the desired cutoff frequencies
ωc ∈ {25, 50, . . . , 200} rad/s and the resulting ones, especially for high cutoff frequen-
cies. The reason for this is that there are only a few values inside the discrete filter
window of length T = nsts, thus not every cutoff frequency ωc can be represented.
This effect can be compensated by increasing α = β leading to a larger discrete filter
window of length T and ultimately to a higher delay δt as seen in (2.3). On the other
hand, the RMS values of the error eΩ for ωc = 25 rad/s are increasing if the values of
α = β are growing as a result of the increasing delay δt and the fact that the controller
parameter kp is fixed for all experiments.
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Fig. 3.2: Comparison of the amplitude spectra of the continuous-time and discrete-time
differentiators with the parametrisation N = 0, ωc = 200 rad/s and α = β = 9 using
the mid-point discretisation.
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Fig. 3.3: RMS error of eΩ of the different parameters ωc ∈ {25, 50, . . . , 200} rad/s
and α = β ∈ {1, 2, . . . , 8} for the algebraic differentiators covered with a sampling
frequency of fs = 200 Hz using the mid-point discretisation. The parameters of the
MFC law are chosen as kp = 50 s−1 and γΩ = b. Each red cross marks a tested
parameter combination.

Besides the latter mentioned effects, the parameter combinations summarised in Ta-
ble 3.1 are leading to an unstable closed loop, even though the findings from Sec-
tion 2.4.2 predict a stable behaviour. In all cases, the safety routine is activated.
Figure 3.4 shows a comparison of a parameter combination leading to a stable closed
loop and an unstable one which is aborted by the safety routine, clearly showing the
increasing amplitude of the input voltage u(t). Both experiments are also marked in
Fig. 3.3 with the green and blue circle, respectively. For comparison, the continuous
and discrete amplitude spectra of both parametrisations are also depicted in Fig. 3.5,
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Fig. 3.4: Comparison of the experimental results using different parametrisations of the
algebraic differentiator, marked in Fig. 3.3. The graphs depicted in green are showing
the tracking performance of a stable closed loop, whereas the experiment depicted blue
is aborted by the safety routine.

whereas no abnormalities are apparent. A similar behaviour is observed in Section 3.4.2
and some more details are discussed therein.

Table 3.1: Parameter combinations of the algebraic differentiators leading to an unsta-
ble closed loop for the control of the angular velocity Ω(t) with fs = 200 Hz.

No. α = β ωc in rad/s
1 1 122
2 1 163
3 1 244
4 2 195
5 2 260
6 3 215

3.4.2 Control of the angle

The results of the following experiments are used to analyse the effects of the parametri-
sation of the algebraic differentiators on the stability of system (2.31) controlled with
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Fig. 3.5: Comparison of the amplitude spectra for different parametrisations of the
algebraic differentiator, marked in Fig. 3.3. The continuous and discrete amplitude
spectra are depicted by the solid and dashed lines, respectively.

the MFC law (2.49). Several experiments are conduced using different combinations for
ωc ∈ {25, 50, . . . , 200} rad/s and α = β ∈ {2, 3, . . . , 9}. To realise the MFC law (2.49),
the second derivative of the angle θ has to be estimated. Therefore, the parameters
α = β are limited to 1 < min(α, β). As discussed in Scherer et al. (2024), the dis-
cretisation of the algebraic differentiators is important to achieve satisfactory results
and using the mid-point rule can lead to discretisation errors especially for frequencies
below the cutoff frequency ωc. It could be shown in the latter contribution that these
errors can be reduced by increasing the parameter α = β, which, however, leads to
an increased delay δt. Using the analytical integration method (see, e.g. Kiltz (2017,
Sec. 3.4.2) and Othmane et al. (2022, Sec. 4.3)) is favourable especially for small filter
window lengths T and can be used instead of the latter solution using the mid-point
rule. Nevertheless, it should be noted that the frequency-domain properties of the dis-
cretised filters can be distorted for specific parametrisations as mentioned in Othmane
et al. (2022, Sec. 4.3). In Fig. 3.6, the amplitude spectra for the algebraic differen-
tiators, which are used to approximate the second derivative, are plotted using the
mid-point and the analytic integration rule, respectively. The results obtained by the
mid-point rule are bad even if the parameters α = β = 9 are chosen. Nonetheless, the
parameters α = β could be chosen higher but this is not considered here.

The parameters of the MFC law (2.49) are chosen as γθ = b, kp = 100 s−2, and
kd = 50 s−1 which leads, according to the considerations made in Section 2.4.3, to a
stable closed-loop for each parameter combination of the algebraic differentiator, i.e. for
every resulting delay δt. The same polynomial set point transition as depicted in Fig. 3.4
is used as the reference trajectory t 7→ θr(t) and with this, the RMS values of the error
eθ can be used to indicate the stability of the closed loop. In addition to the parameters
of the algebraic differentiators, the sampling frequency fs ∈ {20 Hz, 200 Hz, 1 kHz} is
varied, to showcase different problems that might occur using the proposed realisation
of the MFC approach.
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Fig. 3.6: Comparison of the amplitude spectra of the continuous-time and discrete-time
differentiators with the parametrisation N = 0, ωc = 200 rad/s and α = β = 9 using
the mid-point and the analytic integration rule for the second derivate, i.e. n = 2.

The experimental results using a sampling frequency of fs = 20 Hz are depicted in
Fig. 3.7. In this case, only ωc = 25 rad/s is chosen because the Nyquist frequency limits
the choice of the cutoff frequency ωc. Therefore, only α = β ∈ {2, 3, . . . , 9} is varied.
As discussed in Section 3.4.1, these parameter combinations are leading to a high delay
which is the main reason for the resulting RMS values of the error eθ. Nevertheless,
none of these parameter combinations is leading to an unstable closed loop. This
effect can also be observed if the sampling frequency is increased to fs = 200 Hz in
Fig. 3.8. In the latter figure, the parameter combinations summarised in Table 3.2
(a) are leading to an unstable closed loop. In each case, the safety routine aborts the
experiment. By comparing the latter table with the results obtain in Section 3.4.1, it
is noticeable that the combinations with the numbers 4, 5, and 6 from Table 3.1 can
also be found in Table 3.2 (a). If the sampling frequency is increased to fs = 1 kHz,
the latter concordance becomes less evident. In Fig. 3.9, it can be observed that the
combinations summarised in Table 3.2 (b) are leading to an unstable closed loop. At
least some similarities can be found by comparing the results of Table 3.2 (a) and (b). In
Fig. 3.9 the black squares indicate parameter combinations that are unrealisable with
the available hardware due to the limited computational capabilities. The discrete
convolutions (see, e.g. (2.4)) cannot be calculated in time, thus loosing the real-time
capability of the algorithm. Comparing Fig. 3.9 with Fig. 3.8 shows that the desired
cutoff frequencies are better matched if the sampling frequency is high enough. The
experiments conducted at different sampling frequencies exhibited a consistent trend:
Low values of α = β and a high cutoff frequency ωc are leading to an unstable closed
loop and a low cutoff frequency ωc in combination with increasing α = β values is
leading to a high delay δt ultimately resulting in increasing RMS values of the error eθ.

Comparing Fig. 3.8 with Fig. 3.9 shows that the sampling frequency is not the reason for
the instability of the controlled system. Additionally, a comparison of the experiments
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Table 3.2: Parameter combinations of the algebraic differentiators leading to an unsta-
ble closed loop for the control of the control of the angle θ(t) with fs = 200 Hz in (a)
and fs = 1 kHz in (b).

(a)

No. α = β ωc in rad/s
1 2 163
2 2 195
3 2 260
4 3 215

(b)

No. α = β ωc in rad/s
1 2 153
2 2 177
3 2 206
4 3 179
5 3 207
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Fig. 3.7: RMS error of eθ of the different parameters α = β ∈ {2, 3, . . . , 9} and
ωc = 25 rad/s for the algebraic differentiators covered with a sampling frequency of
fs = 20 Hz using the analytic integration rule. The parameters of the MFC law are
chosen as kp = 100 s−2, kd = 50 s−1 and γΩ = b.

discussed in this section and in Section 3.4.1 is indicating that the discretisation method
used is also not affecting the stability of the closed loop. Nevertheless, the stability
issues can still be overcome by increasing α = β. As stated in Section 2.3, usually only
α = β = 2 is considered in the current literature and as shown in Scherer et al. (2024)
as well as the latter experiments, using the generalisation of the MFC law proposed in
Chapter 2 solves this issue.

Remark 3.1 Comparing Fig. 6 from Scherer et al. (2024) with the results obtained
in this section shows that the dependency of the stability is more pronounced for the
magnetically supported plate. The reason for this might be the fact that the magnet-
ically supported plate is an unstable MIMO system in comparison to the stable DC
motor considered here or the unmodelled higher order mechanical eigenfrequencies of
the plate. The new results reported in this section are indicating that neither the sam-
pling frequency nor the discretisation of the algebraic differentiators is the reason for
this behaviour. Nevertheless, the origin of this effect is still open to discuss.
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Fig. 3.8: RMS error of eθ of the different parameters ωc ∈ {25, 50, . . . , 200}rad/s and
α = β ∈ {2, 3, . . . , 9} for the algebraic differentiators covered with a sampling frequency
of fs = 200 Hz using the analytic integration rule. The parameters of the MFC law are
chosen as kp = 100 s−2, kd = 50 s−1 and γΩ = b.
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Fig. 3.9: RMS error of eθ of the different parameters ωc ∈ {25, 50, . . . , 200}rad/s and
α = β ∈ {2, 3, . . . , 9} for the algebraic differentiators covered with a sampling frequency
of fs = 1 kHz using the analytic integration rule. The parameters of the MFC law are
chosen as kp = 100 s−2, kd = 50 s−1 and γΩ = b. Parameter combinations marked with
a black square are unrealisable with the hardware used, i.e. the filter window lengths
are too high, such that the real-time capability of the algorithm gets lost.

For all further experiments, the cutoff frequency ωc = 200 rad/s is chosen, which allows
to follow rapid changes in the reference trajectory. The parameters α = β = 9 are
chosen to suppress additive high frequency disturbances corrupting the measurement
and to ensure a good approximation of the desired cutoff frequency ωc. For the control
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of the angular velocity Ω(t), the used algebraic differentiators are discretised with the
mid-point rule and the analytic integration rule is chosen for the control of the angle θ(t)
to eliminate discretisation errors as discussed in this section. The latter parametrisation
results, with a sampling frequency of fs = 200 Hz, in a delay of δt = 35 ms, which has
to be considered in the following section for the tuning of the controller parameters.

Based on the findings of Section 3.4, Guideline 1 can be formulated.

Guideline 1: Parametrisation of the algebraic differentiators for their
use in a MFC law based on ultra-local models

The parameters of the algebraic differentiators used to realise a MFC law based
on ultra-local models should be chosen as follows:

Step 1: If possible, the sampling frequency fs should be chosen as high as
possible but not too high to ensure the real-time capability of the
algorithm on the hardware used.

Step 2: The cutoff frequency ωc should be chosen as high as possible, such that
rapid changes in the reference trajectory t 7→ yr(t) can be followed but
also as low as possible to suppress additive high frequency disturbances
corrupting the measurement.

Step 3: The parameters α = β should be chosen high to get a satisfying
damping of high frequency disturbances but not too high, to min-
imise the resulting delay δt of the algebraic differentiator whereas
n < min(α, β) + 1, with n being the highest derivative to be estimated,
has to be considered as the lower bound.

Step 4: The parameter N = 0 should be chosen which leads to the delaya

δt = T/2.

Step 5: If the filter window length T is short in comparison to the sampling
period ts, the analytic integration rule should be chosen, otherwise the
mid-point rule. In either case, it should be ensured that the discretisa-
tion error is small especially for frequencies below the cutoff frequency
ωc. If this is not the case, the parameter α = β should be increased
and/or the cutoff frequency ωc should be reduced.

Step 6: If the desired cutoff frequency is not matched in a satisfactory manner,
either go back to Step 1 and increase the sampling frequency or go back
to Step 3 and increase α = β.

aA delay-free estimation is not recommanded because according to Mboup et al. (2009)
and Othmane et al. (2022) allowing a small but known delay δt increases the accuracy of the
approximation.
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Remark 3.2 Once the cutoff frequency ωc in Step 2 of Guideline 1 is set, the param-
eters α = β can also be chosen according to Othmane et al. (2022, Sec. 5.1.2), using
the weakest relative attenuation kN,min at the Nyquist frequency. With a small kN,min,
aliasing problems can be avoided. Nonetheless, the increased delay δt resulting from
higher values of α = β have to be considered.

3.5 Parameters of the MFC law

In the following section, the parametrisation of the MFC laws, i.e. the choice of the
parameters γΩ, γθ, kp as well as kd and their influence on the stability of the closed
loop, is investigated. The theoretical findings from Chapter 2 have to be validated by
experiments on the test bed presented in Section 3.1. Therefore, the parameter set is
sampled in the same way as it is done in Scherer et al. (2023, 2024).

3.5.1 Control of the angular velocity

After parametrising the algebraic differentiators, the parameters of the MFC law (2.35),
namely γΩ and kp, have to be tuned. Therefore, the γΩ-kp parameter set is sampled
and the RMS values of the error eΩ are used as a quality gauge. In addition, for each
experiment made, the energy of the input signal (see, e.g. Oppenheim and Schafer
(1975, Sec. 1.1))

E(u) =
M∑

j=0
|u[j]|2 ,

with M depending on the duration of the experiment, is calculated. In comparison
to the experiments made in Scherer et al. (2023), using the maximum of the input
voltage u is not as meaningful, because the implemented safety routine often aborts the
experiment before this value is reached. The same set point transition as in Section 3.4
is used as the reference trajectory t 7→ Ωr(t) (see, e.g. Fig. 3.12).

The results of the experiments are presented in Fig. 3.10. Each marker represents an
individual experiment whereas a red triangle indicates an experiment that is aborted
by the safety routine, a white circle marks a parameter combination leading to a volt-
age that is not high enough to overcome the friction and a black cross indicates an
experiment with a stable closed loop and a moving load. Furthermore, the theoretical
boundaries for the stability of the TDS according to Section 2.4.2 are indicated. The
pink line represents the considerations based on the ultra-local model (2.41), showing
a rather conservative indication. The theoretical stability boundaries of the controlled
system obtained by the model of the DC motor (2.31) are marked by the red lines,
whereas the dashed line indicates the minimum values of kp and the solid line its
maximum values. Additionally, the white vertical line marks the identified input gain
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Fig. 3.10: Experimental results of the parameter sweep of the MFC law (2.35) for
the DC motor using the parametrisation of the algebraic differentiators N = 0,
ωc = 200 rad/s, and α = β = 9, discretised with the mid-point rule, to validate
the theoretical findings from Section 2.4. The white line represents the identified input
gain b, the pink line the conservative result from (2.41), and the red lines depict the
results from (2.46), whereas the dashed line indicates the minimum values of kp and
the solid line its maximum values. Each marker represents an individual experiment:
A red triangle marks an experiment that is aborted by the safety routine, a white circle
marks an experiment with an input voltage too low to even move the load and a black
cross marks a regular experiment.

b. Using the model information from (2.31), a prediction that is much more pre-
cise is obtainable and the latter shows that the approximation of the error dynamics
by the TDS (2.40) is a valid explanation for this specific depiction of the parameter
set. Nevertheless, the real experiments differ from the theoretical results especially for
(γΩ, kp) ∈ [10 rad/(Vs2), 100 rad/(Vs2)] × [0.1 s−1, 100 s−1]. On one hand, the boundary
for the minimal kp is rather conservative and on the other hand, the region between
the solid and the dashed red line should be stable, but the experiments show the op-
posite. The reason for this difference between theory and experiment needs further
investigations. Furthermore, some parameter combinations result in a stable closed
loop even if they are either at or slightly above the solid red line which indicates the
theoretical upper bound of kp. Possible reasons for this observation are the influence of
unmodelled effects such as friction and the backlash of the gearbox as well as parameter
uncertainties of the identified values for a and b.

Remark 3.3 The results depicted in Fig. 3.10 can be compared to Fig. 5 in Scherer
et al. (2023) for the MFC of a proportional valve. In both cases, the proposed algorithm
shows similar experimental results for the sampling of the corresponding parameter set.
This evidence demonstrates that the observed behaviour of the valve is not specific to
the test bed in question.
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Fig. 3.11: Marked parameter combinations on the lines lines (A) to (C) and (1) to (3),
to show the similar closed-loop behaviour in Fig. 3.12.

Taking a closer look at the individual experiments reveals another similarity to the
results obtained in Scherer et al. (2023). Therefore, the experimental results over time
for the parameter combinations marked with red dots in Fig. 3.11 are compared in
Fig. 3.12. The experiments are grouped according to their location on each dashed red
line (A) to (C), whereas A1 marks the crossing of lines (A) and (1) as presented in
Fig. 3.11. All experiments on the lines (A) to (C) share the same ratio γΩ/kp between
input and proportional gain. The individual value of each parameter does not impact
the closed-loop behaviour. Fig. 3.11 shows that the best results are obtained at the
edge of the stability boundary, and increasing the ratio γΩ/kp leads to a degradation
of the tracking behaviour of the controlled system, ultimately leading to a voltage that
is too low to overcome friction and move the load. Furthermore, the effects of friction
can be observed in Fig. 3.12, which depicts the experiments on the lines (A) and (B).
For times t > 3.5 s the reference velocity Ωr(t) is zero but the applied voltages are not,
which indicates that the algorithm (3.4) is capable of estimating friction.

Remark 3.4 Assuming the input gain b of the system is unknown and γΩ has to be
chosen without additional model information, Fig. 3.11 reveals that an overestimation,
of the input gain is not as crucial as its underestimation since the value of b acts like
a lower bound.

In consideration of the results obtained in this section, the following guideline can be
formulated.
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Fig. 3.12: Controlled angular velocity and corresponding voltage for parameter com-
binations with the same ratio of γΩ and kp, marked in Fig. 3.11 with lines (A) to
(C) and (1) to (3). Parameter combinations on the same line show similar closed-loop
behaviour.



56 Chapter 3. Experimental results

Guideline 2: Parametrisation of a MFC law based on a first-order
ultra-local model

Consider a stable system that can be approximated by a first-order ultra-local
model

ẏ(t) = f(t) + ρu(t), (3.5)

with the output y(t), the unknown part f(t), the input u(t) and its constant gain
ρ > 0. The MFC law

u(t) = 1
γ

(
ẏr(t) − kpê(t) − f̂(t)

)
, e(t) = y(t) − yr(t) (3.6)

can be applied for the control of the ultra-local model (3.5). Two cases have to
be considered (see also Fig. 3.13 for a visualisation of the guideline):

Case 1: A value for the input gain ρ of the ultra-local model is not available.

Step 1: Choose a large enough value γ̃ for the input gain as well as
a small value for the proportional gain, e.g. k̃p = 1 s−1, as a
starting point.

Step 2: Choose the proportional gain kp in (3.6) as

kp(γ) = k̃pγ̃

γ
, (3.7)

with γ ∈ (0, γ̃].
Step 3: Decrease γ ∈ (0, γ̃] in (3.6) until either the controlled system

starts oscillating or the tracking error is appropriately small.

Case 2: A value for the input gain ρ of the ultra-local model is available, e.g.
by the method proposed in Polack et al. (2019) for the feed-forward
tuning.

Step 1: Choose a value for γ̃ = κρ with κ > 1, resulting in a proportional
gain

k̃p = π

2δt

κ,

using the conservative bound derived in Appendix A.1.
Step 2: Choose the proportional gain kp in (3.6) as

kp(γ) = πκ2ρ

2δtγ
,

with γ ∈ [ρ, κρ].
Step 3: Decrease γ ∈ [ρ, κρ] in (3.6) until either the controlled system

starts oscillating or the tracking error is appropriately small.
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Fig. 3.13: Visual interpretation of the Guideline 2. Even though the results from the
DC motor experiments are used, this visualisation is only intended to convey the idea
of the guideline. Especially for Case 2 the pink line which is marking the considerations
based on the ultra-local model does not correspond to the parameters of the system.

Remark 3.5 According to the considerations based on the ultra-local model in Sec-
tion 2.4.2, the maximum proportional gain is calculated using (2.41), i.e.

kp,max = π

2
γ

ρδt

.

In logarithmic coordinates the expression (2.41) reads

log10(kp,max) = log10(π) + log10(γ) − log10(2) − log10(ρ) − log10(δt) (3.8)

A line perpendicular to (3.8), i.e. the red line in Fig. 3.13 for Case 1, Step 2 of Guideline
2, can be calculated in the logarithmic coordinates as

h(γ) = log10(k̃p) + log10(γ̃) − log10(γ),

which is equivalent to

kp(γ) = 10h(γ) = k̃pγ̃

γ
.

3.5.2 Control of the angle

In this section the control of the angle θ(t) using the MFC law (2.49) is considered.
Numerous experiments are conducted on the test bed to investigate the influence of
the parameters kp, kd, and γθ on the stability of the closed loop. The goal of these
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Fig. 3.14: Experimental results of the parameter sweep for the control of the angle with
the MFC law (2.49). The sampling frequency is chosen to be fs = 200 Hz and the input
gain is γθ = b. The pink and the red lines are depicting the boundaries of the admissible
values of kp and kd according to the considerations based on the ultra-local model by
(2.53)–(2.54) and based on the model of the DC motor by (2.58)–(2.59), respectively.
The red triangles mark an experiment that is aborted by the safety routine and the
black crosses represent experiments in which no problems occurred.

experiments is to validate the theoretical findings of Chapter 2. To save time during
the sampling of the parameter set, the same set point transition as in the Section 3.4.2
is used as the reference trajectory t 7→ θr(t), but the transition time as well as the
holding time is reduced to 0.5 s. Furthermore, the energy of the input signal t 7→ u(t)
as well as the RMS values of eθ are used as an indicator for the quality of the resulting
tracking performance.

In a first step, the input gain of the MFC law is chosen as γθ = b and the parameters
kp and kd are varied. The results on the sampled parameter set are shown in Fig. 3.14,
whereas each marker represents an individual experiment made. Once more, the red
triangle marks a parameter combination that leads to the activation of the safety rou-
tine and is thus aborted. Moreover, the black cross resembles an experiment that is
completed without any problem. The pink and the red lines depict the boundaries of
the admissible values of kp and kd according to the considerations based on the ultra-
local model by (2.53)–(2.54) and based on the model of the DC motor by (2.58)–(2.59),
respectively. Again, using only the information of the ultra-local model leads to a very
conservative result. Nevertheless, this simplification can be used to design a stable
closed loop since the set predicted by (2.53)–(2.54) is included within the set predicted
by (2.58)–(2.59). The influence of the parameter a pushes the boundary of the admis-
sible kd further than predicted by (2.53)–(2.54). Furthermore, the parameter kd has a
dominant impact on the tracking performance. The smallest RMS values of the error eθ

are obtained for parameter combinations in the interval kd ∈ [49.3 s−1, 119.5 s−1], which
marks the region between the red and the pink line in Fig. 3.14. If both parameters
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Fig. 3.15: Experimental results for the parameter combinations within the white rect-
angle in Fig. 3.14. The area surrounded by the brown line marks experiments which
are aborted by the safety routine even though they are leading to a stable closed loop.
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Fig. 3.16: Comparison of different experiments marked with rectangles in Fig. 3.15
with a deactivated safety routine. The results show, that the experiments surrounded
by the brown line are falsely aborted, whereas the experiments beyond the red line,
which marks the bound for a stable closed loop, are not asymptotically stable.

kp and kd are below the value of 10 s−2 and 10 s−1, respectively, the resulting tracking
performance is bad because the RMS values of the error eθ are high and the energy of
the input signal is low.
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A more detailed sampling of the area marked with the white rectangle in Fig. 3.14 is
provided in Fig. 3.15. Within this figure, it can be observed that the theoretical find-
ings of Chapter 2 for the boundaries resulting from (2.58)–(2.59) are quite accurate.
Nevertheless, the region surrounded by the brown line shows several experiments that
are aborted by the safety routine even though they are within the stability set. This
behaviour raises the question if the safety routine distorts the results obtained. To fur-
ther investigate this phenomenon, three experiments with the parameter combination
marked by the gray, blue and purple squares in Fig. 3.15 are made without the safety
routine, the results of which can be observed in Fig. 3.16. The gray graph obtained with
the parameter combination log10(kp) = 2.75 and log10(kd) = 1.375, which lies within
the region surrounded by the brown line, clearly shows a stable closed-loop behaviour
in opposition to the remaining experiments in the latter figure. For the blue and purple
graphs, a fast switching for the input voltage u(t) between its maximum and minimum
values of ±12 V is observed. Consequently, the angle θ(t) oscillates around its refer-
ence value. These experiments show that the safety routine is conservative but has
no negative effect on the obversions made to validate the parameter boundaries which
results from (2.58)–(2.59). Nonetheless, the latter results show that further analysis
considering the input saturation is needed in future work.

Fig. 3.17 shows a sampling of the parameter set with an input gain of γθ = 1.1b. With
an increase of the latter parameter, the red line, which marks the boundary of the
stable set, is changing because the minimal value of kd,min = −3.54 s−1 is allowed to
be negative. This change leads to a new evaluation of the quality of the theoretical
results from (2.58)–(2.59), especially for parameter combinations below kd = 10 s−1.
Therefore, two experiments with parameters marked in Fig. 3.17 with a green and
brown square are presented in Fig. 3.18. Once more, these experiments are made
without the safety routine. Both graphs show an oscillation around the reference but
the brown graph, the parameter combination of which is considered to be leading to
an unstable closed loop, is reaching ±12 V. Nevertheless, the parameter combination
which leads to the green graph does not show a stable closed-loop behaviour because
of insufficient damping induced by the algorithm. Regardless of that, the stability for
parameter combinations with kd > 10 s−1 is correctly predicted.

To obtain the results depicted in Fig. 3.19, the input gain is chosen to be γθ = 0.9b.
As a consequence of this, the theoretical boundary for kp and kd calculated by (2.58)–
(2.59) results in a minimum value of kd,min = 4.33 s−1. Parameter combinations below
this value are now classified to be unstable even if they do not lead to an unstable
closed loop. A similar effect can be observed for the MFC law based on a first-order
ultra-local model as presented in Section 3.5.1 for parameter combinations with γθ < b.
Nevertheless, the reasons for this behaviour needs further investigation.

The experimental results presented in this section show that the theoretical findings
from Chapter 2 are valid if the model of the DC motor is considered. They also explain
the experimental results for the sampling of the parameter set observed in Scherer et al.
(2024, Fig. 7). The variation of the input gain γθ in Fig. 3.17 and Fig. 3.19 shows
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Fig. 3.17: Experimental results of the kp-kd parameter sweep for the control of the
angle with the MFC law (2.49). The sampling frequency is chosen to be fs = 200 Hz
and the input gain is γθ = 1.1b.
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Fig. 3.18: Angle and voltage over time for the parameter combinations marked in
Fig. 3.17.

that the experimental results differ in some regions of the parameter set and that these
effects need further investigation. However, all figures of the parameter set have in
common that there is an optimum for the RMS values of the error eθ for high values of
both kp and kd. This can be seen for example in Fig. 3.20, the parameter combination
of which is also marked with a white square in Fig. 3.16. The compensation of the
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Fig. 3.19: Experimental results of the kp-kd parameter sweep for the control of the
angle with the MFC law (2.49). The sampling frequency is chosen to be fs = 200 Hz
and the input gain is γθ = 0.9b.
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Fig. 3.20: Angle and voltage over time for the parameter combination γθ = b,
log10(kp) = 3.1875, and log10(kd) = 1.9375, marked with the white rectangle in
Fig. 3.15, which leads to the lowest RMS values of the error eθ.

unknown part fθ(t) is capable of leading to steady state accuracy even without the
explicit consideration of an integral part within the MFC law (2.49).

In consideration of the results obtained in this section, Guideline 3 can be formulated.
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However, in opposition to Guideline 2, only the case of a known input gain ρ of the
ultra-local model is considered because the investigated parameter range of the input
gain γθ is insufficient.

Guideline 3: Parametrisation of a MFC law based on a second-order
ultra-local model

Consider a stable system that can be approximated by a second-order ultra-local
model

ÿ(t) = f(t) + ρu(t), (3.9)

with the output y(t), the unknown part f(t), the input u(t) and its constant gain
ρ > 0. The MFC law

u(t) = 1
γ

(
ẏr(t) − kpê(t) − kd ˙̂e(t) − f̂(t)

)
, e(t) = y(t) − yr(t) (3.10)

can be applied for the control of the ultra-local model (3.9). It is assumed that
a value for the input gain ρ of the ultra-local model is available.

Step 1: Choose γ = ρ.

Step 2: Calculate k̃p as the highest values of the proportional gain and k̃d as
its corresponding value for the differential gain using the results from
Appendix A.4 and use them as a staring point in (3.10).

Step 3: Increase kd in (3.10) until the boundary of the stability set is reached
and reduce it such that no oscillations occur in the resulting tracking
behaviour.

Step 4: Increase kp in (3.10) until either the controlled system starts oscillating
or the tracking error is appropriately small.

3.5.3 Comparison to the results of Polack et al. (2019)

As stated in Chapter 1, Polack et al. (2019) introduced a systematic tuning approach
for a stable system using a MFC law based on a first-order ultra-local model. In this
section, the findings of Polack et al. (2019) are repeated and applied to the DC motor
as well as compared to Case 1 of Guideline 2, i.e. the tuning of the MFC law under
the assumption that no a priori knowledge about the input gain γΩ is available. The
guidelines introduced by Polack et al. (2019) are not explicitly considering the delay δt

introduced by the algebraic differentiators.

In a first step, the tuning guideline proposed by Polack et al. (2019) suggests to identify
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Fig. 3.21: Results of the feed-forward ((a) and (b)) and feedback tuning ((c) and (d))
of the guideline proposed in Polack et al. (2019). The red dashed lines indicate the
chosen values for γΩ = 74.98 rad/(Vs2) and kp = 31.62 s−1, and the gray background
marks the experiments which are aborted by the safety routine.

the input gain γΩ. For that, a so-called feed-forward tuning is proposed by setting the
proportional gain of the MFC law (2.35) to zero, which yields

u(t) = 1
γΩ

(
Ω̇r(t) − f̂Ω(t)

)
. (3.11)

In a next step, the parameter γΩ is chosen large enough and experiments on the test
bed are conducted. For large values of γΩ the resulting voltages u(t) from (3.11) are
small. Therefore, γΩ is decreased until the closed loop oscillates or gets unstable. The
value of γΩ that results in the smallest error is chosen for the so-called feedback tuning,
i.e. increasing kp in (2.35) until the tracking error is sufficiently small.

For the following experiments, the parametrisation of the algebraic differentiators pre-
sented in Section 3.4 is used with a sampling frequency of fs = 200 Hz. To get compa-
rable results to the experiments from Section 3.5.1, the reference trajectory t 7→ Ωr(t)
depicted in Fig. 3.12 is chosen. The RMS values of the error eΩ as well as the energy of
the input signal t 7→ u(t) are used once again as a quality gauge of the parametrisations.

The results of the feed-forward tuning are depicted in Fig. 3.21 (a) and (b), starting with
γΩ = 106 rad/(Vs2). It can be observed that the safety routine aborts the experiment
if γΩ < 64.93 rad/(Vs2), indicating a lower bound for the stability. This is in line
with the observed effects from Fig. 3.10 for kp = 0.1 s−1. In Fig. 3.21, the aborted
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Fig. 3.22: Comparison of the experimental results for two parametrisations of the feed-
forward tuning proposed by Polack et al. (2019). The value of γΩ = 64.93 rad/(Vs2)
results in a smaller RMS value of the error eΩ but for further experiments, the value
γΩ = 74.98 rad/(Vs2) is chosen because of the oscillations of the blue graph.

experiments are marked with a gray background. Fig. 3.22 depicts the voltage u(t)
and the angular velocity Ω(t) over time for two parametrisations of γΩ resulting in
the lowest RMS values of the error eΩ. The blue graph leads to a smaller RMS value
compared to the green graph, however, this graph also shows oscillations when the
reference velocity t 7→ Ωr(t) transitions to zero. Therefore, the parametrisation leading
to the green graph, i.e. γΩ = 74.98 rad/(Vs2), is chosen for the feedback tuning since no
oscillation occurs. The latter value is marked in Fig. 3.21 (a) and (b) with a red dashed
line. With regard to Remark 3.4, it should be noted that the proposed feed-forward
tuning leads to an input gain of γΩ = 74.98 rad/(Vs2) which is smaller in comparison
to the value of b = 108.55 rad/(Vs2), identified in Section 3.2.

The results of the feedback tuning, starting with kp = 0.1 s−1, are depicted in Fig. 3.21
(c) and (d). According to the latter figure, increasing the proportional gain leads to
a reduction of the RMS values of the error eΩ until a minimum is reached. A further
increase of kp leads to a rise of the RMS values until the safety routine aborts the experi-
ments. The proportional gain leading to the smallest tracking errors, i.e. kp = 31.62 s−1,
is chosen as the resulting parametrisation of the control law. The latter value is again
indicated with a red dashed line in Fig. 3.21 (c) and (d).

The results of Guideline 2 can be observed in Fig. 3.23. To get a fair comparison of
both approaches, the values of γ̃Ω = 106 rad/(Vs2) and k̃p = 0.1 s−1 are chosen equal to
the application of the guideline suggested by Polack et al. (2019). The parametrisation
γΩ = 421.69 rad/(Vs2) and kp = 237.13 s−1 is chosen because the resulting RMS value
of the error eΩ is with 0.29 rad/s equivalent to the value obtained by the guideline
proposed by Polack et al. (2019).

In Fig. 3.24 the results of both approaches can be compared. The latter figure shows
that each tuning guideline can be used to achieve a comparable result. Nonetheless,
the proposed Guideline 2 only needs 54 steps to reach a satisfactory result whereas
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Fig. 3.23: Experimental results of the application of Guideline 2 on the DC motor.
Instead of changing γΩ and kp separately, this guideline makes use of the finding from
Section 3.5.1 that only the ratio γΩ/kp has an influence on the stability of the closed
loop. Thus the proportional gain kp can be employed as a function of the input gain
γΩ. The red dashed lines indicate the chosen value for γΩ = 421.69 rad/(Vs2) and the
gray background marks the experiments which are aborted by the safety routine.

the approach suggested by Polack et al. (2019) needs 107 steps in total, 66 to find the
value of γΩ = 75 rad/(Vs2) and additionally 41 to find kp = 31.62 s−1. This is due to the
findings from Section 3.5.1 that only the ratio γΩ/kp has an influence on the stability.
Thus the proportional gain kp can be employed, according to (3.7), as a function of
the input gain γΩ. It should be remarked that the number of steps required to find
a satisfactory parametrisation heavily depends on the sampling used as well as the
starting values γ̃ and k̃p. A more sophisticated algorithm, e.g. the bisection method,
can be used to speed up the sampling. By comparing the results in Fig. 3.24 it can be
observed that the results obtained by Guideline 2 lead to a less noisy input trajectory
t 7→ u(t) since the value of γΩ is higher in comparison to the value obtained by the
feed-forward tuning. This behaviour can also be observed in Fig. 3.12 with the plots
of line (A).
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Fig. 3.24: Comparison of the best results obtained by the tuning guidelines proposed
by Polack et al. (2019), which leads to γΩ = 74.98 rad/(Vs2) and kp = 31.62 s−1 as well
as Guideline 2 which leads to γΩ = 421.69 rad/(Vs2) and kp = 237.13 s−1.





Chapter 4

Conclusion and future work

In this thesis, the MFC approach as introduced by Fliess and Join (2009, 2013) is con-
sidered in the light of new findings regarding the algebraic differentiators which leads to
new insights into the stability analysis of the closed loop and the systematic parametri-
sation of the approach. The two peer-reviewed and published journal papers Scherer
et al. (2023) and Scherer et al. (2024), attached in Chapter 5, lay the foundation for
the systematic tuning. In the latter works, the sampling of the controller parameter set
is introduced as a straightforward method to find parameter combinations which lead
to a stable closed loop, revealing a special pattern in the parameter set. Additionally,
the tuning of the algebraic differentiators is analysed and it is shown that not only a
single parametrisation leads to a successful realisation of the control approach.

In order to gain a deeper understanding of the tuning process, the DC motor in Sec-
tion 2.4.1 represents the basis of considerations. This system is considered because it
is easy to understand and to model, used in many applications, and the results could
be reproduced by other research groups as well without much effort. Depending on
the chosen output quantity, the DC motor can be either considered as a first-order or
second-order system. Consequently, the two common approximations using differential
equations of first or second order with unknown parts, so-called ultra-local models,
are applied to the DC motor. Using the ultra-local model, MFC laws are derived in
Section 2.2 depending on the compensation of the unknown part, the estimation of
which is done using algebraic differentiators in the sense of Mboup et al. (2007, 2009).
It is shown in Section 2.3 that the estimation of the unknown part can be realised with
a special parametrisation of the algebraic differentiators and can thus be generalised.
Considering the delay of the estimators and the mathematical model of the DC motor,
the stability of the closed loop is analysed using TDSs in Section 2.4. With the help of
the generalised Hermite-Biehler theorem (see, e.g. Silva et al. (2005, Ch. 5)), bounds
for the controller parameters, i.e. the proportional and derivative gain, can be derived
depending on the delay of the estimators, the input gain of the controller and the model
parameters. Additionally, an approximation that is only depending on the ultra-local
model can be derived using the same method.
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In Chapter 3, the theoretical findings of Chapter 2 are validated using a test bed.
The hardware used is presented and the parameters of the mathematical model of the
system are identified in the Sections 3.1 and 3.2, respectively. Additionally, details
concerning the implementation of the control law, the input saturation as well as the
implemented safety routine are shared in Section 3.3. In Section 3.4, the influence of the
parametrisation and discretisation of the algebraic differentiators on the stability of the
closed loop is investigated. Therefore, the associated cutoff frequency ωc and the filter
order µ = min(α, β) + 1 as well as the sampling frequency fs are varied. Interestingly,
not all parameter combinations lead to a stable closed loop but in comparison to
the results from Scherer et al. (2024), there are no distinct systematic effects to find.
Nevertheless, neither the sampling frequency nor the discretisation has an influence
on this behaviour. The findings of Section 3.4 lead to Guideline 1 on how to design
the algebraic differentiators for their use in the MFC law based on first-order and
second-order ultra-local models.

With the parameters of the motor model (2.31) identified in Section 3.2, the theo-
retical findings from Section 2.4 are experimentally validated in Section 3.5. At first,
the parametrisation of the MFC law based on a first-order ultra-local model for the
control of the angular velocity is investigated by sampling of the γΩ-kp parameter set
in Section 3.5.1. The results show that the parameter bounds which are only based
on the ultra-local model are conservative in comparison to considerations based on
the mathematical model of the DC motor. Nevertheless, the experimental results val-
idate that the stability of a system controlled by a MFC law based on a first-order
ultra-local model can be analysed with a TDS. Additionally, the results from Scherer
et al. (2023), showing that the closed-loop behaviour is only affected by the ratio of
the parameters γΩ and kp, is confirmed. Interestingly, the observed pattern in the
parameter set (see, e.g. Fig. 3.11) for the DC motor is similar to the pattern for the
proportional valve (see, e.g. Fig. 5 in Scherer et al. (2023)) which can now be explained
by the generalised Hermite-Biehler theorem. Finally, Guideline 2 for the systematic
parametrisation of the MFC law based on a first-order ultra-local model is derived from
the findings of Section 3.5.1. The same strategy for the validation of the theoretical
results from Section 2.4 is applied for the control of the angle with a MFC law based on
a second-order ultra-local model. For this purpose, the kp-kd parameter set is sampled
with a constant input gain γθ = b. Once more, the parameter bounds obtained by
the considerations based only on the ultra-local are conservative whereas the results
based on the mathematical model of the DC motor show a high accuracy, validating
the theoretical findings. Additionally, experiments with an input gain of γθ = 1.1b and
γθ = 0.9b are made, proving the results. In contrast to Guideline 2, Guideline 3 focuses
on the control of a system with a MFC law based on a second-order ultra-local model
and only the case of a known input gain is considered because the influence of this
parameter is insufficiently investigated by experiments to give an adequate guideline.

In Section 3.5.3, Case 1 of Guideline 2, i.e. the parametrisation of the MFC law based on
a first-order ultra-local model without a priori knowledge of the input gain, is compared
to a systematic tuning approach presented in Polack et al. (2019). It is demonstrated
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that both approaches lead to a stable closed loop. Nevertheless, the objective is reached
with fewer steps by employing the strategy of adjusting the ratio of γΩ and kp, as
represented by the Guideline 2. This approach circumvents the necessity of modifying
each individual parameter, thereby streamlining the tuning. It should be noted that
Polack et al. (2019) does not explicitly consider the delay introduced by the algebraic
differentiators in opposition to the guidelines presented in this thesis.

Even though guidelines for the parametrisation of the algebraic differentiators and the
MFC laws based on first-order and second-order ultra-local models are given, there
are still many open research problems in the field of MFC. Concerning the algebraic
differentiators, the following questions arise:

• Why do a few parametrisations of the algebraic differentiators that result in a
small delay δt lead to an unstable closed loop (see the combinations highlighted
with yellow in, e.g. Fig. 3.3 or Fig. 3.9), although the theory presented in Chap-
ter 2 predicts the opposite?

• What is the effect of increasing the order N of the truncated generalised Fourier
expansion in (2.2)?

• Is it beneficial to vary α and β independently, even though this decreases the
rejection of the additive measurement disturbance?

• Is a delay-free parametrisation beneficial, even though this decreases the estima-
tion accuracy (see, e.g. Othmane et al. (2022, Sec. 4.2))?

• Is there a benefit of using other orthogonal polynomials such as Laguerre or the
Hermite instead of the Jacobi polynomials for the realisation of the algebraic
differentiators? This would affect the implementation as well as the step and
impulse response of the corresponding filters (see, e.g. Othmane (2022b)).

The MFC approach, which relies on ultra-local models, also raises questions besides
the parametrisation of the algebraic differentiators:

• Is it useful to chose a higher-order ultra-local model, e.g. a third-order model, as
an approximation of the system?

• Is there a bound for the sampling time such that a system can be approximated
with an ultra-local model as discussed in Tabuada et al. (2017) for the MFC
approach therein?

• Are the guidelines presented in this thesis still valid for linear system of arbitrary
order or nonlinear systems?

• How does an input saturation affect the closed-loop behaviour?
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• How is the MFC method introduced by Fliess and Join (2009, 2013) related to
active disturbance rejection control (see, e.g. Han (2009))?

The latter questions show that there is much work to do in the field of MFC based on
ultra-local models to further improve this yet powerful approach.
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Scientific publications

The peer-reviewed and published journal papers

Scherer, P. M., Othmane, A., and Rudolph, J. (2023). Combining model-based
and model-free approaches for the control of an electro-hydraulic system. Control
Engineering Practice, 133:105453.
DOI: 10.1016/j.conengprac.2023.105453

and

Scherer, P. M., Othmane, A., and Rudolph, J. (2024). Model-free control of a
magnetically supported plate. Control Engineering Practice, 148:105950.
DOI: 10.1016/j.conengprac.2024.105950

are attached below. For each paper, the following terminology suggested in Allen et al.
(2019) is used to indicate the authors’ contribution.

• Conceptualization
Ideas; formulation of overarching research goals and aims

• Methodology
Development or design of methodology; creation of models

• Software
Programming, software development; designing computer programs; implemen-
tation of the computer code and supporting algorithms; testing of existing code
components
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• Formal analysis
Application of statistical, mathematical, computational, or other formal tech-
niques to analyze or synthesize study data

• Investigation
Conducting a research and investigation process, specifically performing the ex-
periments, or data/evidence collection

• Data Curation
Management activities to annotate (produce metadata), scrub data and maintain
research data (including software code, where it is necessary for interpreting the
data itself) for initial use and later reuse

• Writing – Original Draft
Preparation, creation and/or presentation of the published work, specifically writ-
ing the initial draft (including substantive translation)

• Writing – Review & Editing
Preparation, creation and/or presentation of the published work by those from
the original research group, specifically critical review, commentary or revision –
including pre- or postpublication stages

• Visualization
Preparation, creation and/or presentation of the published work, specifically vi-
sualization/ data presentation

• Supervision
Oversight and leadership responsibility for the research activity planning and
execution, including mentorship external to the core team

• Funding acquisition
Acquisition of the financial support for the project leading to this publication
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5.1 Combining model-based and model-free
approaches for the control of an electro-
hydraulic system

The contributions of each author are listed in what follows.

P.M. Scherer (55 %)
Methodology, Software, Investigation, Data Curation, Visualization, Writing – Original
Draft, Writing – Review & Editing

A. Othmane (40 %)
Conceptualization, Methodology, Writing – Original Draft, Writing – Review & Editing

J. Rudolph (5 %)
Funding acquisition, Writing – Review & Editing
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A B S T R A C T

Model-free control, as introduced by Fliess and Join, is a compelling feedback control method for complex
systems that can only be modelled with considerable effort. However, systematic parametrisation techniques,
the concrete implementation, and the analysis of the approaches deserve further investigations. The present
paper serves to propose a systematic way to parameterise a model-free controller for a system approximated by
a first-order differential equation with unknown parts. Furthermore, model-based and model-free approaches
are combined to efficiently control a hydraulic piston (model-based) actuated by four pilot-operated pro-
portional valves (model-free) as a practical example of a typical electro-hydraulic system. Only pressure
measurements and the position signal of the piston are used. No measurement of hydraulic flows or spool
positions are required. The effects of the different parameters of the model-free controller are investigated
and the implementation is discussed in detail. Several experiments on a test bed are carried out, showing
a high positioning accuracy for a wide range of piston velocities and a behaviour robust against leakages.
An open-access toolbox is used for the design of advanced differentiators to estimate unmeasured quantities
required in the controller. This contribution shows that with the right tools, it is possible to design an efficient
model-free controller and benefit from its advantages.

1. Introduction

Model-free control (MFC) methods, i.e., approaches that do not
rely on a physical model of a considered system, are omnipresent in
the control literature. Their ability to handle systems, whose mathe-
matical models can only be derived after a cumbersome analysis, or
are too complex for efficient controller design, has attracted much
attention. The wording model-free has been employed by numerous
authors for various techniques ranging from algorithms based on neural
networks to fuzzy systems and robust control approaches, see, e.g., the
discussions in the Remarks 1 and 5 in Fliess and Join (2013).

Fliess and Join (2008, 2009, 2013), Fliess et al. (2011) have pro-
posed a simple control technique that is called model-free control, too.
It has been successfully applied in diverse fields ranging from electrical
to biomedical systems, see, e.g., the recent experimental applications
in Fliess and Join (2021), Guilloteau et al. (2022), Michel et al. (2022)
and Pereira das Neves and Augusto Angélico (2021), and the extensive
lists in Fliess and Join (2013) and Othmane et al. (2022). These works
use the term model-free control in the sense that there is no need for
any ‘‘good’’ or ‘‘global’’ physical modelling. In contrast, it is assumed
that during a short period of time the system is well described by a
differential equation of low order with a single excitation signal that
needs to be estimated online. This model is then called an ultra-local

∗ Corresponding author.
E-mail address: p.scherer@lsr.uni-saarland.de (P.M. Scherer).

model, see, for instance, in Remark 3 and the Appendix B from Fliess
and Join (2013) for further details.

Despite the miscellaneous and very successful applications of the
approach, tuning the involved parameters remains challenging and re-
lies on sound knowledge of the system behaviour and design expertise.
The work Fliess and Join (2013) and more recent ones (Fliess & Join,
2021; Guilloteau et al., 2022; Pereira das Neves & Augusto Angélico,
2021), for example, report that parameters need to be ‘‘selected by the
practitioner’’, obtained by ‘‘trials and errors’’, and chosen ‘‘quite small’’.
Despite the successful experimental results, applying the approach to
new problems, reproducing known results, and expending the methods
would be simplified by systematic design guidelines.

Tuning of the filters used for estimation of the unknown parts of
the ultra-local model has been discussed in Othmane, Rudolph, and
Mounier (2021) using the recently developed methods for a systematic
design of algebraic differentiators, see, e.g., Kiltz (2017), Kiltz and
Rudolph (2013) and Othmane et al. (2022). Tuning of the input gain
parameter is investigated in Hegedüs et al. (2022) where also a design
procedure based on an optimisation problem is proposed. Classical
control theory tools are used in Li et al. (2022) to analyse the properties
of MFC when applied to single-input single-output linear systems. The
stability margin of the approach is investigated and it is proven that
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MFC can achieve higher robustness than single-loop linear controllers.
The current contribution aims to make design, implementation, and
tuning of these powerful approaches more systematic.

Many industrial processing systems and mobile machines (e.g.,
brakes, road construction vehicles, machining tools) use electro-
hydraulic components to achieve a high power density. Numerous of
these systems use proportional valves. The latter are cheap, robust to
fluid contamination, and easy to use. A spool attached to a solenoid
controls the hydraulic flow by closing and opening different orifices.
Deriving a mathematical model describing the relevant electrical, me-
chanical, and hydraulic dynamics is challenging and can yield complex
nonlinear differential equations, see, e.g., Eryilmaz and Wilson (2006),
Ferreira et al. (2002), Merritt (1967) and Steinboeck et al. (2013). This
renders the design of controllers challenging. Moreover, large man-
ufacturing tolerances may significantly deteriorate the performance
of nonlinear controllers. Thus, developing simple but efficient MFC
approaches is promising.

In the present work, the design of a model-free controller for
pilot-operated proportional valves is investigated. This kind of valves
consists of two stages, thus having a more complex design compared to
traditional proportional valves. Therefore, a MFC approach is used for
these valves. Implementation and parametrisation of the applied differ-
entiators is simplified by the toolbox (Othmane, 2022). The developed
algorithms are validated on a test bench. The effects of manufactur-
ing tolerances are investigated by analysing the performance of the
approach using different valves.

The approach is then combined with a model-based design for the
efficient control of a double-acting hydraulic piston actuated by four of
these valves using a cascade structure. Only the hydraulic pressure mea-
surements and a position signal of the piston are required. In particular,
no measurements of positions of spools of valves or hydraulic flows
are required for the model-free valve controllers. The model-based con-
troller exploits the flatness of the system, see, e.g., Fliess et al. (1995),
Rothfuss et al. (1996) and Rudolph (2021) for detailed discussions on
flatness. The approach developed yields an increase in the positioning
accuracy for a wide operating range and is, compared to a model-
based feed-forward control, more robust against leakages. Thus, a key
contribution of this work is the inclusion of MFC approaches, useful for
ultra-local models, within a model-based structure incorporating major
system dynamics to profit from the advantages of both.

The present paper is organised as follows. In Section 2 background
material on algebraic differentiators is provided because they are sig-
nificant for the methods. Furthermore, notation used in the following
and important aspects are recalled. The electro-hydraulic system is
presented and modelling issues are discussed in Section 3. A tracking
controller for the piston actuator and a model-free controller for the
valves are proposed in Section 4. A nonlinear observer and estimation
of flow rates are also considered. In Section 5, the implementation of
the approaches and experimental results are discussed.

2. Background material on algebraic differentiators

In this section the fundamentals of algebraic differentiators, initially
developed in Mboup et al. (2007), Mboup et al. (2009) and discussed
e.g., in Kiltz (2017), Kiltz and Rudolph (2013), are briefly summarised.
A survey summarising existing results, interpretations, relations to
established methods, and discussing tuning guidelines and applications
can be found in Othmane et al. (2022). The open-source toolbox (Oth-
mane, 2022) can be used for the design and implementation of these
differentiators. Within the suggested control structure, they are not
only needed to calculate derivates of desired signals, they are also
crucial for the implementation of the MFC algorithms. In fact, they are
used to estimate the unknown signals in the ultra-local model. While
the differentiators are designed and analysed in the continuous-time
domain, the implementation of the algorithms has to be done in discrete

time. Therefore, the discretisation has to preserve the properties of the
filters.

2.1. Continuous-time formulation

Consider an arbitrary closed non-empty interval 𝑡 = [𝑡 − 𝑇 , 𝑡] ⊂ R
and a function 𝑓 ∶ 𝑡 → R. In the following, it is assumed that
the square of 𝑓 is Lebesgue integrable. The approximation of 𝑓 and
its derivatives up to a finite order 𝑛 ∈ N, denoted by 𝑓 (𝑛), will be
considered.

The function 𝑓 and its derivatives can be approximated using a
generalised Fourier expansion, see, e.g., Szegö (1939), by mapping 𝑡
to the interval 𝑃 = [−1, 1]. The latter corresponds to the orthogonality
interval of Jacobi polynomials defined as

𝑃 (𝛼,𝛽)
𝑁 (𝜏) =

𝑁
∑

𝑘=0
𝑐(𝛼,𝛽)𝑘 (𝜏 − 1)𝑘, 𝑐(𝛼,𝛽)𝑘 = 𝛤 (𝛼+𝑁+1)𝛤 (𝛼+𝜗+𝑁+𝑘+1)

2𝑘𝑁!𝛤 (𝛼+𝛽+𝑁+1)𝛤 (𝛼+𝑘+1) ,

for 𝜏 ∈ 𝑃 , 𝑁 ∈ N, 𝛼, 𝛽 > −1 and 𝛤 the Gamma function, see, e.g., Szegö
(1939). Jacobi polynomials are orthogonal with respect to the weight
function

𝑤(𝛼,𝛽)(𝜏) =
{

(1 − 𝜏)𝛼(1 + 𝜏)𝛽 , 𝜏 ∈ [−1, 1],
0, otherwise.

By considering the 𝑁-th order truncated generalised Fourier expan-
sion, the function 𝑓 and all derivatives up to a finite order
𝑛 < min{𝛼, 𝛽} + 1 can be approximated by

𝑓 (𝑛)(𝑡) = ∫

𝑡

𝑡−𝑇
𝑔(𝑛)(𝑡 − 𝜏)𝑓 (𝜏)d𝜏, 𝑔(𝜏) = 𝑔(𝛼,𝛽)𝑁,𝑇 ,𝜗(𝜏), (1)

where

𝑔(𝛼,𝛽)𝑁,𝑇 ,𝜗(𝑡) =
2𝑤(𝛼,𝛽)(𝜈(𝑡))

𝑇

𝑁
∑

𝑗=0

𝑃 (𝛼,𝛽)
𝑗 (𝜗)

‖

‖

‖

𝑃 (𝛼,𝛽)
𝑗

‖

‖

‖

2 𝑃
(𝛼,𝛽)
𝑗 (𝜈(𝑡)), (2)

with 𝜈(𝑡) = 1 − 2𝑡∕𝑇 and ‖𝑥‖ =
√

⟨𝑥, 𝑥⟩ the norm induced by the inner
product ⟨𝑥, 𝑦⟩ = ∫ 1

−1 𝑤
(𝛼,𝛽)(𝜏)𝑥(𝜏)𝑦(𝜏)d𝜏. Recall that this corresponds to

a least squares approximation.
The estimate 𝑓 corresponds to a delayed approximation of 𝑓 at

time 𝑡 and the delay, denoted by 𝛿𝑡, can be parameterised by 𝜗. The
reader is referred to Othmane et al. (2022) for a detailed discussion.
Alternatively, a delay-free approximation can be achieved for 𝜗 = 1.
Assume that 𝑓 is a 𝑚 + 1 times differentiable function. Then, the
approximation satisfies

|

|

|

𝑓 (𝑡 − 𝛿𝑡) − 𝑓 (𝑡)||
|

≤ 𝑀
𝑞!

(𝑇
2

)𝑞+1
sup
𝜏∈𝑡

|

|

|

𝑓 (𝑛+𝑞+1)(𝜏)||
|

, (3)

with 𝑀 > 0 depending on 𝛼, 𝛽, and 𝑁 , 𝑞 = min{𝑚, 𝜁 − 𝑛},

𝜁 =
{

�̄� + 1, 𝑁 = 0 ∨ 𝜗 = 𝑝𝑘,
�̄� , otherwise, 𝛿𝑡 =

{ 𝛼+1
𝛼+𝛽+2𝑇 , 𝑁 = 0,
1−𝜗
2 𝑇 , 𝑁 ≠ 0,

�̄� = 𝑛 + 𝑁 , and 𝑝𝑘 the 𝑘-th zero of 𝑃 (𝛼,𝛽)
𝑁+1 . Thus, accepting a small

but known delay 𝛿𝑡 increases the order of the approximation, as first
pointed out in Mboup et al. (2009).

It follows from Eq. (1) that 𝑓 (𝑛) is the output of a finite-impulse
response (FIR) filter with window length 𝑇 driven by 𝑓 . The kernel
𝑔(𝛼,𝛽)𝑁,𝑇 ,𝜗 defined in Eq. (2) is called an algebraic differentiator.1 The
results in Kiltz (2017), Kiltz and Rudolph (2013) and Othmane et al.
(2022) show that 𝑔(𝛼,𝛽)𝑁,𝑇 ,𝜗 can be interpreted as a low-pass filter and
that its parameters can be computed from a desired cutoff frequency

1 The reader is referred to Othmane et al. (2022) for the historical develop-
ments, see, e.g., Mboup et al. (2007), Mboup et al. (2009), of this numerical
differentiation approach that led to the wording ‘‘algebraic differentiators’’.
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Fig. 1. Detailed photo of the considered test bed with all important system components
marked.

denoted by 𝜔c and a desired filter order. The filter window length 𝑇
can then be computed.

2.2. Discrete-time formulation

In most applications, the function 𝑓 is available at discrete sampling
instants only. Thus, the convolution integral (1) must be approximated
by an appropriate quadrature method. Discrete FIR filters are then
recovered.

In the following, equidistant sampling with sampling period 𝑡s is
assumed and the window length of the differentiator is an integral
multiple of 𝑡s, i.e., 𝑇 = 𝑛s𝑡s. For the sake of brevity, the abbreviation
𝑓𝑘 = 𝑓 (𝑘𝑡s), 𝑘 ∈ N, for a sample of a function 𝑓 at time 𝑘𝑡s is used.
Then, a discrete-time approximation of (1) in the form

𝑓 (𝑛)
𝑘+𝜃 = 1

𝛷

𝐿−1
∑

𝑖=0
𝑤𝑖𝑓𝑘−𝑖, 𝛷 =

𝑡𝑛s
𝑛!

𝐿−1
∑

𝑘=0
𝑤𝑘(−𝑘)𝑛,

can be achieved, where 𝜃, 𝐿, and 𝑤𝑖 depend on the numerical integra-
tion method used (Othmane, Mounier, & Rudolph, 2021, Sec. 4.3). For
the mid-point rule 𝜃 = 1

2 , 𝑤𝑖 = 𝑡s𝑔
(𝑛)
𝑖+𝜃 , and 𝐿 = 𝑛s. The normalisation

factor 𝛷 ensures that the DC component of the sought derivative
is preserved. To assess the error stemming from the discretisation
and aliasing effects two indicators are introduced in Kiltz (2017) and
Othmane et al. (2022). The reader is referred to these references for
in-depth discussions. The open-source toolbox (Othmane, 2022) can be
used for the discretisation of the differentiators and the assessment of
discretisation effects.

3. Hydraulic system and problem statement

The system under consideration is depicted in Fig. 1. The main
component is a double-acting hydraulic piston actuator. Four identical
pilot-operated proportional valves control the hydraulic flows to the
cylinder chambers. A sketch of the hydraulic circuit diagram can be
found in Fig. 2. A motor pump unit and a pressure limiting valve, which
are not considered in the mathematical model, serve as the hydraulic
source. The position of the piston as well as the pressure of pump, tank,
and each cylinder chamber are measured. A sensor measuring the pump
flow rate is available for preliminary experimental investigations, as
discussed in the results section.

Fig. 2. Hydraulic circuit diagram of the system with four pilot-operated proportional
valves, a double-acting hydraulic piston actuator, a flow rate sensor, four pressure
sensors and a hydraulic source.

3.1. Model of the double-acting hydraulic piston actuator

The modelling of the cylinder system starts with considering the
dynamics of the pressures 𝑝𝑐 , 𝑐 ∈ {1, 2}, in each chamber using the
balance of mass under the assumption of a constant bulk modulus 𝐵:

�̇�𝑐 =
𝐵

𝑉𝑐 (𝑧)
(

(−1)𝑐𝐴𝑐 �̇� + 𝑞𝑐 − 𝑞𝑐,l
)

. (4a)

In (4a), 𝑧 denotes the position of the piston with respect to the middle
of the cylinder with length 2𝑙, 𝑞𝑐 and 𝑞𝑐,l are the flow rate into the
chambers and a leakage, 𝐴𝑐 is the effective cylinder surface, and
𝑉𝑐 (𝑧) = 𝑉0 − (−1)𝑐𝐴𝑐 (𝑙 − (−1)𝑐𝑧) describes the volumes of the cambers
with 𝑉0 the volume of the supply pipe.

The mechanical subsystem can be modelled using the force balance
on the cylinder rod given by

𝑚�̈� = 𝐴1𝑝1 − 𝐴2𝑝2 − 𝑘v�̇� − 𝑚𝑔 − 𝐹f, (4b)

with 𝑚 the mass of the load, 𝑘v a viscous friction coefficient, 𝑔 the
gravitational acceleration, and 𝐹f a friction force that, together with
the leakage, can be seen as a time-varying parameter.

3.2. Differential flatness of the cylinder system

Differential flatness is a property of controlled dynamic systems and
has shown to be very powerful for the control of nonlinear systems, see,
e.g., Fliess et al. (1995), Rothfuss et al. (1996) and Rudolph (2021). The
cylinder system (4) is differentially flat, with 𝑦 = (𝑧, 𝑝1 + 𝑝2) as a flat
output, which means the following:

(I) The pair 𝑦 is differentially independent, i.e., its components are
not restricted by any differential equation. As a consequence,
reference trajectories may be chosen freely for these quantities.

(II) The remaining system variables 𝑝𝑐 and 𝑞𝑐 , 𝑐 ∈ {1, 2}, can be
expressed as functions of 𝑦 and its derivatives up to a finite order.

In order to verify property (II), introduce

𝑝𝛴 = 𝑝1 + 𝑝2. (5)
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Then, differentiating (4b) and (5) with respect to time and substituting
into (4a), a relationship of the form

𝑞𝑐 = 𝑓𝑞𝑐
(

�̇�𝛴 , 𝑧, �̇�, �̈�, 𝑧
(3)) (6)

can be obtained. Furthermore, by solving (4b) and (5) for 𝑝1 and 𝑝2,
relationships for the pressures as functions of 𝑦 and its derivatives
can be calculated. Property (I) is a direct consequence of property (II)
together with the dimension of the pair 𝑦. Thus, properties (I) and (II)
are proven and the pair 𝑦 is indeed a flat output.

Remark 1. Observe that by substituting �̇�𝛴 , 𝑧, �̇�, �̈� and 𝑧(3) with their
corresponding reference trajectories in Eq. (6), a feed-forward con-
troller for the cylinder system is obtained. Nevertheless, such a con-
troller would be insufficient because of model and parameter uncer-
tainties. Thus, differential flatness is used in Section 4 to design a
nonlinear controller for 𝑦 in order to track a desired reference trajectory
𝑡 ↦ 𝑦r(𝑡) = (𝑧r(𝑡), 𝑝𝛴,r(𝑡)).

3.3. Valve subsystem

The cylinder rod is actuated by the flow rates

𝑞𝑐 = 𝑞P𝑐 − 𝑞𝑐T, 𝑐 ∈ {1, 2}, (7)

into the chambers, which are delivered by two identical valves each, as
shown in Fig. 2. The quantities 𝑞P𝑐 , 𝑐 ∈ {1, 2}, denote the flows from the
pump to the chambers 𝑐. Similarly, 𝑞𝑐T are the flows from the chambers
to the tank. These valves are pilot-operated proportional flow control
valves, the modelling of which is briefly described in the following.

Each valve consists of a main and a pilot spool connected via a
spring, as depicted in Fig. 3. A solenoid actuates the pilot spool. When
the current of the coil is increased, the pilot spool moves towards the
main spool and fluid flows into a chamber inside the valve between
the spools. The fluid then flows to the outlet of the valve by passing
through the chamber. Thereby, the pressure of the inner chamber is
changing, as well as the pressure force acting on the main spool. If the
forces acting on the latter are high enough, which is the case when an
electrical current of approximately 50% of the maximal current is set,
it starts moving, opening its orifice area and directly connecting in- and
outlet, thus releasing the main flow.

By neglecting the flow of the pilot spool, the flow rate of the main
spool can be approximated by

𝑞𝑎𝑏(𝑝𝑎, 𝑝𝑏) = �̄�𝐴
(

𝑥m
)
√

(𝑝𝑎 − 𝑝𝑏),

with (𝑎, 𝑏) ∈ {(P, 1), (P, 2), (1,T), (2,T)}, �̄� a positive constant, and 𝐴(𝑥m)
the orifice area depending on the main spool position 𝑥m. The latter
is coupled by the spring to the pilot spool on which the force 𝐹mag
of the magnet is acting. This means that the main spool, responsible
for most of the flow rate, is not directly actuated. This behaviour can
be modelled using the force balance of each spool, taking care of the
spring, magnetic, hydraulic, flow and friction forces, as well as the
pressure dynamics of the valves inner chamber. Moreover, friction and
hysteresis effects have to be taken into account. This yields complex
mathematical models, as opposed to what has been discussed above
for the cylinder system. A MFC design for the flow rates 𝑞P𝑐 and 𝑞𝑐T is
thus desirable.

4. Control design

The cascade structure of the proposed algorithms is summarised in
Fig. 4. A trajectory generator delivers a sufficiently smooth reference
trajectory 𝑦r for the flat output 𝑦. The proposed feedback controller for
the cylinder system provides desired flow rates 𝑞𝑐,d, 𝑐 ∈ {1, 2}, using the
state 𝜉 of the nonlinear observer and the trajectory 𝑦r. The computed
flow rates are references for the underlying MFC and in combination
with the flow rate estimator the currents of the valves can be calculated
using the state 𝜉 of the observer. The individual algorithms mentioned
are discussed in detail in the following.

Fig. 3. Sketch of the used pilot-operated valve during operation. The dash dotted,
blue line is indicating the flow, resulting from the pilot spool, whereas the solid blue
lines show the flow rate of the main spool. If no magnetic force 𝐹mag is applied, the
precompressed spring pushes both spools in their rest position such that all orifices are
blocked. (For interpretation of the references to colour in this figure legend, the reader
is referred to the web version of this article.)

4.1. Feedback controller for the cylinder system

A closed-loop controller for system (4) can be designed by observing
that 𝜉 = (𝑧, �̇�, �̈�, 𝑝𝛴 ) is a Brunovský state with respect to the input
𝑢 = (𝑞1, 𝑞2), see, e.g., Rudolph (2021, Sec. 2.7.5) for an in-depth
discussion on Brunovský states. By introducing two auxiliary inputs,
𝑣1 = 𝑧(3) and 𝑣2 = �̇�𝛴 , a stabilising tracking feedback

𝑣1 = 𝑧(3)r − 𝑘13𝑒1 − 𝑘12�̇�1 − 𝑘11𝑒1, 𝑒1 = 𝑧 − 𝑧r, (8a)

𝑣2 = �̇�𝛴,r − 𝑘21𝑒2 − 𝑘20 ∫

𝑡

𝑡0
𝑒2(𝜏)d𝜏, 𝑒2 = 𝑝𝛴 − 𝑝𝛴,r, (8b)

can be calculated, where the parameters 𝑘1𝑗 , 𝑗 ∈ {1, 2, 3} and
𝑘2𝑗 , 𝑗 ∈ {0, 1} are chosen in such a way that the eigenvalues of the
differential equation of the errors have negative real parts (Rudolph,
2021, Sec. 4.2).

Remark 2. In (8b) the integral part is chosen to ensure steady state ac-
curacy because only constant reference trajectories for
𝑡 ↦ 𝑝𝛴,r(𝑡) are considered in this work. Nevertheless, it should be
remarked that it is also possible to choose an arbitrary reference
trajectory for a component of a flat output, according to property (I)
from Section 3.2.

A nonlinear tracking control, for the desired flow rates, can after-
wards be derived as

𝑞𝑐,d = 𝑓𝑞𝑐
(

𝑣2, 𝑧, �̇�, �̈�, 𝑣1
)

, 𝑐 ∈ {1, 2}, (9)

by combining (8) together with (6), which is the inverse of the model
(4) with respect to 𝑦. The flow rates derived in (9) are used with (7) to
calculate the desired flow rate

𝑞P𝑐,d =

{

𝑞𝑐,d, 𝑞𝑐,d > 0
0, 𝑞𝑐,d ≤ 0

, 𝑞𝑐T,d =

{

0, 𝑞𝑐,d > 0
−𝑞𝑐,d, 𝑞𝑐,d ≤ 0

, (10)

with 𝑐 ∈ {1, 2}, for each individual valve.

4.2. Feed-forward control of the valves

If the valve dynamics are modelled following the suggestions in
Section 3.3, a simplified feed-forward control (FFC) can be calculated
as

𝑖𝑎𝑏(𝑞𝑎𝑏,d, 𝑝𝑎, 𝑝𝑏) = 𝜅
𝑞𝑎𝑏,d

√

𝑝𝑎 − 𝑝𝑏
+ 𝑖0 (11)

with (𝑎, 𝑏) ∈ {(P, 1), (P, 2), (1,T), (2,T)} for the flow rate, using a sin-
gular perturbation analysis. For simplicity this calculation is omitted.
In Eq. (11), 𝑞𝑎𝑏,d denotes the desired flow rate of the valve, 𝑝𝑎 and 𝑝𝑏
are the pressures at the primary and the secondary side of the valve,
𝑖0 is a minimal current at which a significant flow rate passes through
the valve, and 𝜅 is a constant parameter. If the minimal current 𝑖0 is
chosen too small, the FFC would fail to generate a flow rate, because
the resulting current would not be high enough to indirectly move the
main spool as discussed in Section 3.3.
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Fig. 4. Signal flow diagram of the proposed algorithms for the control of the cylinder system.

4.3. Nonlinear observer

The implementation of the control law (9) requires the knowledge
of the Brunovský state 𝜉. Thus, the unmeasured components must be
estimated. By modelling the friction and the leakage in (4) as piecewise
constant parameters, a state representation of the system (4) with state
𝒙 = [𝑧, �̇�, 𝑝1, 𝑝2, 𝐹f, 𝑞1,l, 𝑞2,l]T with respect to the input 𝑢 = (𝑞1, 𝑞2) can be
easily introduced. In the following 𝜂1, 𝜂2, and 𝜂3 are the measurements
of the position 𝑧 and the pressures 𝑝1 and 𝑝2, respectively. The system
is observable since the components of a flat output are measured, see,
e.g., Rudolph (2021, Sec. 5.3).

Consider the nonlinear observer

̇̂𝒙 =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

�̂�2 − 𝑙1(𝜂1 − �̂�1)
𝐴1
𝑚 𝜂2 −

𝐴2
𝑚 𝜂3 −

𝑘v
𝑚 �̂�2 − 𝑔 − 1

𝑚 �̂�5 − 𝑙2(𝜂1 − �̂�1)
𝐵

𝑉1(𝜂1)

(

−𝐴1�̂�2 + 𝑢1 − �̂�6
)

− 𝑙3(𝜂2 − �̂�3)
𝐵

𝑉2(𝜂1)

(

𝐴2�̂�2 + 𝑢2 − �̂�7
)

− 𝑙4(𝜂3 − �̂�4)
−𝑙5(𝜂1 − �̂�1)
−𝑙6(𝜂2 − �̂�3)
−𝑙7(𝜂3 − �̂�4)

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

(12)

with time-varying observer gains 𝑡 ↦ 𝑙𝑖(𝑡), 𝑖 ∈ {1,… , 7}. The linear
time-varying dynamics ̇̃𝒙 = �̄��̃� of the observer error �̃� = 𝒙 − �̂� breaks
down into three decoupled parts. Then, the time-varying gains can
be chosen to recover linear time-invariant exponentially stable error
dynamics. An estimate 𝜉 of the Brunovský state is computed using
the affine time-independent transformation 𝜉 = (�̂�1, �̂�2,

𝐴1
𝑚 �̂�3 −

𝐴2
𝑚 �̂�4 −

𝑘v
𝑚 �̂�2 − 𝑔 − 1

𝑚 �̂�5, �̂�3 + �̂�4).

4.4. Model-free control of the valves

4.4.1. Controller design
While the model of the cylinder system is simple and its flatness

allows an easy control design, a model describing the dynamics of the
proportional valves is complex. Due to numerous simplifications used
for the derivation of the feed-forward controller (11), a desired flow
rate cannot be accurately achieved. Thus, a MFC approach is desirable.

In the following, 𝑞 is the flow rate at a valve and 𝑖 is the electrical
current driving the solenoid connected to the pilot spool. It is first
assumed that 𝑞 is measured. This assumption will be dropped when
the complete system is considered. The simplified model

�̇� = 𝑓 + 𝛾𝑖, 𝛾 > 0, (13)

is considered for the flow rate. In Eq. (13), 𝑡 ↦ 𝑓 (𝑡) is a bounded
unknown square-integrable function that comprises all unmodelled
effects and 𝛾 is a parameter the tuning of which will be addressed in
the next section.

Remark 3. The parameter 𝛾 is restricted to positive values, because,
if an ultra-local model �̇� = 𝛾𝑖 is considered a positive value of 𝛾
together with a positive electrical current 𝑖 is resulting in a positive
change of the flow rate �̇�, which matches the physical behaviour of the
valve. Adjusting the sign of 𝛾 is required, because there is no physical
background for the ultra-local model which also means that there is
no physical interpretation of the function 𝑓 and parameter 𝛾, only the
phenomenological side of the system is reflected.

Let 𝑡 ↦ 𝑞d(𝑡) be a desired sufficiently smooth trajectory for the flow
rate 𝑞, and consider the controller

𝑖 = 1
𝛾
(

�̇�d − 𝑘p𝑒 − 𝑓
)

, 𝑒 = 𝑞 − 𝑞d, (14)

with 𝑘p > 0 and 𝑡 ↦ 𝑓 (𝑡) an approximation of 𝑓 given by

𝑓 (𝑡) = ∫

𝑡−𝜀

𝑡−𝑇−𝜀
𝑔(𝑡 − 𝜏)𝑓 (𝜏)d𝜏, (15a)

= ∫

𝑡−𝜀

𝑡−𝑇−𝜀
�̇�(𝑡 − 𝜏)𝑞(𝜏) − 𝛾𝑔(𝑡 − 𝜏)𝑖(𝜏)d𝜏 (15b)

where 𝑔 = 𝑔(𝛼,𝛽)𝑁,𝑇 ,𝜗 is an algebraic differentiator as defined in Section 2 by
(2) with 𝛼, 𝛽 > 0, and a positive constant 𝜀. Eq. (15b) is obtained from
(15a) using (13) and integration by parts. By recalling the properties
of the differentiator from Section 2, it can be concluded from (15a)
that 𝑓 (𝑡) is a least squares approximation of 𝑓 (𝑡 − 𝛿𝑡 − 𝜀), with 𝛿𝑡 the
approximation delay of 𝑔(𝛼,𝛽)𝑁,𝑇 ,𝜗. However (15a) cannot be implemented,
as 𝑓 (𝑡) is unknown. Instead, (15b) shows that 𝑓 (𝑡) can be computed
using only known quantities in the interval [𝑡 − 𝑇 − 𝜀, 𝑡 − 𝜀].

Remark 4. It would be possible to tune a PID controller for the flow
rate for the valves. Nevertheless, according to d’Andréa-Novel et al.
(2010) every classic PID controller is inferior to a MFC. This is because
they can be tuned such that they have the same closed loop characteris-
tics, but the MFC has the advantage of compensating additional effects
such as hysteresis, friction, heat effects, ageing processes, production
tolerances, etc..

4.4.2. Closed-loop analysis
Substituting the controller (14) into the model (13) yields

�̇� + 𝑘p𝑒 = 𝑓 − 𝑓.

Assuming that 𝑓 is sufficiently smooth, it follows from (3) and Taylor’s
theorem that
|

|

|

𝑓 (𝑡) − 𝑓 (𝑡 − 𝛿𝑡,𝜀)
|

|

|

≤ |

|

|

𝑓 (𝑡) − 𝑓 (𝑡)||
|

+ |

|

𝑓 (𝑡) − 𝑓 (𝑡 − 𝛿𝑡,𝜀)||

≤ 𝑀
𝑠!

(𝑇
2

)𝑠+1
sup

𝜏∈[𝑡−𝑇−𝜀,𝑡−𝜀]

|

|

|

𝑓 (2+𝑠)(𝜏)||
|

+ 𝛿𝑡,𝜀 sup
𝜏∈[𝑡−𝛿𝑡,𝜀 ,𝑡]

|

|

𝑓 (𝜏)|
|

≤ (𝑇 + 𝜀), 𝛿𝑡,𝜀 = 𝛿𝑡 + 𝜀,

for 𝑀 and 𝑠 depending on the parameters of 𝑔(𝛼,𝛽)𝑁,𝑇 ,𝜗 as discussed in Sec-
tion 2 and 𝜀, 𝑇 → 0. Thus, the approximation error drives the dynamics
of the tracking error 𝑒. The latter exponentially converges towards
a ball around zero. The radius of the ball is reduced by reducing 𝑇
and 𝜀.

4.4.3. Implementation and input saturation
The tuning guidelines for algebraic differentiators summarised in

Othmane et al. (2022) and the controller (14) have been developed
for continuous-time systems. However, in most applications, signals are
only known at equidistant discrete time instants. Thus, the convolution
integrals in (15b) must be approximated by discrete sums. The param-
eters of the differentiators can be chosen such that the discretisation
error is made arbitrarily small by considering the error norm defined
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in Othmane et al. (2022, Sec. 4.3). The computation of the latter does
not require any knowledge about the function to be approximated.
Hence, discretisation effects are neglected in the following. Assume that
the window length of the differentiator is an integral multiple of the
sampling time 𝑡s, i.e., 𝑇 = 𝑛s𝑡s and choose 𝜀 in (15b) equal to 𝑡𝑠. Then,
at instant 𝑘𝑡s, the input 𝑖 from (14) satisfies

𝑖𝑘 = 1
𝛾
(

�̇�d,𝑘 − 𝑘p𝑒𝑘 − 𝑓𝑘
)

, (16)

where, following the discussions from Section 2 and applying the
mid-point rule, 𝑓𝑘 can be computed as

𝑓𝑘 = 1
𝛷1

𝐿−1
∑

𝑖=0
𝑤1,𝑖𝑞𝑘−𝑖−1 − 𝛾 1

𝛷0

𝐿−1
∑

𝑖=0
𝑤0,𝑖𝑖𝑘−𝑖−1,

with 𝛷𝑚 = 𝑡𝑛s
𝑛!
∑𝐿−1

𝑖=0 𝑤𝑚,𝑖(−𝑖)𝑛, 𝑤𝑚,𝑖 = 𝑡s𝑔
(𝑚)
𝑖+1∕2, 𝑚 ∈ {0, 1}, and 𝐿 = 𝑛s.

To avoid damaging the valves, the discrete-time input in (16) is
saturated such that the applied electrical current 𝑖sat,𝑘 is in the interval
𝑖sat,𝑘 ∈ [𝑖min, 𝑖max]. Then, 𝑖sat,𝑘 is used for the valve at each sampling
instant 𝑘. Analysing the effects of this saturation on the closed-loop
dynamics is a challenging and open problem that should be addressed
in future work. However, the experiments reported in Section 5 validate
the approach.

4.4.4. Control of valves in the complete system
In order to implement the feedback (16), the flow rates through the

valves have to be estimated. The pressure dynamics (4a) together with
the observer (12) yield an estimate

𝑞𝑐 =
𝑉𝑐 (�̂�1)
𝐵

̇̂𝑝𝑐 − (−1)𝑐𝐴𝑐 �̂�2 + 𝑞𝑐,l ≈ (−1)(𝑐+1)𝐴𝑐 �̂�2 (17)

of 𝑞𝑐 . The approximation in (17) is justified because
|

|

̇̂𝑝𝑐𝑉𝑐 (�̂�1)∕𝐵|| ≪ |

|

𝐴𝑐 �̂�2||, as it will be validated in Section 5. The relation
(10) can then be used for the estimation of the flow rate at each valve.

Remark 5. The algebraic differentiators introduced in Section 2 could
also be used to estimate the Brunovský state as well as the flow rate,
but this is not in the scope of the present work.

The overall system depicted in Fig. 2 contains four pilot-operated
proportional valves. Two control strategies are investigates in the fol-
lowing:

1. Controlled valves: Each of the four valves is controlled by an
individual MFC controller. The relationship (10) is used to as-
sign the desired and estimated flow rates for each chamber
from Eq. (9) to each individual valve. The electrical current is
set to 𝑖min if the desired flow rate is zero.

2. Controlled pairs: The relation (10) is used to assign the desired
and the estimated flow rates to each chamber. If 𝑞P𝑐,d is different
from zero then 𝑞P𝑐,d and 𝑞P𝑐 are used in the MFC to control 𝑖P𝑐 ,
and 𝑖𝑐T is set to 𝑖min. Otherwise the tank specific values are used
in the same MFC to control 𝑖𝑐T while 𝑖P𝑐 is set to 𝑖min.

Remark 6. A minimal current 𝑖min > 0 is not required for the
MFC, but it considerably increases the performance of the MFC, which
has two reasons. First, the valve is designed in such a way that it
starts generating a significant flow rate at approximately 50% of the
maximal current. Second, as discussed in Section 5.1 the combinations
of the controller parameters 𝛾 and 𝑘p resulting in a stable closed-loop
behaviour are constrained.

5. Experimental results

The proposed algorithms are now validated using experiments on
the test bed shown in Fig. 1. The double-acting hydraulic piston has a
maximum stroke of 300 mm and lifts a load of 34.5 kg. As mentioned
in Section 3.3, the valves used are four proportional flow control

Table 1
Parameters of the different filters that are investigated.
No. 𝛼 = 𝛽 𝜔c in rad

s
𝛿𝑡 in ms 𝑇 ⋅ 𝑓s

1 2 250 7.75 62
2 2 450 4.25 34
3 4 850 4.0 32
4 3 450 5.875 47
5 2 150 13.0 104
6 8 250 23.375 203

valves PWK12120WP-02-C-V-11 that are pilot-operated. Each valve has
a dedicated PSV1010-24-10-000 power electronics with 160 Hz dither
and a hardware current controller. The flow and pressure supply is
provided by a Hydac Tankpac TPL-2, which is a combination of tank,
pump, filter, and motor unit. The motor limits the pump unit to a
91 bar output pressure and a flow rate of 21.9 l∕min. Additionally a
pressure limiting Hydac DB4E-012-100S valve is installed to ensure a
constant pump pressure. To sense the pressure of each cylinder chamber
along with pump and tank pressures four HDA3844B-100-000 strain
gauge sensors are available. The position of the piston can be directly
measured with a Hydac HLT2000-L2-M08-B01-0350-000 sensor. To
validate the algorithms described in Section 4, a turbine flow rate
sensor Hydac EVS 3104-A-0020-00, with a measurement range of 1.2-
20 l∕min is used. The algorithms are running on a real-time hardware
INFO-SAM2 from Indel with a sampling rate of 𝑓s = 1∕𝑡s = 4 kHz.

5.1. Parameters of algebraic differentiators and MFC

The parameters 𝑁, 𝛼, 𝛽, and 𝜔c of the algebraic differentiators have
to be chosen in such a way that the estimation delay 𝛿𝑡 will be small and
a high approximation accuracy is achieved for the sought derivative.
The degree 𝑁 of the polynomial approximating the signals is set to zero.
The preferable parametrisation 𝛼 = 𝛽 is chosen to achieve a maximum
robustness with respect to measurement noise. See, e.g., Othmane et al.
(2022, Sec. 4) for a discussion on noise rejection properties when 𝛼 = 𝛽
and 𝑁 = 0. With this choice the estimation delay 𝛿𝑡 is equal to 𝑇 ∕2.
Several parameter combinations are used in this discussion to show that
not one specific parametrisation is needed to get a satisfying solution.
These parameters are collected in Table 1.

To choose the parameters 𝛾 and 𝑘p of the MFC a parameter sweep
is done using the test bed. To this end, the electrical currents of the
valves are set in a special configuration such that the cylinder rod
is not moving. If, for example, valve V1P is used, the currents of the
valve pair 2 is set to zero, while the current of valve V1T is set to the
maximum value. Thereby, the hydraulic medium is flowing from the
pump over valve pair 1 to the tank and only valve V1P is responsible
for the occurring flow rate. As mentioned above, a sensor for the
flow rate of the pump 𝑞P is available and used for the experiments
with an individual valve, because an estimate of the flow rate, such
as suggested in Section 4.3, is not available while the piston is not
moving. The desired flow rate trajectory 𝑡 ↦ 𝑞d(𝑡) is designed as a set
point transition from 1 to 5 l∕min and back to 1 l∕min again, with a
polynomial of degree 5 and a transition time as well as a holding time
of 5 s. Even though the derivative of this reference is known in advance,
the algebraic differentiator is used, as proposed, to estimate the signal
𝑡 ↦ �̇�d(𝑡). It should be remarked that during such an experiment the
pressure difference over the valve is changing, which is an additional
challenge the MFC has to overcome. The results of the parameter sweep
with the algebraic differentiator parameterised as in No. 1 from Table 1
can be seen in Fig. 5. Each marker stands for a individual experiment
with a corresponding combination of 𝛾 and 𝑘p.

It can be seen that there exists a large area in the parameter space
that results in a small root mean square (RMS) value of the error
𝑒𝑞 = 𝑞P − 𝑞d, which will be called the stability region of the algo-
rithm. Although this region is large, Fig. 5 clearly shows that for some
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Fig. 5. Results of the parameter sweep of the MFC for valve V1P using the parametri-
sation No. 1 from Table 1 to determine the region of parameter combinations that yield
satisfying tracking behaviour.

parameter combinations of 𝛾 > 0 and 𝑘p > 0 undesired behaviour can
occur.

Above the stability region the experiments show that the flow rate
starts to oscillate, which is indicated by the maximal current as well as
a value of approximately 8 l∕min for the RMS of 𝑒𝑞 . Below the stability
region the MFC is not setting up a current that is high enough to move
the main spool in an appropriate manner and thus to provide a flow
rate.

The parameter sweep has also be carried out for the three other
valves of the same type. A similar result can be seen in Fig. 6 and it
shows that all of them are behaving in the same way. With this in mind,
it is justified to only look at valve V1P for the rest of this work and
assume that a different valve would behave similarly.

The remaining parameter combinations from Table 1 are also tested
using a parameter sweep with valve V1P, and the results are shown in
Fig. 7. All combinations show a similar shape of the stability region
in approximately the same parameter set. It is noticeable that for
large delay values (see parametrisations 5 and 6) the borderline of the
maximal current occurs only when the value of 𝑘p is reaching a certain
level. However, further investigation of this phenomenon is out of the
scope of the present paper.

For the remainder of this work the parameter combination No. 1 for
the algebraic differentiators is used. Preliminary investigations showed
that the combination No. 3 with a smaller window length 𝑇 results in
comparable results for the overall system. Nevertheless, using No. 1 a

Fig. 6. Results of the parameter sweep for the valves (from left to right, top to bottom)
V1P, V1T, V2P, and V2T using the parametrisation No. 1 from Table 1. The similar valves
show almost exactly the same behaviour, which justifies considering only one valve for
further experiments.

Fig. 7. Results of the parameter sweep for valve V1P using the different parametrisa-
tions No. 1 to 6 (from left to right, top to bottom) from Table 1. All parametrisations
yield comparable results in the parameter space.

certain robustness of the control approach with respect to this delay
can be observed.

5.2. Parameter combinations with constant 𝛾∕𝑘p

A closer look on some individual experiments will be taken now.
To this end, the parameter combinations, marked by red dots, for 𝛾
and 𝑘p in Fig. 5 will be used to show an interesting behaviour. The
flow rate over time as well as the corresponding electrical current for
each marked combination can be seen in Fig. 8. The graphs are grouped
regarding the position on the lines (A) to (C), whereas A1 marks the
crossing of lines (A) and (1) as depicted in Fig. 5. It is interesting
that even if the parameter tuples differ by one magnitude they still
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Fig. 8. Controlled flow rate and corresponding current of valve V1P for parameter
combinations with the same ratio of 𝛾 and 𝑘p, marked in Fig. 5 with lines (A) to
(C) and (1) to (3). Parameter combinations on the same line show similar closed-loop
behaviour.

yield similar behaviour. On each line the ratio of the parameters is
the same, which means that the individual values of 𝛾 or 𝑘p are not
important for the feedback. From line (A) to line (C) the response of
the controlled system changes drastically. The plots corresponding to
line (C) show a flow rate that follows its reference with a delay of
approximately 0.8 to 1.2 s. If the holding time is long enough, steady
state accuracy can be achieved. Compared to (C), the plots from line
(B) show that with increasing parameter ratio the controller is much
more aggressive, resulting in smaller errors during the transition. The
system response from line (A) instead shows that by further increasing
the ratio the system starts oscillating, but the current is not reaching its
maximum value 𝑖max yet. The analysis of this behaviour merits further
investigation.

5.3. FFC in comparison with the MFC

In this section the results of the FFC (11) and the derived MFC (16)
are studied. As discussed above, only valve V1P is used to compare
the proposed algorithm using the settings described in Section 5.1. The
controller parameters of the MFC are chosen as 𝛾 = 0.4m3A−1s−2 and
𝑘p = 30 s−1, because in the experiments this combination showed a good
trade-off between overshoot and settling time. As mentioned above,
all combinations with the same parameter ratio yield similar results.
However, the current is restricted to 𝑖max = 1.01A and 𝑖min = 0.0A. For
the FFC the parameter 𝜅 = 6.596 ⋅ 105

√

kg mA m−3 follows from the
geometry of the valve, and the minimal current is set to 𝑖0 = 0.53A
for a fair comparison. Fig. 9 shows two exemplary experiments. A
polynomial of degree 5 and a transition time of 0.9 s is connecting the
stationary regimes. This transition time is set as a benchmark, resulting
from the FFC control 𝑞𝑐,r of Eq. (6) for the fastest piston movement that
will be investigated later on in Section 5.6.

Fig. 9. Comparison of the FFC and the MFC using valve V1P. Flow rate over time
for two different end values. Tracking and steady-state errors of the FFC are due to
unmodelled magnetic hysteresis and friction.

Fig. 10. Comparison of the FFC and the MFC using valve V1P. RMS values of 𝑒𝑞 for
different final values of the commanded flow rate. The proposed MFC shows signifi-
cantly better results due to steady state accuracy and robustness against unmodelled
effects.

In every experiment the FFC results in a flow rate that is higher
than the commanded one, but the polynomial form of the transition
trajectory is quite accurate. Especially the experiment with a reference
reaching 14 l∕min shows the unmodelled effects, such as hysteresis
resulting from the magnet as well as the friction of the pilot and main
spool. As observed above, a huge effort is required to model these
phenomena, but they can be compensated by MFC. Even the proposed
MFC has its limits during the transition, which might result from a
combination of the delay of the underlying hardware current controller
and the flow sensor as well as the algebraic differentiators used in
the implemented algorithm. Nevertheless, in Fig. 10 the RMS of 𝑒𝑞
is depicted and it shows that the MFC is always resulting in a lower
quality gauge. The rising RMS values are caused by the errors during
transition, because the algorithm ensures steady state accuracy even
without an explicit integral part in the control law, which is emulated
by the estimate 𝑓 .

5.4. Validation of the flow rate estimation

In order to apply the MFC (16) in the overall system (4), the
estimation of the flow rate (17) is used instead of the sensor values.
A comparison of both can be seen in Fig. 11. The experimental results
obtained clearly justify the approximation proposed in Section 4.3.
The derivative �̇�𝑐 of the pressure is estimated using the algebraic
differentiator presented in Section 5.1. The minimal currents of the
valves, 𝑖0 and 𝑖min respectively, are set in such a way that there is always
a loss of flow rate 𝑞P,𝑖0 that flows from the pump over the valves directly
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Fig. 11. Validation of the flow rate estimation. The zoom on the right shows that
the flow rate resulting from the pressure change is insignificant and the proposed
approximation is justified.

Table 2
Parameters of the model (4) used for the cylinder system.
Parameter Value Parameter Value

𝐴1 7.068 ⋅10−4 m2 𝐵 1.7G N m−2

𝐴2 4.523 ⋅10−4 m2 𝑔 9.81 m s−2

𝑉0 5.026 ⋅10−5 m3 𝑚 34.5 kg
𝑘v 332.6 N s−1 𝑙 0.15m

to the tank, without contributing to the cylinder stroke. This loss is
determined and subtracted from the measured sensor values to compare
them with the chamber flow rates 𝑞𝑐 . Preliminary investigation showed
that the sensor has a delay of approximately 𝜏𝑞P = 50ms and a nonlinear
characteristics resulting from the measurement principle. Therefore,
the signal 𝑡 ↦ 𝑞P(𝑡) = 𝑞P(𝑡) − 𝑞P,𝑖0 in Fig. 11 is shifted in time to
visualise the quality of the estimate (17). These results clearly validate
the estimation approach.

5.5. Implementation and reference trajectories

The model parameters from Table 2 are used for the implementation
of the controller in Eq. (8). The gains 𝑘1𝑗 , 𝑗 ∈ {1, 2, 3} and 𝑘2𝑗 , 𝑗 ∈ {0, 1}
are chosen in such a way that the eigenvalues of the dynamics of
the error 𝑒1 are −28 s−1, −35 s−1, −1563 s−1, and those of 𝑒2 are −1 s−1

and −500 s−1. The control law is implemented in a quasi-continuous
manner, except for the integral in Eq. (8b) that is discretised using
Tustin’s method.

The gains 𝑙𝑗 , 𝑗 ∈ {1,… , 7} of the observer in (12), used to recon-
struct the Brunovský state 𝜉, are chosen in such a way that three de-
coupled error dynamics result, with the eigenvalues −100 s−1, −110 s−1,
−120 s−1 for �̃�1, and −500 s−1, −580 s−1 for �̃�3 as well as for �̃�4. The
parameters 𝑙6 and 𝑙7 are time-varying, since the measurement 𝜂1
in Eq. (12) can be used to compensate the nonlinearity 𝑉𝑐 (𝜂1) in order to
obtain linear error dynamics. The observer is discretised using Euler’s
method.

In the complete system, comprising the cylinder and the valves, the
estimation in (17) is used instead of the sensor. The dynamics of the
latter are no longer influencing the closed-loop behaviour. Therefore,
the proportional gain 𝑘p = 140 s−1 is set higher. This improves the
behaviour of the algorithm especially for reference trajectories 𝑡 ↦ 𝑞d(𝑡)
with fast changes commanded by the cylinder controller (8), (9) when
compensating friction phenomena at low piston velocities.

The pressure of the pump is set to 30 bar and the reference of
the pressure 𝑝𝛴 to 20 bar. This ensures that the piston can lift the
load. The reference trajectory 𝑡 ↦ 𝑧r(𝑡) for the cylinder position
is shown in Figs. 12 and 13 for two different transition times. The
trajectory is designed in such a way that a polynomial of sufficiently
high degree is connecting trajectory pieces with a linear slope between

Fig. 12. Controlled flat output 𝑦 for a slow reference trajectory by using the FFC and
the MFC for the valves. The proposed MFC shows almost no tracking error in 𝑒1.

two stationary regimes. In particular, this yields constant velocities,
which is beneficial for the proposed MFC algorithms. Additionally, the
sufficiently smooth polynomials connecting the trajectory pieces ensure
a continuous controller output 𝑞𝑐,d.

5.6. Results for the overall system

Fig. 12 shows the trajectories of the controlled flat output 𝑦 for
a stroke of 280 mm in approximately 11.3 s and a maximum piston
velocity equal to 25 mm/s. The FFC of the valves shows a tracking
error of more than ±2 mm during the transition. Moreover, the two
MFC algorithms are able to decrease this error by one magnitude
of scale, to less than ±0.2 mm. The largest error occurs during the
change of direction, when no estimation of the flow rate is possible
and static friction is acting on the cylinder piston. Using the MFC to
control the valve pairs, a maximum error of 1.9 mm can be achieved,
which is significantly less than the corresponding value of 4.8 mm for
the FFC. By comparing the resulting pressures 𝑝𝛴 it can be seen that
all algorithms yield similar results, except for some peaks during the
change of direction.

If the piston velocity is further increased the differences between the
algorithms are no longer that significant. However, the MFC still yields
better results, see Fig. 13. Again the maximum error can be reduced
from 4.2 mm using the FFC to 2.5 mm using the MFC for all four
valves, but when the pair is controlled the error increases to 7.7 mm.
Nevertheless, both MFC algorithms ensure a smaller absolute value of
the minimal error (FFC: -10.0 mm, MFC: -7.5 mm, MFCPair: -6.0 mm).
By reducing the transition time to approximately 2.3 s the switching
between the valves becomes more crucial, which is especially visible
for the controlled pressure sum 𝑝𝛴 . The peaks occurring during low
velocity are more dominant.

In Fig. 14 the RMS values for the position error 𝑒1 and the three dif-
ferent control laws are depicted. Especially for low velocities, control-
ling the valve system with the MFC is advantageous. When increasing
the velocity reduced accuracy for the proposed algorithm is observed,
which might be explained by two arguments. First, the stroke that the
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Fig. 13. Results of the controlled flat output 𝑦 for a higher piston velocity by using
the FFC and the MFC for the valves.

Fig. 14. Comparison of the RMS values of the error 𝑒1 for different maximal
piston velocities. Especially for low velocities the MFC shows a significantly better
performance.

piston can perform is restricted. This results in a shorter time period
when the desired flow rate is constant. As seen in Section 5.3, the MFC
has steady state accuracy and would, therefore, outperform the FFC.
Second, because the estimation of the flow rate is not available during
the change of direction, the MFC is responding too aggressively, which
leads to larger errors in the initial phase of the trajectory. Thus, the
combination of MFC and FFC during this crucial phase is an interesting
path to follow for future work.

In Fig. 15 the flow rate of the FFC (on the left) and the MFC for all
valves (on the right) are compared. The FFC of the valves yields higher
input signals, required to compensate for model uncertainties as well as
the tracking error during transition. This leads to a false estimation of
leakage by the observer (12). Compared to the left hand side the graphs
on the right hand side are almost identical, except for measurement
noise, which is also a validation of the model (4). The peaks in the
flow rate are again resulting from the compensation of friction and the
fact that the flow rate estimation is not available for low velocities.

5.7. Leakage compensation

An additional advantage of the proposed MFC is the almost imme-
diate compensation of leakage. Therefore, a leakage of valve 𝑉P1 is

Fig. 15. Flow rate over time for the FFC on the left and the MFC on the right. The
observer falsely estimates a leakage by using the FFC, because the commanded and the
reconstructed flow rate are different.

Fig. 16. System behaviour in presence of a leakage. MFC can easily compensate the
effects of the leakage.

simulated by increasing its minimal current 𝑖min and 𝑖0, respectively,
from 0.5 to 0.6 A, which corresponds to an increase of approximately
20% of the available effective current. This means that whenever the
desired flow rate of this valve is zero it will deliver an additional flow
rate that has to be dealt with, because it will flow into the chamber
𝑐 = 1 and will disturb the movement of the piston. Fig. 16 shows the
influence of this simulated leakage, by comparing the MFC for the valve
pair with the FFC. From 0.4 to 1.6 s valve 𝑉P1 will be used as proposed,
but otherwise the minimal current is risen. Due to the fast reaction of
MFC to this disturbance, the behaviour is comparable to that in Fig. 13,
where no leakage affects the system. By calculating the RMS value of 𝑒1
this fact becomes clearer. The quality gauge is increasing by the factor 4
(from 2.9 mm to 11.7 mm) for the FFC, whereas only by 1.7 for the MFC
(from 2.1 mm to 3.5 mm). The cylinder controller cannot compensate
such a disturbance in a satisfying manner.

6. Conclusion and future work

In this contribution, a systematic tuning approach for the param-
eters of a MFC for systems approximated by first-order differential
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equations is investigated by considering the control of the flow rate
of a pilot-operated proportional valve. The results are illustrated using
numerous experiments. In addition, a model-based control for a double-
acting hydraulic piston actuator is provided, with a nonlinear observer.
The combination of the two approaches is resulting in high position
accuracy for the overall system and robustness against leakages, as
demonstrated in experiments.

It could be seen, that for high reference velocities the performance
of the MFC may degrade. However, this is not a drawback of the
proposed combination of the model-based control approach and the
MFC. The absence of a good flow rate estimate when the cylinder
rod is moving slowly and an increasing influence of the friction for
these trajectories explain this deterioration of the performance. Since
the distance the cylinder rod can travel is limited, the errors in the
starting and ending phases of trajectories with high reference velocities
dominate. Thus, combining the MFC with the FFC to enhance the
performance, especially for the starting and stopping phase of the pis-
ton, might deserve additional investigation. Moreover, every feedback
controller relying on the estimate of the flow rate would show a low
performance during these trajectories portions. Also the effects of the
input saturation on the closed-loop dynamics should be addressed in
future work, besides the effects of the delay to the stability region.

Future work should also apply the MFC approach to an approxi-
mation of a second order system in a structured manner. Additionally,
further investigations should be made to check whether the observed
behaviour of same system response with the same parameter ratio of
the MFC applies to other systems as well.
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A B S T R A C T

Established model-based methods often use a combination of state feedback and observer to control complex
systems. They rely on detailed mathematical models that are often hard to derive. Nonetheless, such methods
may achieve a high level of accuracy, which justifies the cumbersome modelling. An alternative approach
is model-free control, in a form introduced by Fliess and Join, where the system is approximated in a short
time interval by a low-order differential equation with unknown parts, a so-called ultra-local model. This
control method is a powerful tool, but the parametrisation and the concrete implementation may require
time, effort, and experience. The present paper investigates the systematic tuning of a model-free controller
for a magnetically supported plate that is modelled as an unstable multiple-input multiple-output system.
Furthermore, the incorporation of model information into the model-free controller is investigated. These
adaptations ultimately improve results by simplifying parameter tuning and interpretation of estimates. Several
experiments are carried out on a test bed to show the capabilities of the proposed algorithms for set point
stabilisation and trajectory tracking. The effects of the different parameters in the model-free controllers are
addressed, and excellent robustness with respect to actuator faults is demonstrated. Filters for estimating
derivatives and unknown quantities are designed using an open-source toolbox.

1. Introduction

Model-free control (MFC) has become a popular term in the broad
field of control engineering and includes approaches based on propor-
tional integral derivative (PID) control, fuzzy control, reinforcement
learning, and data-based control. Fliess and Join (2008, 2009, 2013)
have proposed algorithms that do not rely on physically motivated
mathematical models of the systems considered and do not require
time consuming and data intensive training. In this approach, a sys-
tem is locally approximated by a low-order differential equation with
unknown parts, which is called a ultra-local model. The unknown part
of the system consists of unmodelled dynamics as well as disturbances,
without any distinction between the latter. With the help of algebraic
differentiators (see Mboup et al., 2009 and the survey Othmane et al.,
2022 for an overview) the unknown part can be estimated for a
subsequent compensation in the feedback control.

This simple yet powerful and real-time capable method has been
applied to various systems, ranging from direct fuel injection systems
in Carvalho et al. (2024), unmanned aerial vehicles in Al Younes et al.
(2014), grid-tied inverters in Wachter et al. (2023), wind turbines
in Lafont et al. (2020), active suspensions in Haddar et al. (2019),
proportional valves in Scherer et al. (2023), green houses in Lafont

∗ Corresponding author.
E-mail address: p.scherer@lsr.uni-saarland.de (P.M. Scherer).

et al. (2015) and video streaming in Fliess and Join (2023), to mention
only a small selection of successful simulations and experiments.

The works Li et al. (2022) and Zhang et al. (2022) focus on classical
control theoretical tools in the frequency domain to analyse the MFC,
whereas Hegedűs et al. (2022) investigates the tuning of the input
gain. In Belhadjoudja et al. (2023) the MFC is analysed using meth-
ods from linear systems. An alternative MFC approach is considered
in Tabuada et al. (2017), where the knee joint of a bipedal walking
robot is controlled based on a linear approximation of the nonlinear
system with guarantees on stability depending on the sampling time.
Nonetheless, systematic tuning of the MFC algorithms for unstable
multiple-input multiple-output (MIMO) systems remains a challenging
problem, despite the successful realisation in Bekcheva et al. (2018)
or Neves and Angélico (2021).

In Othmane, Rudolph, and Mounier (2021) the tuning of estimators
used for the approximation of the unknown part of the ultra-local model
is investigated. These estimators are called algebraic differentiators,
the systematic tuning of which has already been analysed in Kiltz
(2017), Kiltz and Rudolph (2013) and Othmane et al. (2022). The
design, analysis, and discretisation of the differentiators is done with
the easy to use open-source toolbox AlgDiff (see Othmane, 2022), the
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use of which has been described in the tutorial-like paper (Othmane &
Rudolph, 2023).

The present paper focuses on active magnetic bearings. This tech-
nology can, for example, be used for flywheels (cf. Lei & Palazzolo,
2008), designed for energy storage, to dampen the vibration of circular
saws (Ellis & Mote, 1977), or for the exact positioning of a tool attached
to a rotating shaft (Eckhardt & Rudolph, 2004). Due to the inherent
nonlinearity and instability in the system, control algorithms are always
needed for the realisation of the technology. These algorithms are
typically based on mathematical models of the magnets (cf. Collon
et al., 2007) and the rigid body dynamics of the rotating shaft. The same
technology of the bearings can also be used for the position control of
a plate as discussed in Kiltz et al. (2014). The magnetically supported
plate described therein is also considered in the present work as an
example for the magnetic bearing technology, dealing with interesting
problems like over-actuation, nonlinearity of the magnets as well as the
unstable MIMO characteristic of the system that is challenging in the
MFC context. The contributions De Miras et al. (2013) and Moraes and
da Silva (2015) have already successfully described the experimental
implementation of MFC techniques for simple lab setups with magnetic
bearings. However, questions such as parametrisation, discrete imple-
mentation, incorporation of physical knowledge into the controller
design, and comparisons with model-based approaches remain open.
The current work explores these issues.

Here, the systematic design and tuning of algebraic differentiators
and MFC algorithms based on a second order ultra-local model is
investigated. The differentiators are essential to online estimate un-
known parts of the ultra-local model as well as velocities that are not
directly measured but needed for the controller. Additionally, details
concerning the implementation of these algorithms are shared that
are necessary for a successful application of the latter. It is shown
that model information, e.g. known input gains or a simple model of
an electromagnet, can be utilised not only to increase the accuracy
of the algorithms, but also to simplify the tuning. In addition to the
systematic analysis, a model-based approach is designed in such a way
that the results of both the MFC and the model-based control (MBC) are
comparable. Several experiments on a test bed depicted in Fig. 1 are
conducted showing the capabilities of the MFC in different scenarios,
such as trajectory tracking and robustness to sensor and actuator faults.

The present paper is organised as follows. In Section 2 the sys-
tem under consideration is introduced and a mathematical model is
provided. A model-based tracking controller, the MFCs using different
inputs as well as information concerning the implementation of the
latter are discussed in Section 3. In Section 4 experimental results on
the test bed are presented and details for the parametrisation of the
algorithms are provided.

2. Magnetically supported plate: problem statement and mod-
elling

The test bed considered, depicted in Fig. 1, consists of a 10 mm
thick, rectangular aluminium plate with four laminated iron packs at
each corner. These packs are acting as the yokes of four electromagnets
mounted at a rigid frame above the plate. The electromagnets generate
four forces that can lift the plate, as depicted in the schematic drawing
in Fig. 2. Four inductive sensors are available to measure the distances
denoted by 𝑦𝑗 , 𝑗 ∈ {1, 2, 3, 4}, between the plate and the outer frame.
This system has already been considered in Kiltz et al. (2014, 2012).
Due to its simple construction this setup could be relatively easily
rebuilt by other groups for use in educational labs.

2.1. Model of the plate

The plate, as shown in the schematic drawing in Fig. 2, is modelled
as a rigid body that can only perform translational motions in the 𝑧0
direction of the space-fixed coordinate system 𝐶0 and tilt around the

Fig. 1. Photo of the considered test bed. The aluminium plate is hovering with an air
gap of 5 mm.

Fig. 2. Schematic drawing of the plate with the body fixed frame 𝐶b and reference
frame 𝐶0.

𝑥b- and 𝑦b-axes of the body-fixed coordinate system 𝐶b, located in the
centre of mass of the plate. Thus, motions in any other direction are ne-
glected. Due to the limited air gaps ℎ𝑗 , 𝑗 ∈ {1, 2, 3, 4}, possible tilt angles
are small, resulting in the assumption that the forces 𝐹𝑗 , 𝑗 ∈ {1, 2, 3, 4}
of the magnets are acting at the centre of each yoke as depicted in
Fig. 2. Each force 𝐹𝑗 , 𝑗 ∈ {1, 2, 3, 4} is generated by an electric current
denoted by 𝑖𝑗 , 𝑗 ∈ {1, 2, 3, 4}. However, the dynamics of the magnetic
fields are neglected, because of the lamination of the magnets as well
as the current controllers incorporated in the industrial hardware.

Using the latter considerations, the motion of the plate in the
remaining three degrees of freedom can be modelled by

𝐵𝒇 = 𝑚𝒈 + 𝑃 (�̈� − 𝜼) (1)

with

𝐵 =

⎛

⎜

⎜

⎜

⎝

1 1 1 1

1 −1 1 −1

1 1 −1 −1

⎞

⎟

⎟

⎟

⎠

, 𝑃 =

⎛

⎜

⎜

⎜

⎜

⎝

0 −𝑚
2 −𝑚

2

− 𝑘1
2

𝑘1
2 0

− 𝑘2
2 0 𝑘2

2

⎞

⎟

⎟

⎟

⎟

⎠

,

𝒇 = (𝐹1, 𝐹2, 𝐹3, 𝐹4)T, 𝒚 = (𝑦1, 𝑦2, 𝑦3)T, 𝒈 = (𝑔, 0, 0)T, and the parameters
𝑘1 = 𝐽𝑥

𝑙𝑑𝑦𝑙𝑓𝑦
and 𝑘2 = 𝐽𝑦

𝑙𝑑𝑥𝑙𝑓𝑥
. The mass of the plate is denoted by 𝑚, the

gravitational acceleration by 𝑔, 𝐽𝑥 and 𝐽𝑦 are describing the moments
of inertia with respect to the 𝑥b- and 𝑦b-axes respectively. As depicted
in Fig. 2, the distances from the centre of the plate to the sensors and
the forces are denoted by 𝑙𝑑𝑥 and 𝑙𝑑𝑦 as well as 𝑙𝑓𝑥 and 𝑙𝑓𝑦, respectively.
Unmodelled system dynamics and disturbances are summarised in the
variable 𝜼.
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As usual, the forces generated by the magnets are modelled as

𝐹𝑗 =
𝑖2𝑗

𝑑2𝑗 (ℎ𝑗 )
, 𝑗 ∈ {1, 2, 3, 4}, (2)

with functions 𝑑𝑗 ∶ R → R depending on the air gaps ℎ𝑗 , 𝑗 ∈ {1, 2, 3, 4}.
These functions can be determined in a parameter identification with
an appropriate ansatz. In the following, the air gaps ℎ𝑗 , 𝑗 ∈ {1, 2, 3, 4},
have to be calculated using the available measurements. The easiest
way of doing so is to use the assumption that the aluminium plate is a
rigid body. Then it can be mathematically described by a plane defined
by

𝒓0 = 𝒓01 + 𝑎(𝒓03 − 𝒓01) + 𝑏(𝒓02 − 𝒓01) (3)

in the reference frame 𝐶0 with the sensor locations 𝒓01 = (−𝑙𝑑𝑥, 𝑙𝑑𝑦, 𝑦1)T,
𝒓02 = (−𝑙𝑑𝑥,−𝑙𝑑𝑦, 𝑦2)T, and 𝒓03 = (𝑙𝑑𝑥, 𝑙𝑑𝑦, 𝑦3)T, whereas the parameters 𝑎
and 𝑏 depend on the point of interest on the plane. With this, only
three of the four sensor values have to be used. Now, (3) can be used
to calculate the midpoint of the yokes, where the forces of the magnets
are acting on, and with this the needed air gaps. This yields

⎛

⎜

⎜

⎜

⎜

⎝

ℎ1
ℎ2
ℎ3
ℎ4

⎞

⎟

⎟

⎟

⎟

⎠

= 1
2

⎛

⎜

⎜

⎜

⎜

⎝

𝑘𝑥 + 𝑘𝑦 1 − 𝑘𝑦 1 − 𝑘𝑥
𝑘𝑥 − 𝑘𝑦 1 + 𝑘𝑦 1 − 𝑘𝑥

−𝑘𝑥 + 𝑘𝑦 1 − 𝑘𝑦 1 + 𝑘𝑥
−𝑘𝑥 − 𝑘𝑦 1 + 𝑘𝑦 1 + 𝑘𝑥

⎞

⎟

⎟

⎟

⎟

⎠

⎛

⎜

⎜

⎝

𝑦1
𝑦2
𝑦3

⎞

⎟

⎟

⎠

= 𝐾𝒚, (4)

with 𝑘𝑥 = 𝑙𝑓𝑥
𝑙𝑑𝑥

and 𝑘𝑦 = 𝑙𝑓𝑦
𝑙𝑑𝑦

, which maps the sensor values to the air
gaps.

Remark 1. The term 𝜼 describes several hard to model dynamics
and disturbances. These have various origins, such as errors within
the magnetic force model stemming from inaccuracies in the functions
𝑑𝑗 ∶ R → R, 𝑗 ∈ {1, 2, 3, 4}, unmodelled hysteresis and magnetic satu-
ration, temperature dependencies within the coils, effects originating
from magnetic field dynamics, and magnetic flux leakage. Additionally,
high-frequency oscillations occur due to plate vibrations, as the real
plate deviates from the assumed rigid body model.

Remark 2. Using a different combination of three sensor values would
be possible, e.g. 𝑦2, 𝑦3, and 𝑦4. In this case, Eq. (3) has to be adjusted,
resulting in a different matrix relating 𝒉 and (𝑦2, 𝑦3, 𝑦4)T. A possible
method of using four sensors is to calculate the centre of gravity of the
plate, where the coordinate system 𝐶b is located, as the mean value
of all measurements. The tilt angles around the 𝑥b- and 𝑦b-axes can be
calculated afterwards using again only three sensor values, and with
this all informations to determine the air gaps are provided. An other
possibility is to use the redundancy of the sensors for fault detection.
For the sake of simplicity, only the suggested choice is considered in
the sequel.

3. Control design

In the following section, a MBC approach is presented in addition
to several MFC algorithms, which differ in the choice of the input.
This choice is based on different degrees of model information used
to determine a feedback law.

3.1. Model-based control

The MBC of the plate is based on (1), which can be rewritten as

�̈� = 𝑃−1(𝐵𝒇 − 𝑚𝒈) + 𝜼 (5)
= 𝒗 + 𝑔

(

1 1 1
) T + 𝜼,

with the new input 𝒗 = 𝑃−1𝐵𝒇 . The latter system of differential
equations can also be written as three independent scalar equations

�̈�𝑘 = 𝑣𝑘 + 𝑔 + 𝜂𝑘, 𝑘 ∈ {1, 2, 3}. (6)

Hereafter, the index 𝑘 will be omitted, due to the similarity of the
equations. Based on (6) a stabilising feedback law

𝑣 = �̈�r − 𝑐D�̇� − 𝑐P𝑒 − 𝑔 − 𝜂, 𝑒 = 𝑦 − 𝑦r, (7)

can be calculated to track a sufficiently smooth reference trajectory
𝑡 ↦ 𝑦r(𝑡). Using the control law (7) on system (6) leads to the differen-
tial equation of the error

𝑒 + 𝑐D�̇� + 𝑐P𝑒 = 0. (8)

The controller parameters 𝑐P and 𝑐D are chosen positive, which results
in a stable closed-loop behaviour. This approach can be interpreted as
a typical flatness-based controller as discussed e.g. in Rudolph (2021).

Since the velocity �̇� and the acceleration 𝜂 required in the feedback
law (7) are not measured, an observer is designed, based on the as-
sumption of a piecewise constant disturbance 𝜂, which means �̇� = 0 on
intervals. To this end, the state representation of (6) can be introduced
as

�̇� =
⎛

⎜

⎜

⎝

0 1 0
0 0 1
0 0 0

⎞

⎟

⎟

⎠

𝒙 +
⎛

⎜

⎜

⎝

0
1
0

⎞

⎟

⎟

⎠

(𝑣 + 𝑔) = 𝐴𝒙 + 𝒃(𝑣 + 𝑔) (9a)

𝑦 =
(

1 0 0
)

𝒙 = 𝒄T𝒙 (9b)

with the input 𝑣 and the tuple 𝒙 = (𝑦, �̇�, 𝜂)T. Discontinuities of 𝜂 cor-
respond to resetting initial conditions. Based on (9) a simple linear
disturbance observer

̇̂𝒙 = 𝐴�̂� + 𝒃(𝑣 + 𝑔) + 𝒍
(

𝑦 − 𝒄T�̂�
)

(10)

with �̂�(0) = �̂�0 ∈ R3 provides an estimate �̂� of the tuple 𝒙. The observer
gains 𝒍 = (𝑙1, 𝑙2, 𝑙3) are chosen such that 𝐴 − 𝒍𝒄T is Hurwitz. With
this choice the error �̃� = 𝒙 − �̂� exponentially converges to zero.
Using the feedback law (7) in combination with the observer (10) the
accelerations 𝒗 can be calculated.

The next step is to exploit the relation 𝒗 = 𝑃−1𝐵𝒇 from (5) to derive
desired forces 𝒇d that can be realised using the electric currents. Due
to the redundancy stemming from the over-actuation of the system,
a choice has to be made. One approach is to use the Moore–Penrose
pseudo inverse 𝐵† = 𝐵T(𝐵𝐵T)−1 of 𝐵 to calculate

𝒇d = 𝐵†𝑃𝒗 = 1
4

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

−𝑘1−𝑘2
2

−𝑚+𝑘1
2

−𝑚+𝑘2
2

𝑘1−𝑘2
2

−𝑚−𝑘1
2

−𝑚+𝑘2
2

−𝑘1+𝑘2
2

−𝑚+𝑘1
2

−𝑚−𝑘2
2

𝑘1+𝑘2
2

−𝑚−𝑘1
2

−𝑚−𝑘2
2

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

𝒗 = 𝑉 𝒗 (11)

that distributes the input 𝒗 evenly to the four desired forces
𝐹d,𝑗 , 𝑗 ∈ {1, 2, 3, 4}, which is beneficial especially if an abrupt actuator
fault occurs, as discussed in Section 4.4.1.

Remark 3. Using the Moore–Penrose pseudo inverse is equivalent to
minimising the mean variation ∑4

𝑖=1

(

𝐹d,𝑖 −
1
4
∑4

𝑗=1 𝐹d,𝑗

)2
as suggested

in Kiltz et al. (2012).

Solving (2) for the current yields

𝑖d,𝑗 =
√

𝐹d,𝑗𝑑𝑗 (ℎ𝑗 ), 𝑗 ∈ {1, 2, 3, 4}, (12)

which can be used together with (4) to generate the reference for the
underlying current controller.

3.2. Model-free control

In the following, various MFC approaches are presented, gradually
reducing from one subsection to the next the amount of physically mo-
tivated model knowledge. For each controller three decoupled systems
with identical structure are considered and the corresponding index
will again be dropped when appropriate.
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3.2.1. Acceleration as input
Hereafter, the input 𝑣 is used just as it has been done in the design of

the MBC law in (7). Each of the decoupled subsystems is described by

�̈� = 𝛾𝑣𝑣 + 𝑓𝑣, 𝛾𝑣 > 0, (13)

where 𝑡 ↦ 𝑓𝑣(𝑡) is a bounded unknown square-integrable function
representing unmodelled dynamics as well as other disturbances. Com-
paring (13) and (6) yields 𝑓𝑣 = 𝜂 + 𝑔 and suggests the choice 𝛾𝑣 = 1.
This means that 𝑓𝑣 has a physical meaning as opposed to a similar case
study discussed in Remark 3 of Scherer et al. (2023).

Remark 4. Comparing (13) and (6) suggests to use 𝛾𝑣 = 1. Neverthe-
less, a different choice of the input gain 𝛾𝑣 is possible (see Fig. 8).

Based on (13), the control input 𝑣 is chosen as

𝑣 = 1
𝛾𝑣

(

�̈�r − 𝑘p𝑒 − 𝑘d�̇� − 𝑓𝑣
)

(14)

with 𝑘p, 𝑘d > 0, and estimates 𝑓𝑣 and ̇̂𝑦 of 𝑓𝑣 and �̇�, respectively,
the calculation of which will be discussed in Section 3.3. Under the
assumption that 𝑓𝑣 ≈ 𝑓𝑣, using (14) with the model (13) leads to the
differential equation

𝑒 + 𝑘d�̇� + 𝑘p𝑒 = 0,

which has the same structure as (8).
The controller (14) can then be used together with (4), (11) and (12)

to calculate the desired forces and currents, respectively. An advantage
of this implementation is that there is no need for a model-based
observer to estimate the derivative �̇� and the disturbance 𝑓𝑣. Instead,
with the algebraic differentiators presented in Appendix A, an approach
that is solely based on the measured signal 𝑦 is used.

Remark 5. This combination of MBC and MFC is also suggested
in Villagra and Herrero-Pérez (2012). Therein the MFC is combined
with a nonlinear flatness-based control.

3.2.2. Magnetic force as input
Instead of choosing the acceleration 𝑣 as an input, it is possible

to directly calculate the magnetic forces 𝐹𝑘, 𝑘 ∈ {1, 2, 3}. Based on this
consideration, the model (5) can be written as

�̈�𝑘 = −𝜌𝐹𝑘 −𝜛𝑘(𝐹≠𝑘) + 𝑔 + 𝜂𝑘, (15)

with 𝐹≠𝑘 = {𝐹1, 𝐹2, 𝐹3, 𝐹4}∖{𝐹𝑘}, where 𝜛𝑘(𝐹≠𝑘) is a weighted sum of
the different magnetic forces acting on the plate and the parameter
𝜌 = 1∕𝑘1 + 1∕𝑘2 + 1∕𝑚 resulting from 𝑃−1𝐵. The structure of (15) leads
to ultra-local models

�̈�𝑘 = 𝑓𝐹 ,𝑘 − 𝛾𝐹𝐹𝑘, 𝛾𝐹 > 0, (16)

with 𝛾𝐹 = 𝜌 and the unknown parts are 𝑓𝐹 ,𝑘 = 𝜛𝑘(𝐹≠𝑘) + 𝑔 + 𝜂𝑘. With
(15) in mind, (16) can be interpreted as a model of three implicitly
coupled point masses.

Remark 6. As an alternative to the considerations based on the model
(5), assuming that there is no unknown part 𝑓𝐹 , the model (16) would
be �̈� = −𝛾𝐹𝐹 . The force 𝐹 and the parameter 𝛾𝐹 are assumed to
be always positive, which means that if the force is increased the
acceleration �̈� is negative and the resulting position 𝑦 will decrease.
This matches the physical behaviour, because the air gap of the magnet
is getting smaller if the force is increased and the magnet pulls the plate
towards the rigid outer frame.

A controller that directly commands the forces is

𝐹 = 1
𝛾𝐹

(

−�̈�r + 𝑘p𝑒 + 𝑘d�̇� + 𝑓𝐹
)

, (17)

where the estimate 𝑡 ↦ 𝑓𝐹 (𝑡) is derived according to (24) by substitut-
ing 𝑣 with 𝐹 .

Fig. 3. Graphical representation of the identified functions 𝑑𝑗 (ℎ𝑗 ), 𝑗 ∈ {1, 2, 3, 4} and the
approximation with the parameter 𝜆 used to further simplify the design of the MFC
approach.

Again, the remaining degree of freedom, caused by the over-actuation
of the system, has to be considered. The transformation resulting from
the pseudo inverse is not a valid solution for this. To see this, assuming
the plate hovers horizontally with a constant distance to the frame.
Then, the available forces have to compensate the gravitational forces
and are approximately equal to 𝐹𝑘 ≈ 𝐹 > 0, 𝑘 ∈ {1, 2, 3}. In this case,
the last row of the pseudo inverse reads 𝐹d,4 =

1
4 (𝐹1 − 𝐹2 − 𝐹3) = − 1

4𝐹 ,
which cannot be realised on the test bed because the magnetic forces
𝐹𝑗 , 𝑗 ∈ {1, 2, 3, 4} are restricted to positive values. Instead of directly
coupling all forces, one can use 𝐹d,𝑘 = 𝐹𝑘, 𝑘 ∈ {1, 2, 3} and get the
remaining force as

𝐹d,4 =
3
∑

𝑘=1
𝑎𝑘𝐹𝑘, (18)

with ∑3
𝑘=1 𝑎𝑘 = 1 and 𝑎𝑘 ≥ 0. Thereafter, (4) and (12) can again be used

to calculate the desired electrical currents.

3.2.3. New input 𝑢 = (𝑖∕ℎ)2

To further simplify the design of the MFC, the functions 𝑑𝑗 ∶ R → R
in (2) can be approximated with 𝑑𝑗 ≈ 𝜆−1∕2ℎ𝑗 , 𝑗 ∈ {1, 2, 3, 4}, 𝜆 > 0, as
depicted in Fig. 3, which results in

𝐹 ≈ 𝜆
( 𝑖
ℎ

)2
= 𝜆𝑢.

Considering this relation, the quantity 𝑢 = (𝑖∕ℎ)2 is chosen as a new
input and can be interpreted as a special case of the considerations from
Section 3.2.2.

Thus, according to the model (16) it follows that

�̈� = 𝑓𝑢 − 𝛾𝑢𝑢,

with 𝛾𝑢 = 𝜆𝛾𝐹 . The control input 𝑢 can be derived using (17) and by
substituting 𝐹 and 𝛾𝐹 with 𝑢 and 𝛾𝑢, respectively, which yields

𝑢 = 1
𝛾𝑢

(

−�̈�r + 𝑘p𝑒 + 𝑘d�̇� + 𝑓𝑢
)

. (19)

As described in Section 3.2.2 the estimation of 𝑓𝑢 is realised according
to (24) by substituting 𝑣 with 𝑢. Similar to (18) the remaining input
𝑢4 can be calculated. Finally, using 𝑖d,𝑗 =

√

𝑢𝑗ℎ𝑗 , 𝑗 ∈ {1, 2, 3, 4} together
with (4), the desired currents for the underlying current controller are
obtained.

Remark 7. From an engineering perspective the input 𝑢 is a reasonable
choice if no identified model of the force (2) is available. From a
physical understanding of the system it is known that the force of the
magnets is approximately proportional to (𝑖∕ℎ)2.
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3.2.4. Current as input
Using even less model information, the equation

�̈� = 𝑓𝑖 − 𝛾𝑖(𝑦)𝑖 (20)

can be assumed to describe the system. In this case, however, the input
gain

𝛾𝑖(𝑦) =
𝛾𝑖,0
𝑦

is a function of the position, with 𝛾𝑖,0 > 0, obviously inspired by the
input 𝑢 from Section 3.2.3. For the implementation of this gain the
singularity of 𝛾𝑖 is not an issue, because of a safety routine that limits
the air gaps ℎ𝑗 , 𝑗 ∈ {1, 2, 3, 4} to a minimum of 0.8mm. The MFC law
can be derived as

𝑖 = 1
𝛾𝑖(𝑦)

(

−�̈�r + 𝑘p𝑒 + 𝑘d�̇� + 𝑓𝑖
)

, (21)

and again the estimation of 𝑓𝑖 is realised by substituting 𝑣 with 𝑖 in (24).
The additional input can be derived as in (18).

Remark 8. Choosing a constant input gain in (20) works in simulation,
but it was not leading to a stable closed-loop behaviour on the test bed.

3.3. Implementation of the MFC algorithms

In the following section, details about the implementation of the
MFC are shared. For additional information about the algebraic differ-
entiators used in the implementation of the proposed algorithms, the
interested reader is referred to Appendix A and the references therein.

3.3.1. Estimation of the disturbance 𝑓
The proposed MFC algorithms, i.e. (14), (17), (19) and (21), are

designed for continuos-time systems. Nevertheless, for a discrete-time
realisation of the control algorithms, a evaluation at equidistant time
instants is needed. In the following the MFC law (14) will be considered
as an example, but all remarks can be applied to the other approaches
in a similar way.

Estimation of 𝑓𝑣 can be done with

𝑓𝑣(𝑡) =
5!
2𝑇 5 ∫

𝑡−𝜀

𝑡−𝑇−𝜀

(

𝑇 2 − 6𝑇𝜎 + 6𝜎2
)

𝑦(𝜏) −
𝛾𝑣
2
𝜎2(𝑇 − 𝜎)2𝑣(𝜏)d𝜏, (22)

where 𝜎 = 𝑡−𝜏−𝜀 and 𝜀 > 0, which is based on algebraic considerations
and commonly used in the literature, e.g. Bekcheva et al. (2018)
or Barth et al. (2020). In Appendix B it is shown that (22) can be
interpreted as

𝑓𝑣(𝑡) = ∫

𝑡−𝜀

𝑡−𝑇−𝜀
�̈�(2,2)0,𝑇 ,𝜗(𝑡 − 𝜏 − 𝜀)𝑦(𝜏) − 𝛾𝑣𝑔

(2,2)
0,𝑇 ,𝜗(𝑡 − 𝜏 − 𝜀)𝑣(𝜏)d𝜏. (23)

In the latter 𝑔(2,2)0,𝑇 ,𝜗 denotes an algebraic differentiator as first developed
in Mboup et al. (2009), using here the notation from Othmane et al.
(2022) with the parameters 𝛼 = 𝛽 = 2 and 𝑁 = 0. With these
considerations, (23) can thus be generalised to

𝑓𝑣(𝑡) = ∫

𝑡−𝜀

𝑡−𝑇−𝜀
𝑔(𝑡 − 𝜏 − 𝜀)𝑓 (𝜏)d𝜏, (24a)

= ∫

𝑡−𝜀

𝑡−𝑇−𝜀
�̈�(𝑡 − 𝜏 − 𝜀)𝑦(𝜏) − 𝛾𝑣𝑔(𝑡 − 𝜏 − 𝜀)𝑣(𝜏)d𝜏, (24b)

where 𝑔 = 𝑔(𝛼,𝛽)𝑁,𝑇 ,𝜗 is the algebraic differentiator with parameters as
discussed in Appendix A. As seen in Section 4, in some cases this
generalisation is needed to realise the MFC.

The convolution integrals in (24b) have to be approximated using a
suitable quadrature method. The open-source toolbox AlgDiff (see Oth-
mane, 2022) provides all necessary features for the design and analysis
as well as the discretisation of algebraic differentiators used for the
estimation of 𝑓𝑣 and the time derivatives of 𝑦. The tutorial Othmane and
Rudolph (2023) offers an introduction with examples to the toolbox
and the systematic parametrisation of these differentiators.

As discussed in Scherer et al. (2023), the formulation in (24b) can
be derived by integrating (24a) by parts using (13). Again (24b) can be
implemented, because it depends on quantities known in the interval
[𝑡 − 𝑇 − 𝜀, 𝑡 − 𝜀] only.

In the following, the time window of length 𝑇 is an integral multiple
of the sampling time 𝑡s, i.e. 𝑇 = 𝑛s𝑡s and the parameter 𝜀 in (24) is
chosen to be equal to 𝑡s. The abbreviation 𝑣[𝑘] = 𝑣(𝑘𝑡s), 𝑘 ∈ N is used
for 𝑣 evaluated at the time 𝑘𝑡s. With this abuse of notation, (14) yields
in a discrete-time setting

𝑣[𝑘] = 1
𝛾𝑣

(

�̈�r[𝑘] − 𝑘p𝑒[𝑘] − 𝑘d ̇̂𝑒[𝑘] − 𝑓𝑣[𝑘]
)

(25)

with 𝑒(𝑛)[𝑘] = �̂�(𝑛)[𝑘] − 𝑦(𝑛)r [𝑘], 𝑛 ∈ {0, 1}. Applying the mid-point rule, 𝑓𝑣
and the estimates of the derivatives 𝑦(𝑛), 𝑛 ∈ {0, 1} can be computed as

𝑓𝑣[𝑘] =
1
𝛷2

𝐿−1
∑

𝑗=0
𝑤2[𝑗]𝑦[𝑘 − 𝑗 − 1] −

𝛾𝑣
𝛷0

𝐿−1
∑

𝑗=0
𝑤0[𝑗]𝑣[𝑘 − 𝑗 − 1]

�̂�(𝑛)[𝑘] = 1
𝛷𝑛

𝐿−1
∑

𝑗=0
𝑤𝑛[𝑗]𝑦[𝑘 − 𝑗],

with 𝛷𝑛 =
𝑡𝑛s
𝑛!
∑𝐿−1

𝑗=0 𝑤𝑛[𝑗](−𝑗)𝑛, 𝑤𝑛[𝑗] = 𝑡s𝑔(𝑛)[𝑗 + 1∕2], 𝑛 ∈ {0, 1}, and
𝐿 = 𝑛s.

4. Experimental results

The following, experiments are carried out on the test bed de-
picted in Fig. 1. Four inductive sensors manufactured by Intronik
GmbH are measuring the distance between the rigid outer frame
and the 4.69 kg weighing aluminium plate. For safety reasons, the air
gaps ℎ𝑗 , 𝑗 ∈ {1, 2, 3, 4} of the magnets are limited to 0.8 − 5.5mm and
the currents to 0 − 8A. The real-time hardware used is a GIN-SAM3
from Indel. The proposed algorithms are executed with a sampling
rate of 𝑓s = 1∕𝑡s = 32 kHz. The power electronics are included in a
GIN-SAC3x3 also from Indel.

4.1. Parameters of algebraic differentiators and MFC

The algebraic differentiators used depend on the design parameters
𝛼, 𝛽,𝑁 , and 𝜔c that have to be chosen in such a way that the accuracy
of the resulting approximation as well as the rejection of measurement
noise are high and the error stemming from the delay 𝛿𝑡 is as small
as possible (see Appendix A for more information about the algebraic
differentiators used). To achieve a high noise rejection the parameters 𝛼
and 𝛽 are chosen equal (see Othmane et al., 2022, Sec. 4 and Mboup &
Riachy, 2018). Additionally the parameter 𝑁 describing an 𝑁-th order
truncated generalised Fourier expansion is set to zero, thus, resulting
in an estimation delay of 𝛿𝑡 = 𝑇 ∕2.

With these choices, several experiments are made using different
parameter combinations for 𝛼 = 𝛽 ∈ {2, 3,… , 8} and 𝜔c ∈ {540, 640,… ,
1440} rad/s. The MFC from (14) is implemented with the parameters
𝑘p = 5000 s−2, 𝑘d = 195 s−1 and 𝛾𝑣 = 1. At the beginning, the plate rests
on four screws at a distance of approximately 5.5 mm and individual
polynomial reference trajectories 𝑡 ↦ 𝑦r,𝑘(𝑡), 𝑘 ∈ {1, 2, 3} of degree 5 are
planned, connecting the rest position with a vertical position at 2 mm
and a transition time of 2 s. If the algorithm can lift and afterwards
stabilise the plate, the experiment will continue, otherwise it is aborted.
Thereafter, a set point transition from 2 mm to 5 mm and back again to
2 mm with polynomial trajectories of degree 5 are calculated, having a
transition time of 0.5 s as well as a holding time of 0.2 s (see Fig. 11
for a visualisation of the reference trajectory).

For this set point change, the root mean square (RMS) of the delayed
errors 𝑒𝑘 = �̂�𝑘 − 𝑦r,𝑘, 𝑘 ∈ {1, 2, 3}, is calculated and used as a quality
gauge of the resulting parametrisation. Fig. 4 shows the variation of
the RMS values of the errors for different combinations of the param-
eters 𝛼 = 𝛽 and 𝜔c. The experiments show that the RMS values are
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Fig. 4. Evaluating the RMS values of the delayed error 𝑒𝑘 , 𝑘 ∈ {1, 2, 3} for varying
parameter combinations of 𝜔c and 𝛼 = 𝛽 for the algebraic differentiators.

Table 1
Comparison of the cost function values 2 for 𝜔c = 840 rad∕s and varying 𝛼 = 𝛽 with
the discretisation methods used.

Method 𝛼 = 𝛽 = 2 𝛼 = 𝛽 = 3 𝛼 = 𝛽 = 4

mid-point −67.1 dB −130.6 dB −222.1 dB
trapezoidal −56.5 dB −120.7 dB −220.7 dB
Simpson’s rule −22.5 dB −33.4 dB −31.2 dB

significantly larger for 𝛼 = 𝛽 ∈ {2, 3} compared to the results of the
experiments for 𝛼 = 𝛽 > 3. This confirms the general choice of the
formulation with algebraic differentiators in e.g. (14) compared to the
restriction to 𝛼 = 𝛽 = 2 as discussed in Appendix B, at least for the
current application. The large discretisation error is the reason for the
results from Fig. 4, which can be seen in Fig. 5, where the amplitude
spectra of the continuous-time and discrete-time differentiators used for
the approximation of a second order derivative are depicted for the
choice 𝜔c = 840 rad∕s, 𝑁 = 0, and varying 𝛼 = 𝛽. The differentiator
has been discretised using the mid-point rule. Specifically, for very low
frequencies compared to 𝜔c the estimation of �̈� is bad, resulting in an
inaccurate estimation and compensation of 𝑓𝑣 in the controller. Using
the cost function 𝑛 introduced in Kiltz (2017, Sec. 3.4.2) and discussed
in Othmane et al. (2022), as a measure for the discretisation reveals
that for values above -200 dB the discretisation error is unacceptable.
In Table 1 results obtained using the mid-point rule, the trapezoidal rule
and Simpson’s rule for the discretisation are compared. The comparison
shows that the trapezoidal rule or Simpson’s rule result in even higher
values for 𝑛. Therefore, the mid-point rule is used in the sequel. In
addition, using the latter, fewer filter parameters have to be stored and
fewer calculations have to be done as discussed in Kiltz (2017, Sec.
3.4.2) or Othmane, Rudolph, and Mounier (2021, Sec. 3.3).

Remark 9. The plate has a dominant mechanical resonance frequency
at approximately 942 rad/s, which causes instability of the closed loop
if not suppressed correctly. Choosing 𝑁 = 0 and 𝛼 = 𝛽, the amplitude
spectrum of the algebraic differentiator shows a distinct stopband

Fig. 5. Comparison of the amplitude spectra of the continuous-time and discrete-time
differentiators used for the approximation of a second order derivative for different
𝛼 = 𝛽 and 𝜔c = 840 rad∕s. The mid-point rule is considered in the discretisation,
the corresponding error of which is dominant for 𝛼 = 𝛽 ∈ {2, 3}, resulting in a bad
estimation of the second order derivative of 𝑦𝑘 , 𝑘 ∈ {1, 2, 3}.

ripple, as depicted in Fig. 5. In this case, the transfer function has
zeros which correspond to those of the Bessel function of the first kind
and order 𝛼 + 1∕2 as mentioned in Kiltz and Rudolph (2013) or Kiltz
(2017, Sec. 3.3.3). Because of the sampling in combination with the
logarithmic scale of the plot these zeros are not correctly displayed in
Fig. 5. Nevertheless, this property can be used to design filters that
have the same effect as a notch filter. Unfortunately, in this case, it
is not suitable to use this effect for the dominant mechanical resonance
frequency. The reason for this is the large window length 𝑇 resulting
in a computational burden that is too high for the computational
capabilities of the hardware used. Therefore, a conventional notch filter
will later be used to suppress this frequency.

The available computation time of the real-time hardware used is
limited. Therefore, some parameter combinations, e.g. 𝜔c = 540 rad∕s
and 𝛼 = 𝛽 = 8, required large filter window lengths which are not
realisable since the computation time becomes too large. The parameter
range covered is depicted in Fig. 6 . Green and red squares are marking
the parameter combinations resulting in a stable and unstable closed-
loop behaviour, respectively. Parameter combinations marked with a
black square are unrealisable with the hardware used. It is noticeable
that Fig. 6 shows some kind of pattern for a stable and realisable
combination. Nevertheless, the discretisation error is not the reason for
this pattern, because it mainly effects combinations with 𝛼 = 𝛽 ∈ {2, 3}.
The origin of this phenomenon is still up to further investigation.

For the following experiments, the parametrisation 𝛼 = 𝛽 = 4 and
𝜔c = 840 rad∕s is chosen, because according to Fig. 4, this combination
has resulted in the smallest RMS values.

With 𝛾𝑣, 𝑘p, and 𝑘d, the MFC law (14) has three parameters that
have to be chosen. As discussed in Remark 4, the model (6) suggests
𝛾𝑣 = 1, which leaves only two parameters to vary. Fig. 7 shows a
parameter sweep in the 𝑘p-𝑘d-plane carried out on the test bed. Every
mark represents a unique parameter combination and an experiment
that was made. The maximal currents as well as the RMS values in
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Fig. 6. Visualisation of the different parameters 𝜔c ∈ {540, 640,… , 1440} rad/s and
𝛼 = 𝛽 ∈ {2, 3,… , 8} for the algebraic differentiators covered. Green and red squares
are marking the parameter combinations resulting in a stable and unstable closed-
loop behaviour, respectively. Parameter combinations marked with a black square are
unrealisable with the hardware used. (For interpretation of the references to colour in
this figure legend, the reader is referred to the web version of this article.)

Fig. 7. Results of the parameter sweep of the MFC from (14) with 𝛾𝑣 = 1, to determine
stable tracking behaviour. The red dot marks the parameter combination 𝑘p = 5000 s−2

and 𝑘d = 195 s−1 used for further experiments. (For interpretation of the references to
colour in this figure legend, the reader is referred to the web version of this article.)

dB of each error 𝑒𝑘, 𝑘 ∈ {1, 2, 3} are shown. In the region marked with
A the RMS values are high and the maximal current is not exceeding
4.2 A, which is not enough to even lift the plate, whereas region C
shows the maximum current of 8 A and also high RMS values. For
parameter combinations in this region the feedback is not resulting
in a stable closed-loop behaviour. Between these two areas, in the
region marked with B, the combinations result in low error values and
a medium current. There, the closed loop is stable and a local optimum
of the RMS values can be found. For the experiments in region D, the
maximal current is low but the RMS values are high. This is because the
aforementioned safety routine has been activated and the experiment
was aborted. In this region the MFC cannot achieve a stable closed loop.

For further experiments the choice 𝑘p = 5000 s−2 and 𝑘d = 195 s−1 is
made, because according to Fig. 7 (see the red dot) this combination is
near a minimum of all three RMS values.

Fig. 8. Parameter sweep of the input gains 𝛾𝑣, 𝛾𝐹 , 𝛾𝑢 and 𝛾𝑖 with fixed 𝑘p = 5000 s−2

and 𝑘d = 195 s−1 to validate the suggestions made by the mathematical model (1). The
blue square is marking the parameter used for further experiments. (For interpretation
of the references to colour in this figure legend, the reader is referred to the web
version of this article.)

Based on the model (1) and (2), several choices for the input
gains 𝛾𝑗 , 𝑗 ∈ {𝑣, 𝐹 , 𝑢, 𝑖} have been discussed in Section 3. Therefore,
the proposed algorithms are verified by performing experiments using
various parameter combinations. Fig. 8 shows that with a value of
𝛾𝑣 = 0.6 the lowest RMS value could be obtained. Nevertheless, 𝛾𝑣 = 1
is chosen to compare the results with the MBC algorithm. A value of
0.5 is resulting in an unstable closed loop. This shows that the choice
of the input gain has also an influence on the stability of the MFC.
According to (15) and the model parameters summarised in Table 2,
𝛾𝐹 = 0.84 kg−1 is a suitable choice. Unfortunately, this combination
is resulting in an unstable closed-loop behaviour on the test bed. This
observation might point to model errors. For that reason, 𝛾𝐹 = 1 kg−1.
As explained in Section 3.2.3, with the choice of 𝛾𝐹 = 1 kg−1 and the
parameter 𝜆−1∕2 = 250 As/(kgm3)

1
2 stemming from the identification of

the force model, 𝛾𝑢 =1.6−5 m3∕(A2s2). Again Fig. 8 shows that with a
value of 1.4−5 m3∕(A2s2) a better result can be obtained, but for the
sake of comparison this value is not chosen. For the MFC law (21) the
input gain is set to 𝛾𝑖,0 = 40 m∕(As2). This choice is made only according
to Fig. 8, because no model information can be used in this case.

For the MFC algorithms (17), (19), and (21) the free parameter is
set to 𝐹d,4 =

1
2 (𝐹2 + 𝐹3) and similarly for 𝑢 and 𝑖.

4.2. Implementation of the MBC

The goal of the following section is to tune the MBC in such a
way that it is suitable for a fair comparison with the proposed MFC
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Table 2
Parameters of the model (1) used for the MBC.

Param. Value Param. Value

𝐽𝑥 5.13 ⋅ 10−2 kgm2 𝑚 4.69 kg
𝐽𝑦 8.19 ⋅ 10−2 kgm2 𝑔 9.81m∕s2

𝑙𝑑𝑥 135mm 𝑙𝑓𝑥 182.5mm
𝑙𝑑𝑦 144mm 𝑙𝑓𝑦 117mm

algorithms. Table 2 summarises the model parameters required by the
MBC law in (7), (11), and (12). The gains 𝑐P = 5000 s−2 and 𝑐D = 195 s−1

of the MBC are chosen such that they match the parameters 𝑘p and
𝑘d of the MFC. The control law is implemented in a quasi-continuous
manner, which means that the control inputs are sampled and held.

The observer gain 𝒍 is chosen such that the eigenvalues of the
error dynamics are at 820 s−1, 840 s−1, and 860 s−1. With this choice the
cutoff frequency of transfer functions, 𝜔 ↦ ̂𝑘

 (j𝜔), 𝑘 ∈ {1, 2, 3}, from
the measurement 𝑦 to the estimate �̂�𝑘, 𝑘 ∈ {1, 2, 3} of the observer
(10) is also around 840 rad∕s. Furthermore, a notch filter, as described
in Tietze et al. (2008, Sec. 13.8), is used to eliminate the dominant
mechanical resonance frequency 942 rad/s of the plate corrupting the
position measurement.

Comparing the amplitude spectrum of the transfer functions of the
observer and the algebraic differentiators combined with the notch
filter in Fig. 9, called ̄̂𝑘

 (j𝜔), 𝑘 ∈ {1, 2, 3} and ̂ (𝑛)

 (j𝜔), 𝑛 ∈ {0, 1, 2},
respectively, shows similar results up to the cutoff frequency 𝜔c. For
higher frequencies, according to Othmane et al. (2022, Sec. 4.2.2), the
algebraic differentiators have a stopband slope of 20(𝜇 − 𝑛) dB with
𝜇 = 1 + min{𝛼, 𝛽} for the 𝑛-th order derivative, which would result,
according to Fig. 9, in an unfair comparison of MBC and MFC. For this
reason, additional low-pass filters are added to the estimations of the
observer, to match the stopband slope of the algebraic differentiator.
The resulting transfer functions of the observer, the low-pass, and the
notch filter are denoted by ̃̂𝑘

 (j𝜔), 𝑘 ∈ {1, 2, 3}.
A block diagram in Fig. 10 illustrates the estimation algorithms

used. The observer (10), the notch filter, and the low-pass filters are
discretised using Tustin’s method with frequency prewarp of their
respective cutoff frequency, resulting in a sharp drop of the transfer
function near the Nyquist frequency 𝜔N = 𝜋

𝑡s
≈ 1.0 ⋅ 105 Hz in Fig. 9 (see

also Oppenheim & Schafer, 1975, Sec. 5.1.3).
As mentioned before, the computational burden differs in the pro-

posed algorithms. The MBC takes approximately 11.6% of the con-
troller cycle, whereas the MFC law (14) with 𝑁 = 0, 𝛼 = 𝛽 = 4 and
𝜔c = 840 rad∕s takes 49.7% of the cycle. The reason for this is the
evaluation of several discrete convolutions, needed for the estimation.
Nonetheless, a more efficient implementation of the MFC might be
possible, but is out of the scope of this paper.

4.3. Trajectory tracking

In the following, the capabilities of the different algorithms de-
signed in Section 3 are compared for different trajectory tracking
scenarios.

4.3.1. Vertical motion
This experiment uses the same set point transition as described

in Section 4.1 for the parametrisation of the algebraic differentiator.
Fig. 11 shows the measured position 𝑦1 in green and the reference
trajectory 𝑦r,1 in red when the MFC law (14) is used. Interestingly,
the green graph is ahead of the reference, which will be clear by look-
ing at the error 𝑒1(𝑡) = 𝑦1(𝑡) − 𝑦r,1(𝑡). According to the discrete control
law (25) the filtered measurement �̂�1(𝑡) is used to calculate the error
𝑒1(𝑡) = �̂�1(𝑡) − 𝑦r,1(𝑡). The reason of being ahead of the reference is the
known delay 𝛿𝑡 of the algebraic differentiator and the suggested choice
to only filter the measured signals and not the errors as in Scherer
et al. (2023). This results in a prediction of the reference signal and

Fig. 9. Comparison of the amplitude spectra of the observer in combination with a
notch filter 𝜔 ↦

|

|

|

|

̄̂𝑘
 (j𝜔)

|

|

|

|

, 𝑘 ∈ {1, 2, 3}, the same combination extended with additional

low-pass filters according to Fig. 10 𝜔 ↦ |

|

|

̂ (𝑛)

 (j𝜔)||
|

, 𝑛 ∈ {0, 1, 2}, and the algebraic

differentiators with the notch filter 𝜔 ↦
|

|

|

|

̃̂𝑘
 (j𝜔)

|

|

|

|

, 𝑘 ∈ {1, 2, 3}.

the behaviour seen in Fig. 11, because the delay 𝛿𝑡 of the algebraic
differentiator is known and independent of the filtered signal. This
effect can be compensated by also delaying the reference signal, which
results in the blue graph marked with �̄�1(𝑡) matching the dashed refer-
ence. By also delaying the reference by 𝛿𝑡, the error 𝑒1(𝑡) = �̄�1(𝑡) − 𝑦r,1(𝑡)
shows the same course as 𝑒1(𝑡) up to more disturbances on �̄�1(𝑡). The
MBC is showing the same behaviour, because of the additional filters,
but in this case the delay is unknown. Therefore, knowing exactly the
signal independent delay of the algebraic differentiator is a significant
advantage compared to a conventional low-pass filter.

In further experiments the RMS values of 𝑒𝑘, 𝑘 ∈ {1, 2, 3}, are used
for a fair comparison of the algorithms, because 𝑒𝑘, 𝑘 ∈ {1, 2, 3}, are
the errors the corresponding controller can react on. The values are
summarised in Table 3 and marked with different colours. The MBC
is seen as a benchmark, therefore, the values of this algorithm are
given in black. If an algorithm can achieve a smaller RMS value, it
is marked with green, otherwise with red. For the MBC and the MFC
law (14) the experiment was repeated ten times, to calculate the mean
value as well as the standard deviation of the RMS values. For both
algorithms and all sensors, the standard deviation was smaller than
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Fig. 10. Diagrams of the proposed estimation algorithms. (a) model based disturbance
observer with additional low-pass and notch filters to ensure a fair comparison between
the MBC and MFC, (b) estimation using algebraic differentiators and a notch filter for
the proposed MFC.

30 nm, which is negligible in view of the resolution of the sensors.
Therefore, only one experiment is performed and the resulting RMS
values are compared. Table 3 reveals that the proposed MFC algorithms
(14), (17), and (19) are outperforming the MBC. The RMS values of
the errors obtained with the MFC control law (14) are approximately
half as high as those observed with the MBC approach. It is also
noticeable that in general using less model information results in higher
RMS of the errors. Nonetheless, the control laws (17) and (19), with
exception of the error in 𝑦3, are still showing better results than the
MBC. Only the MFC of the current (21) shows errors the RMS values
of which are approximately five times higher than those with the other
algorithms. This can be explained by the amount of model information
used. Instead of the air gaps, the sensor values are used to calculate
the input gains 𝛾𝑖,𝑘, 𝑘 ∈ {1, 2, 3}. Moreover, a linear current model is
assumed for the nonlinear behaviour of the magnets. Nevertheless, with
this algorithm steady state accuracy is guaranteed.

4.3.2. Tilting of the plate
At the start of a tilting experiment, the plate hovers horizontally at

a position of 2 mm. After that, three individual reference trajectories,
with different transition times marked with dashed vertical lines, are
planned as depicted in the first row of Fig. 12. The MBC and MFC
law (14) use the pseudo inverse 𝐵† to decouple the three points where
the sensors are located. This model-based method is in contrast to
the remaining MFC algorithms that have to realise the decoupling by
the estimate of the disturbance 𝑓 . The reason for this is that these
algorithms are based on three ultra-local models that are only implicitly
coupled by the disturbance 𝑓 , as discussed in Section 3. Fig. 12 shows
the results of tilting the plate using the MFC law (17). The second row

Fig. 11. Results for the trajectory tracking of MFC law (14), to show the effect of the
known delay 𝛿𝑡 introduced by the algebraic differentiator and how to compensate it.

of this figure shows the errors 𝑒𝑘(𝑡), 𝑒𝑘(𝑡), 𝑘 ∈ {1, 2, 3}, and the third row
the estimates 𝑓𝐹 ,𝑘(𝑡), 𝑘 ∈ {1, 2, 3}. Especially the plots of 𝑒2(𝑡) and 𝑓𝐹 ,2(𝑡)
are displaying the decoupling of the MFC. The transition of 𝑦2(𝑡) is
completed after 0.25 s, resulting in an error oscillating around zero and
an estimation of the disturbance of approximately 13m∕s2. Nonetheless,
after 0.5 s the transition of 𝑦3(𝑡) is completed as well and the estimate
𝑓𝐹 ,2(𝑡) starts converging to 14m∕s2, even though, the error 𝑒2(𝑡) still
oscillates around zero. This example demonstrates that the MFC ensures
the decoupling.

The RMS values in Table 3 show similar results as the vertical
movement of the plate. The MFC law (14) is almost twice as accurate
as the MBC and the algorithms (17) and (19) can obtain better results,
except for 𝑦3(𝑡). Again the MFC law (21) cannot achieve results that are
as good as the other MFC laws. Nevertheless, the experiments show that
a combination of the MFC with additional model information can lead
to excellent results and outperform the MBC.

4.4. Robustness against sensor and actuator faults

The robustness with respect to actuator and sensors faults of the
algorithms from Section 3 shall now be investigated. Therefore, the
plate hovers horizontally at a position of 2 mm for each experiment.

4.4.1. Abrupt constant and multiplicative actuator fault
To investigate the robustness against abrupt actuator faults, these

faults are modelled using the shifted Heaviside step function

𝜃(𝑡, 𝜏) =

{

0, 𝑡 < 𝜏,
1, 𝜏 ≤ 𝑡.

(26)

For the abrupt fault at time 𝜏 the current 𝛥𝑖1(𝑡, 𝜏) = 𝐾𝑖𝜃(𝑡, 𝜏) is added to
𝑖1(𝑡), whereas 𝐾𝑖 = 400mA, which corresponds to 5% of the maximal
current. To simulate a multiplicative fault, the current 𝑖1(𝑡) is changed
to (1 + �̄�𝑖𝜃(𝑡, 𝜏))𝑖1(𝑡), with �̄�𝑖 = 0.4.

Fig. 13 shows the results of the abrupt constant actuator fault
over time for the proposed algorithms. All have in common that after
approximately 150 ms the measured values are back at the reference of
2 mm, which is the result of the same parametrisation of the controllers.
The direct comparison in Table 3 shows that the quality gauge of
the MFC law (14) is almost half as high compared to that of the
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Fig. 12. Experimental results for the tilting of the plate with MFC law (17). The graphs show that the proposed MFC is capable of decoupling the three ultra-local models.

MBC. Additionally the minimal error of min(𝑒1(𝑡)) = −114.1 μm is
significantly smaller than the value of min(𝑒1(𝑡)) = −184.1 μm for the
MBC. This behaviour can be seen for all MFC algorithms, but for the
remaining algorithms (17), (19) and (21) a decaying oscillation around
the position 2 mm can be observed, which cannot be observed for the
MBC and MFC law (14). Probably the reason for this is the choice of
parameter 𝐹d,4 and similarly for 𝑢 and 𝑖, because the reaction to the
disturbance resulting form the abrupt error is not distributed equally on
all four magnets, as depicted in Fig. 14. The estimate of the disturbance
for the MFC law (17) is shown with solid lines. For 𝑓𝐹 ,1 the reaction
to the fault is immediate and can be compared to the reaction of the
MBC depicted in the blue dashed line. The estimates 𝑓𝐹 ,2 and 𝑓𝐹 ,3 on
the other hand are oscillating around 14.3m∕s2 and 15m∕s2, the values
that they converge to, after the motion of the plate has stabilised after
approximately 150 ms. The reaction of the MBC is different, because the
control input 𝒗 is split evenly to all magnets using the pseudo inverse
𝐵†. After the fault occurs, all estimates converge to lower values. This
shows that in this case the implicit decoupling of the MFC algorithms
(17), (19), and (21) is resulting in a different transient behaviour,
whereas the MFC law (21) again provides results that are not as good
compared to the other MFC algorithms.

According to Table 3, similar behaviour can be seen as for the
abrupt actuator fault. Interestingly, the results from MFC law (17) show
higher RMS values than the algorithm using the input 𝑢. This is because
the plate started oscillating after the stabilisation. The reason for this
behaviour is unknown.

4.4.2. Abrupt sensor fault
To simulate an abrupt sensor fault, the Heaviside step function

(26) is used again. An error in the sensor value 𝑦1 is modelled as
𝛥𝑦1(𝑡, 𝜏) = 𝐾𝑦𝜃(𝑡, 𝜏) with 𝐾𝑦 = 0.2mm, which corresponds to 10% of
the current sensor value. With this change, the sensor value becomes
𝑦1(𝑡) + 𝛥𝑦1(𝑡, 𝜏). The results of this experiment in Table 3 show that
the MFC cannot outperform the MBC. Comparing the estimate of the
disturbance 𝑓𝑣,1(𝑡) with �̂�1(𝑡) + 𝑔 in Fig. 15 shows that the peaks of
𝑓𝑣,1(𝑡) are almost twice as high. This results from the additional low-
pass filters depicted in Fig. 10, which will be clear by comparing
the responses to a unit step in Fig. 15. There, the step responses of
−𝜔2{�̈�}(j𝜔) and ̂3

 (j𝜔) show almost the same maximum values, but
adding the notch and low-pass filters changes the peaks of ̃̂3

 (j𝜔) to
approximately half of the values of ̂ (2)

 (j𝜔), which makes the MBC
less sensitive to abrupt changes in the sensor value.

Fig. 13. Response of the different proposed controllers to an abrupt constant actuator
fault. The MFC approaches show a high robustness against these faults.

5. Conclusion and future work

In this paper, a systematic tuning approach of a MFC algorithm for
an unstable MIMO system that can be approximated by three implicitly
coupled second-order differential equations is investigated. Numerous
experiments carried out on a test bed show the capabilities of the MFC
approaches combined with physically motivated model knowledge. The
experiments show that the proposed algorithms can achieve a high level
of robustness with respect to actuator faults and much better results if
they are coupled with model information.

It could be seen that the MFC needs more computational power
compared to the model based approach, because multiple convolutions
have to be carried out. This has limited the choice of the cutoff
frequency 𝜔c and the parameters 𝛼 = 𝛽 of the algebraic differentiators.
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Table 3
Summary of the experimental results with the RMS values of 𝑒𝑘 , 𝑘 ∈ {1, 2, 3} as a quality gauge. The values of the
MBC are seen as a benchmark and therefore depicted in black. If an algorithm can achieve lower RMS values it is
marked in green, otherwise in red.

Experiment Sensor MBC MFC, 𝑣 MFC, 𝐹 MFC, 𝑢 MFC, 𝑖

Horizontal movement 𝑦1 8.1 μm 5.1 μm 6.0 μm 6.6 μm 31.4 μm
𝑦2 11.7 μm 6.2 μm 7.8 μm 8.6 μm 31.4 μm
𝑦3 7.5 μm 4.2 μm 6.5 μm 8.8 μm 31.0 μm

Tilting the plate 𝑦1 6.2 μm 3.6 μm 4.6 μm 4.5 μm 24.6 μm
𝑦2 4.7 μm 2.3 μm 3.8 μm 4.0 μm 15.9 μm
𝑦3 3.4 μm 1.8 μm 3.8 μm 5.0 μm 19.9 μm

Abrupt actuator faults, 𝑖1 𝑦1 37.2 μm 20.1 μm 22.3 μm 23.8 μm 29.9 μm
𝑦2 6.5 μm 3.6 μm 5.0 μm 6.3 μm 10.9 μm
𝑦3 10.7 μm 5.6 μm 5.3 μm 6.7 μm 16.8 μm

Multiplicative actuator fault, 𝑖1 𝑦1 46.4 μm 27.2 μm 42.8 μm 29.4 μm 35.3 μm
𝑦2 8.6 μm 4.9 μm 7.7 μm 6.3 μm 12.0 μm
𝑦3 13.5 μm 7.2 μm 11.3 μm 6.9 μm 18.6 μm

Abrupt Sensor fault, 𝑦1 𝑦1 41.9 μm 56.4 μm 45.8 μm 17.0 μm 46.1 μm
𝑦2 10.6 μm 8.8 μm 21.0 μm 14.6 μm 28.6 μm
𝑦3 10.4 μm 5.7 μm 24.9 μm 19.2 μm 50.3 μm

Fig. 14. Estimation of the disturbance of MFC laws (14) and (17) caused by an abrupt
constant actuator fault. The plot illustrates the different decoupling strategies used, on
the one hand the pseudo inverse 𝐵† and on the other hand 𝐹d,4 =

1
2
(𝐹2 + 𝐹3).

Fig. 15. Estimation of the disturbance of MBC and MFC law (14) for an abrupt sensor
fault and the responses of several filters to a unit step starting at 𝑡 = 2ms. The reaction
of the MBC is less dominant compared to the MFC.

As stated before, a more efficient implementation of the convolution
integrals of the MFC is possible, e.g. by using dedicated signal proces-
sors. However, this is out of the scope of the present paper. Nonetheless,
using the differentiators has shown to be beneficial, because this signal
based approach does not rely on a model of the system to estimate
unknown quantities, compared to a classical observer based approach.
However, this comes with the price that results of the estimates of the
disturbance 𝑓 are harder to interpret, if no mathematical model of the
system is available. To realise a fair comparison of the proposed MBC
and the MFC law (14), additional low-pass filters are added to the
disturbance observer, to match the filter order of the used algebraic
differentiators.

Future work should investigate why some parameter combinations
of the algebraic differentiator are resulting in an unstable closed-loop
system, or respectively what the parameter combinations resulting in
a stable closed loop have in common. Further, the estimation delay
should explicitly be taken into account during the controller design.
Additionally, a systematic tuning approach without parameter sweeps
that are carried out on the test bed would be beneficial. Similarly, ap-
proximations with higher order systems are still open for investigation.
This also goes along with the estimation of higher order derivatives,
which probably needs more computation time, a problem that has to
be tackled as must be the discretisation of the algebraic differentiators.
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Appendix A. Information about algebraic differentiators

In this section, useful background information on algebraic differ-
entiators, initially developed in Mboup et al. (2007, 2009) are recalled.
The interested reader is referred to Othmane et al. (2022) for an
overview on this topic and Szegö (1939) for the discussion and analyses
of the required orthogonal polynomials.

In the sequel 𝛤 denotes the gamma function and

𝑤(𝛼,𝛽)(𝜏) =

{

(1 − 𝜏)𝛼(1 + 𝜏)𝛽 , 𝜏 ∈ [−1, 1],
0, otherwise,

with real scalar parameters 𝛼, 𝛽 > −1, is the weight function associated
with the orthogonal Jacobi polynomial of degree 𝑁 ∈ N defined as

𝑃 (𝛼,𝛽)
𝑁 (𝜏) =

𝑁
∑

𝑘=0

(

𝑁
𝑘

)

𝑐(𝛼,𝛽)𝑘 (𝜏 − 1)𝑘,

𝑐(𝛼,𝛽)𝑘 =
𝛤 (𝛼 +𝑁 + 1)𝛤 (𝛼 + 𝛽 +𝑁 + 𝑘 + 1)
2𝑘𝑁!𝛤 (𝛼 + 𝛽 +𝑁 + 1)𝛤 (𝛼 + 𝑘 + 1)

.

Denote by 𝑥(𝑛) the 𝑛-th order derivative of a function 𝑥, where
𝑥(0) denotes the function 𝑥 itself. Assume for an arbitrary 𝑛 that 𝑥(𝑛)

is square Lebesgue integrable and let 𝛼, 𝛽 ∈ R be arbitrary such
that min(𝛼, 𝛽) > 𝑛 − 1. Then, 𝑥(𝑛) can be approximated by a 𝑁-th order
truncated generalised Fourier expansion as

�̂�(𝑛)(𝑡) = ∫

𝑡

𝑡−𝑇
𝑔(𝑛)(𝑡 − 𝜏)𝑥(𝜏)d𝜏, 𝑔(𝜏) = 𝑔(𝛼,𝛽)𝑁,𝑇 ,𝜗(𝜏) (A.1)

with the kernel

𝑔(𝜏) =

⎧

⎪

⎨

⎪

⎩

2𝑤(𝛼,𝛽)(𝜈(𝜏))
𝑇

∑𝑁
𝑗=0

𝑃 (𝛼,𝛽)
𝑗 (𝜗)

‖

‖

‖

𝑃 (𝛼,𝛽)
𝑗

‖

‖

‖

2 𝑃
(𝛼,𝛽)
𝑗 (𝜈(𝜏)), 𝜏 ∈ [0, 𝑇 ],

0, otherwise,

depending on 𝜗 parametrising the approximation delay and
𝜈(𝜏) = 1 − 2𝜏∕𝑇 , where ‖𝑧‖ =

√

⟨𝑧, 𝑧⟩ is the norm induced by the inner
product

⟨𝑧, 𝑦⟩ = ∫

1

−1
𝑤(𝛼,𝛽)(𝜏)𝑧(𝜏)𝑦(𝜏)d𝜏.

All calculations are based on the sliding time window [𝑡−𝑇 , 𝑡], where 𝑇
describes the filter window length, associated with the cutoff frequency
𝜔c, as discussed in Kiltz and Rudolph (2013). As first pointed out
in Mboup et al. (2009), the estimate is delayed by a small but known
delay given as

𝛿𝑡 =

{ 𝛼+1
𝛼+𝛽+2𝑇 , 𝑁 = 0,
1−𝜗
2 𝑇 , 𝑁 ≠ 0.

A delay-free estimation is possible by choosing 𝑁 > 0 and 𝜗 = 1. How-
ever, accepting a delay increases the accuracy of the approximation and
yields desirable frequency-domain properties (see Mboup et al., 2009;
Mboup & Riachy, 2014, 2018 and Othmane et al., 2022).

The estimate of �̂�(𝑛) can be interpreted as the output of a finite
impulse response (FIR) filter driven by the input 𝑥. The kernel 𝑔(𝛼,𝛽)𝑁,𝑇 ,𝜗
has also a system theoretic interpretation. As shown for example in Kiltz
(2017) or Othmane et al. (2022) and used in Section 4.1, 𝑔(𝛼,𝛽)𝑁,𝑇 ,𝜗 can be
interpreted as a low-pass filter driven by the sought derivative 𝑥(𝑛) and
with cutoff frequency 𝜔c. This interpretation makes the filter design
more intuitive.

All considerations so far were done in a continuous time setting.
Nonetheless, for the implementation of the algorithms suggested in
this contribution, a discrete-time realisation of the estimators is re-
quired. Therefore, the integral (A.1) has to be discretised using an
appropriate quadrature method. For that, equidistant sampling with 𝑡s
is considered. This results in a filter window of length 𝑇 that is of an
integral multiple of the sampling time 𝑡s, i.e. 𝑇 = 𝑛s𝑡s. The abbreviation
𝑥[𝑘] = 𝑥(𝑘𝑡s), 𝑘 ∈ N is used for 𝑥 evaluated at the time 𝑘𝑡s. With this
notation, the convolution (A.1) can be approximated with

�̂�(𝑛)[𝑘 + 𝜃] = 1
𝛷

𝐿−1
∑

𝑗=0
𝑤𝑛[𝑗]𝑥[𝑘 − 𝑗], 𝛷 =

𝑡𝑛s
𝑛!

𝐿−1
∑

𝑗=0
𝑤𝑛[𝑗](−𝑗)𝑛,

where the parameters 𝜃, 𝐿, and 𝑤𝑛[𝑗] depend on the numerical inte-
gration method used, as described in Othmane, Mounier, and Rudolph
(2021). For instance, for the mid-point rule 𝜃 = 1∕2, 𝐿 = 𝑛s, and
𝑤𝑛[𝑗] = 𝑡s𝑔(𝑛)[𝑗 + 1∕2]. The design and discretisation of the differentia-
tors are done using the open-source toolbox AlgDiff (see Othmane,
2022), which comes with detailed examples for a correct application
of the filters.

Appendix B. Derivation of the MFC

In the following, the MFC for a second order ultra-local model is
derived using the Laplace transformation and it is shown that it is a
special case of the considerations made in Section 3.3.

B.1. An algebraic point of view

Consider the second order ultra-local model

�̈�(𝑡) = 𝛾𝑢(𝑡) + 𝑓 (𝑡), (B.1)

with measurement 𝑦(𝑡), input 𝑢(𝑡), input gain 𝛾 ∈ R and piecewise
constant disturbance 𝑓 (𝑡). Applying the Laplace transform to (B.1)
under the assumption that 𝑓 (𝑡) is constant on the interval [0, 𝑇 ] yields

𝑠2𝑌 (𝑠) − �̇�(0) − 𝑠𝑦(0) = 𝛾𝑈 (𝑠) + 1
𝑠
𝐹 (B.2)

with 𝑌 (𝑠), 𝑈 (𝑠) and 𝐹 the Laplace transform of 𝑦(𝑡), 𝑢(𝑡) and 𝑓 (𝑡), respec-
tively, and the initial conditions 𝑦(0) and �̇�(0). To get rid of the initial
conditions, (B.2) is differentiated twice with respect to 𝑠 yielding

2𝑌 (𝑠) + 4𝑠d𝑌
d𝑠

(𝑠) + 𝑠2 d
2𝑌
d𝑠2

(𝑠) = 𝛾 d
2𝑈
d𝑠2

(𝑠) + 2
𝑠3

𝐹 . (B.3)

In the latter equation the expressions 𝑠2 d2𝑌
d𝑠2 (𝑠) and 4𝑠 d𝑌d𝑠 (𝑠) are hindering

an implementation. Therefore, (B.3) is multiplied by 𝑠−2 and again by
𝑠−1 to remove differentiation in the time domain and increase the noise
attenuation, respectively, which results in

2
𝑠3

𝑌 (𝑠) + 4
𝑠2

d𝑌
d𝑠

(𝑠) + 1
𝑠
d2𝑌
d𝑠2

(𝑠) = 𝛾 1
𝑠3

d2𝑈
d𝑠2

(𝑠) + 2
𝑠6

𝐹 . (B.4)

With this, only integrals of measured signals occur when the expres-
sions are transformed back into the time domain, which will be the
next step. Therefore, the following inverse transformations

d𝑛
d𝑠𝑛

𝑋(𝑠) r b (−𝑡)𝑛𝑥(𝑡) (B.5a)

1
𝑠𝑛

r b 𝑡𝑛−1

(𝑛 − 1)!
(B.5b)

𝑋(𝑠)
𝑠

r b
∫

𝑡

0
𝑥(𝜎)d𝜎. (B.5c)

are used (see e.g. in the appendix of Doetsch, 1974). Applying them
to (B.4) and rearranging the expressions yields

2𝑡5
5!

𝑓 = 2∫

𝑡

0 ∫

𝜎1

0 ∫

𝜎2

0
𝑦(𝜏)d𝜏d𝜎1d𝜎2

− 4∫

𝑡

0 ∫

𝜎1

0
𝜏𝑦(𝜏)d𝜏d𝜎1 + ∫

𝑡

0
𝜏2𝑦(𝜏)d𝜏

− 𝛾 ∫

𝑡

0 ∫

𝜎1

0 ∫

𝜎2

0
𝜏2𝑢(𝜏)d𝜏d𝜎1d𝜎2.

Now the Cauchy-formula for repeated integration (see e.g. Chapter
11 in Doetsch (1974)) can be used to simplify the expression for 𝑓 ,
resulting in
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𝑓 = 5!
2𝑡5 ∫

𝑡

0

[

(𝑡 − 𝜏)2 − 4(𝑡 − 𝜏)𝜏 + 𝜏2
]

𝑦(𝜏) −
𝛾
2
(𝑡 − 𝜏)2𝜏2𝑢(𝜏)d𝜏.

Considering only the interval [0, 𝑇 ] instead of [0, 𝑡] and further simpli-
fying the equation yields

𝑓 = 5!
2𝑇 5 ∫

𝑇

0

(

𝑇 2 − 6𝑇 𝜏 + 6𝜏2
)

𝑦(𝜏) −
𝛾
2
(𝑇 − 𝜏)2𝜏2𝑢(𝜏)d𝜏.

A moving time window [𝑡 − 𝑇 − 𝜀, 𝑡 − 𝜀], 𝜀 > 0 can be introduced by
evaluating the signals 𝑦 and 𝑢 at 𝜎 + 𝑡 − 𝑇 − 𝜀 instead of 𝜎. With this
change, the expression

𝑓 (𝑡) = 5!
2𝑇 5 ∫

𝑇

0

(

𝑇 2 − 6𝑇𝜎 + 6𝜎2
)

𝑦(𝜎 + 𝑡 − 𝑇 − 𝜀)

−
𝛾
2
(𝑇 − 𝜎)2𝜎2𝑢(𝜎 + 𝑡 − 𝑇 − 𝜀)d𝜎

is now a function of time. Thereafter, the substitution 𝜏 = 𝜎 + 𝑡 − 𝑇 − 𝜀
leads to

𝑓 (𝑡) = 5!
2𝑇 5 ∫

𝑡−𝜀

𝑡−𝑇−𝜀

(

𝑇 2 − 6𝑇 (𝑡 − 𝜏 − 𝜀) + 6(𝑡 − 𝜏 − 𝜀)2
)

𝑦(𝜏)

−
𝛾
2
(𝑡 − 𝜏 − 𝜀)2(𝑇 − (𝑡 − 𝜏 − 𝜀))2𝑢(𝜏)d𝜏. (B.6)

This expression for the estimation of 𝑓 is slightly different from that
commonly used in the literature (e.g. Bekcheva et al., 2018 or Barth
et al., 2020) in the sense that the current time 𝑡 appears in the filter
kernel and the parameter 𝜀 is explicitly considered.

B.2. A system theoretic point of view

The estimation of 𝑓 (𝑡) according to the ultra-local model (B.1) reads

𝑓 (𝑡) = ∫

𝑡−𝜀

𝑡−𝑇−𝜀
𝑔(𝑡 − 𝜏 − 𝜀)𝑓 (𝜏)d𝜏, 𝜀 > 0, (B.7a)

= ∫

𝑡−𝜀

𝑡−𝑇−𝜀
�̈�(𝑡 − 𝜏 − 𝜀)𝑦(𝜏) − 𝛾𝑔(𝑡 − 𝜏 − 𝜀)𝑢(𝜏)d𝜏 (B.7b)

with 𝑔 = 𝑔(𝛼,𝛽)𝑁,𝑇 ,𝜗 denoting the kernel of the algebraic differentiator
presented in Appendix A. Now consider the special parametrisation
𝑁 = 0, which leads to the kernel

𝑔(𝛼,𝛽)0,𝑇 ,𝜗(𝜏) =

{ (𝛼+𝛽+1)!
𝛼!𝛽!𝑇 𝛼+𝛽+1 𝜏𝛼(𝑇 − 𝜏)𝛽 , 𝜏 ∈ [0, 𝑇 ],

0, otherwise.
(B.8)

If the parameters 𝛼 = 𝛽 = 2 are chosen, the kernel (B.8) further
simplifies to

𝑔(2,2)0,𝑇 ,𝜗(𝜏) = �̄�(𝜏) =

{

1
2

5!
2𝑇 5 𝜏2(𝑇 − 𝜏)2, 𝜏 ∈ [0, 𝑇 ],

0, otherwise.
(B.9)

Calculating the second derivative of �̄� with respect to 𝜏 leads to

d2�̄�
d𝜏2

(𝜏) =

{

5!
2𝑇 5 (6𝜏2 − 6𝑇 𝜏 + 𝑇 2), 𝜏 ∈ [0, 𝑇 ],
0, otherwise.

(B.10)

Using both (B.9) and (B.10) in (B.7) results in an expression that is
equivalent to (B.6). This shows, that the propositions made in this
paper are a generalisation of the ansatz that is commonly used in the
literature. As seen in Section 4 this generalisation is needed in some
cases to realise the MFC.

B.3. Validation of the derivation

To validate the calculations made in this section, consider the
differential equation

�̈�(𝑡) = 𝐹 , (B.11)

with 𝐹 ∈ R, the solution of which is 𝑦(𝑡) = 1
2𝐹 𝑡2. The relation (B.6) with

𝑢(𝑡) = 0 can now be used together with the solution of the differential
equation (B.11) to estimate the parameter 𝐹 resulting in

𝐹 (𝑡) = ∫

𝑡−𝜀

𝑡−𝑇−𝜀
̈̄𝑔(𝑡 − 𝜏)𝑦(𝜏)d𝜏

= 5!
2𝑇 5 ∫

𝑡−𝜀

𝑡−𝑇−𝜀

(

𝑇 2 − 6𝑇 (𝑡 − 𝜏 − 𝜀) + 6(𝑡 − 𝜏 − 𝜀)2
)

1
2𝐹𝜏2d𝜏

= 𝐹 .

The reason for this result lies in the approximation of the second order
derivative of 𝑦(𝑡) with a constant according to the choice of 𝑁 = 0. For
further theoretical analysis the degree of exactness introduced in Kiltz
(2017) can be considered (see also Othmane et al., 2022). The results
𝐹 = 𝐹 shows that the calculations made in this section are correct.
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Appendix A

Stability of particular linear
time-delay systems

In this appendix, the stability depending on the parameters of the considered TDSs is
analysed. Therefore, the required theorems and assumptions according to Silva et al.
(2000) are briefly restated with a slightly different notation.

In the following, linear TDSs with a characteristic equation of the form

0 = d(s) + exp(−sT1)n1(s) + exp(−sT2)n2(s) + · · · + exp(−sTm)nm(s),

are considered. To simplify the discussion of the latter equation, the so-called quasi-
polynomial

∆∗(s) = d(s) + exp(−sT1)n1(s) + exp(−sT2)n2(s) + · · · + exp(−sTm)nm(s), (A.1)

is introduced. The occurring functions s 7→ d(s) and s 7→ nj(s), j ∈ {1, 2, . . . , m}
are polynomials with real coefficients and the parameters Tj ∈ {1, 2, . . . , m} are delay
times. For (A.1) the following assumptions must hold in order to apply the generalised
Hermite-Biehler theorem (see, e.g. (Silva et al., 2005, Ch. 5)):

(A1) The degrees of the polynomials satisfy deg(d(s)) = n and deg(nj(s)) < n
for j ∈ {1, 2, . . . , m}, i.e. only retarded TDSs are considered.

(A2) The time delays obey 0 < T1 < T2 < · · · < Tm.

Consider the quasi-polynomial

∆(s) = exp(sTm)∆∗(s)
= exp(sTm)d(s) + exp(s(Tm − T1))n1(s) + exp(s(Tm − T2))n2(s) + · · · + nm(s),

(A.2)
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which has the same zeros as (A.1). Therefore, stability of (A.2) has to be checked,
which is done using the necessary and sufficient conditions stated in the following
theorems from Silva et al. (2000).

Theorem 1

Let ∆(s) be given by (A.2), and write

∆(jω) = ∆Re(ω) + j∆Im(ω) (A.3)

where ∆Re(ω) and ∆Im(ω) represent the real and imaginary parts of ∆(jω), re-
spectively. Under Assumptions (A1) and (A2), ∆ is asymptotically stable if and
only if

1. ∆Re and ∆Im have only simple real roots and these interlace and

2. E(ω0) = d∆Im
dω

(ω0)∆Re(ω0)−∆Im(ω0)d∆Re
dω

(ω0) > 0, for some ω0 in (−∞, ∞).

To apply Theorem 1, it has to be ensured that ∆Re and ∆Im have only real roots. A
possible way to do so is to use the following Theorem 2 from Silva et al. (2000).

Theorem 2

Let M and N denote the highest powers of s and exp(s) in ∆ from (A.3),
respectively. Let η be an appropriate constant such that the coefficients of terms
of highest degree in ∆Re(ω) and ∆Im(ω) do not vanish at ω = η. Then, for the
equations ∆Re(ω) = 0 or ∆Im(ω) = 0 to have only real roots, it is necessary and
sufficient that in the interval

−2lπ + η ≤ ω ≤ 2lπ + η

∆Re or ∆Im has exactly 4lN + M real roots starting with a sufficiently large l.

Remark A.1 In the following sections, the symbols such as ∆, ∆Re, ∆Im, or E, just
to name a few, are used multiple times but are only valid in the respective sections.

A.1 Simple first-order time-delay system

Consider the following retarded TDS (see, e.g. Fridman (2014, Sec. 1.2))

γΩ ėΩ(t) + kpρΩeΩ(t − δt) = 0,
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with the positive parameters kp, ρΩ, γΩ and δt, the quasi-polynomial of which is

∆∗(s) = γΩs + kpρΩ exp(−sδt).

The term ∆∗(s) meets the previously introduced Assumptions (A1) and (A2). There-
after, multiplying ∆∗(s) with exp(sδt) yields

∆(s) = exp(sδt)γΩs + kpρΩ, (A.4)

the asymptotic stability of which has to be checked by applying Theorem 1. Substi-
tuting s = jω in (A.4) and splitting into real and imaginary parts leads to

∆(jω) = ∆̃Re(ω) + j∆̃Im(ω)

with

∆̃Re(ω) = kpρΩ − γΩω sin(ωδt),
∆̃Im(ω) = ωγΩ cos(ωδt).

For symmetry reasons only ω > 0 has to be considered in the following. With the
substitution z = ωδt, the real and imaginary parts of ∆ are

∆Re(z) = kpρΩ − γΩ

δt

z sin(z)

and

∆Im(z) = γΩ

δt

z cos(z).

Afterwards, Condition 2

E (ω0) = d∆̃Im

dz
(ω0)∆̃Re(ω0) − d∆̃Re

dz
(ω0)∆̃Im(ω0) > 0

of Theorem 1 for arbitrary ω0 ∈ (−∞, ∞), can easily be checked by choosing ω0 = 0
which results in

E (ω0) = ρΩkpγΩ > 0,

fulfilling Condition 2. In a next step, Condition 1 of Theorem 1, the interlacing of the
roots of ∆Re and ∆Im has to be analysed. The roots of the imaginary part ∆Im(zj) = 0
can be calculated analytically as

zj =
0, j = 0,

π
2 + (j − 1)π, j > 0,
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with j ∈ N and ∆Im as only simple real roots. Hereafter, the real part ∆Re can be
evaluated at zj yielding

∆Re(z0) = ρΩkp > 0

∆Re(z1) = ρΩkp − π

2
γΩ

δt

∆Re(z2) = ρΩkp + 3π

2
γΩ

δt

> 0

∆Re(z3) = ρΩkp − 5π

2
γΩ

δt

...

∆Re(zj) =
ρΩkp, j = 0,

ρΩkp − (−1)j+1zj
γΩ

δt
, j > 0.

If the roots of ∆Im and ∆Re interlace, then ∆Re(z1), ∆Re(z3), ∆Re(z5), . . . are smaller
than zero, because ∆Re(z0) > 0. For the parameter kp the conditions

kp > 0

ρΩkp − z1
γΩ

δt

< 0

kp < z1
γΩ

ρΩδt

=: M1

ρΩkp + z2
γΩ

δt

> 0

kp > −z2
γΩ

ρΩδt

=: M2

ρΩkp − z3
γΩ

δt

< 0

kp < z3
γΩ

ρΩδt

=: M3

ρΩkp + z4
γΩ

δt

> 0

kp > −z4
γΩ

ρΩδt

=: M4

...

have to hold. As a consequence, zj < zi for j < i ∈ N and |Mj| < |Mi| for j < i ∈ N.
Now intersecting these conditions leads to

· · · < M4 < M2 < 0 < kp < M1 < M3 < . . .

and kp has to meet

0 < kp < M1 = π

2
γΩ

ρΩδt

as the smallest upper bound.
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A.2 Application of the results from
Silva et al. (2000)

In the following, the results from Silva et al. (2000) are presented using a different
notation based on the retarded TDS

ėΩ(t) + aeΩ(t) + b

γΩ

(kp − a) eΩ(t − δt) = 0,

according to (2.45), with the positive parameters a, b, δt and γΩ. The corresponding
quasi-polynomial reads

∆∗(s) = 1
a

s + 1 + b

aγΩ

(kp − a) exp(−sδt),

which can be multiplied with exp(sδt) yielding the expression

∆(s) = exp(sδt)
(1

a
s + 1

)
+ b

aγΩ

(kp − a) ,

the asymptotic stability of which can be analysed using the generalised Hermite-Biehler
theorem. The results from Silva et al. (2000) can be applied using the substitutions
and assumptions

L = δt > 0, T = 1
a

> 0, k = b

aγΩ

> 0, kc = kp − a,

which are yielding the limits of kc as

−1
k

< kc <
T

kL

√
z̃2 +

(
L

T

)2
,

where z̃ is the solution of

tan(z̃) = −T

L
z̃

in the interval [π/2, π]. The limits for the proportional gain kp are thus following as

kp,min = a − 1
k

and

kp,max = a + T

kL

√
z̃2 +

(
L

T

)2
.
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A.3 Neutral first-order time-delay system

In the following section, the calculations for Case 2: Considerations based on the math-
ematical model of the DC motor from Section 2.4.2 are restated, i.e. the approximation
(2.43a) is not considered. For that, the model of the motor regarding the angular
velocity

Ω̇(t) = η(t) − aΩ(t) + bu(t) (A.5)

is taken into account. According to (2.35), the corresponding MFC law reads

u(t) = 1
γΩ

(
Ω̇r(t) − f̂Ω(t) − kpêΩ(t)

)
, (A.6)

with the estimate of the unknown part

f̂Ω(t) = ˙̂
Ω(t) − γΩû(t). (A.7)

The quantity ˙̂
Ω(t) in (A.7) can be replaced by a filtered version of (A.5) yielding

f̂Ω(t) = η̂(t) − aΩ̂(t) + (b − γΩ)û(t). (A.8)

The experimental results depicted in Fig. A.1 can be used to validate (A.8) since this
figure shows the graphs of both sides of (A.8) over time under the assumption η̂(t) ≈ 0.
The parameter combinations used to generate these results are marked with red dots
on line (A) in Fig. 3.11. In Fig. A.1 (a) the effects from the assumption η̂(t) ≈ 0
and the uncertainty of the identified parameter b is clearly visible since both graphs
do not match exactly, especially for t > 3.3 s. However, this figure shows that the
approximation (2.43a) is justified for γΩ ≈ b. An increase in the value of γΩ leads
to a less distinct difference between both sides of (A.8) because the expression γΩû(t)
becomes more dominant (see Fig. A.1 (b) and (c)). To simplify the following discussion,
the dependence of the variable û(t) in (A.8) is eliminated by replacing it with a filtered
version of the input from (A.5) leading to

f̂Ω(t) = η̂(t) − aΩ̂(t) + b − γΩ

b

( ˙̂
Ω(t) + aΩ̂(t) − η̂(t)

)
. (A.9)

Remark A.2 It should be remarked that neither (A.8) nor (A.9) would be used for
the implementation of the feedback law (A.6) since they undermine the benefits of the
proposed MFC scheme by explicitly using a model of the considered system.

Inserting the MFC law (A.6) together with the estimate (A.9) into (A.5) yields

Ω̇(t) − γΩ − b

γΩ

˙̂
Ω(t) + aΩ(t) + b

γΩ

(
kpêΩ(t) − aΩ̂(t)

)
− (γΩ − b)a

γΩ

Ω̂(t) = b

γΩ

Ω̇r(t)

−
(

γΩ − b

γΩ

+ b

γΩ

)
η̂(t) + η(t). (A.10)
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Subtracting aΩr(t), −ba/γΩΩ̂r(t), Ω̇r(t), and −(γΩ − b)/γΩ
˙̂
Ωr(t) from both sides of

(A.10) leads to

ėΩ(t) − γΩ − b

γΩ

˙̂eΩ(t) + aeΩ(t) + b

γΩ

(kp − a) êΩ(t) − (γΩ − b)a
γΩ

êΩ(t) =

gΩ(Ωr(t), Ω̇r(t)) + qΩ(η(t))

with

gΩ(Ωr(t), Ω̇r(t)) =
(

b

γΩ

− 1
)

Ω̇r(t) + γΩ − b

γΩ

˙̂
Ωr(t) − aΩr(t) + ba

γΩ

Ω̂r(t)

qΩ(η(t)) = η(t) −
(

γΩ − b

γΩ

+ b

γΩ

)
η̂(t).

Assuming gΩ(Ωr(t), Ω̇r(t)) + qΩ(η(t)) ≈ 0 and neglecting the estimation error of the
algebraic differentiators as well as the effect of disturbances on the measurement yields

ėΩ(t) − γΩ − b

γΩ

ėΩ(t − δt) + aeΩ(t) + b

γΩ

(kp − a) eΩ(t − δt) − (γΩ − b)a
γΩ

eΩ(t − δt) ≈ 0,

(A.11)

which is a neutral TDS since the highest derivative of eΩ occurs delayed and undelayed
(see, e.g. Fridman (2014, Sec. 1.2)). The stability of (A.11) cannot be analysed us-
ing the generalised Hermite-Biehler theorem since the corresponding quasi-polynomial
does not satisfy Assumption (A1). Nonetheless, the numerical results depicted in
Fig. A.2 justify the approximation of the neutral TDS (A.11) with the retarded TDS
(2.45). In Fig. A.2 (a) and (b) the sign of the spectral abscissa (see, e.g. Appeltans
et al. (2022, Sec. 2)), i.e. the real part of the rightmost characteristic root, of the
quasi-polynomials of (2.45) and (A.11) are depicted. Yellow and dark blue mark a
positive and a negative spectral abscissa, respectively. The red lines are identical in
all subfigures and depict the results from (2.46), whereas the dashed line indicates the
minimum values of kp and the solid line its maximum values. The spectral abscissa is
obtained by the Matlab package TDS-CONTROL (see Appeltans et al. (2022) and
Appeltans and Michiels (2023)) by sampling the depicted parameter set and using the
provided functions tds_create, tds_create_neutral, and tds_roots which is called with
the region variable set to zero but no other options are set. Fig. A.2 (a) validates
the bound calculated by (2.46) except for a small number of parameter combinations.
Numerical errors during the calculation of the roots using tds_roots might be the
origin of this mismatch. Comparing Fig. A.2 (a) with (b) shows that for values of
γΩ ≪ b and b ≪ γΩ, i.e. the regions marked with (I) and (II), respectively, the ap-
proximation f̂Ω(t) ≈ −aΩ̂(t) is not valid, which matches the considerations made for
(A.8). Nonetheless, the approximation using the retarded TDS is justified because
Fig. A.2 (a) and (b) show qualitatively the same stability characteristics. In Fig. A.2
(c), experimental results from Section 3.5.1 are presented in a different way. Parameter
combinations leading to an activation of the safety routine are coloured yellow and a
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Fig. A.1: Validation of (A.8) for the parameter combinations marked with red dots on
line (A) in Fig. 3.11 under the assumption η̂(t) ≈ 0.

stable closed loop is coloured dark blue. The white circles again indicate parameter
combinations that are not generating a high enough voltage to overcome friction. In-
terestingly, the region marked with (I) in Fig. A.2 (b) can also be found in Fig. A.2
(c) but the region marked with (II) is non existing. This might be due to unmodelled
effects such as friction and backlash of the gearbox. Nonetheless, the experimental
data proves that the considerations made in Section 2.4.2 are valid.
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Fig. A.2: Comparison of the spectral abscissa of (2.45) in (a) and (A.11) in (b), obtained
by the Matlab package TDS-CONTROL. Yellow and dark blue mark a positive and a
negative spectral abscissa, respectively. Subfigure (c) presents the experimental results
from Section 3.5.1 in a different way. The red lines depict the results from (2.46),
whereas the dashed line indicates the minimum values of kp and the solid line its
maximum values.
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A.4 Simple second-order time-delay system

In the following, the asymptotic stability of the retarded TDS

γθëθ(t) + kdρθėθ(t − δt) + kpρθeθ(t − δt) = 0, (A.12)

with the positive parameters γθ, ρθ and δt is investigated. The quasi-polynomial of
(A.12) reads

∆∗(s) = γθs
2 + (kdρθs + kpρθ) exp(−sδt)

and multiplication with exp(sδt) yields

∆(s) = exp(sδt)γθs
2 + kdρθs + kpρθ.

Using the substitution s = jω and splitting ∆(jω) into real and imaginary parts leads
to

∆̃Re(ω) = ρθkp − γθω
2 cos(δtω)

∆̃Im(ω) = ω (ρθkd − γθω sin(δtω)) .

For further considerations, the substitution z = δtω is applied, yielding

∆Re(z) = ρθkp − γθ

δ2
t

z2 cos(z)

∆Im(z) = z

δt

(
ρθkd − γθ

δt

z sin(z)
)

.

In the next step, Condition 2 of Theorem 1 has to be checked, which is done using
ω0 = 0 as in Appendix A.1, leading to

E (ω0) = ρ2
θkdkp > 0,

which fulfils the condition of the theorem. The latter equation reveals that the param-
eters kd and kp are both either greater or smaller than zero. To test Condition 1 of
Theorem 1, the roots zj of ∆Im(zj) = 0 are calculated yielding

z0 = 0

and

ρθkd

sin(zj)
= γθ

δt

zj (A.13)

the latter of which has no analytical solution. In Fig. A.3 (a) a graphical representation
of (A.13) can be found for the case that 0 < kd < kd,max whereas kd,max is the largest
value of the parameter kd, such that (A.13) has two zeros in the interval (0, π). Fig. A.3
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Fig. A.3: Graphical representation of (A.13) for (a) 0 < kd < kd,max and (b) kd ≥ kd,max,
whereas kd,max marks the largest value such that (A.13) has two zeros in the interval
(0, π).

(b) shows the case that kd ≥ kd,max and (A.13) has no zeros in the interval (0, π). In
the following, if 0 < kd < kd,max, this is called Case 1, and if kd,max < kd Case 2.

Theorem 2 is used, to check whether ∆Im has solely real roots. In accordance with
the specified values of M = 2 and N = 1, η = π/4 is chosen, resulting in ∆Re(η) ̸= 0,
∆Im(η) ̸= 0. For Case 1, observing Fig. A.3 (c), one can easily verify that ∆Im has six
real roots in the interval [−2π + η, 2π + η], including a root at the origin, fulfilling the
conditions of Theorem 2 for l = 1. From Fig. A.3 c) it is also clear that ∆Im has two real
roots in the interval [2lπ + η, 2(l + 1)π + η] and [−2(l + 1)π + η, −2lπ + η], respectively.
Therefore, for Case 1, Theorem 2 is satisfied for any l > 0 which implies that ∆Im has
only real roots. For Case 2, Theorem 2 can be used together with the fact that ∆Im
has no roots within the interval [0, π] to demonstrate that ∆Im has not only real roots,
thus no stability can be achieved. Considering the latter findings, kd,max is the upper
bound for the parameter kd. This bound is reached if the graphs of ρθkd/ sin(zj) and
γθzj/δt are touching each other. This point is called z̃ and the condition is equivalent
to

d
dz

ρθkd

sin(z)

∣∣∣∣∣
z=z̃

= γθ

δt

,

together with (A.13) resulting in

z̃ = − tan(z̃).
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Evaluating the latter equation numerically yields z̃ ≈ 2.0288 and with this the range
of the parameter kd is set to

0 < kd <
γθ

δtρθ

z̃ sin(z̃).

For further considerations the following notation for the real part

∆Re(z) = ρθ (kp − a(z))

with

a(z) = γθ

ρθδ2
t

z2 cos(z)

is introduced, which has to be evaluated at the roots of the imaginary part ∆Im called
zj, starting with

∆Im(z0) = ρθkp ⇒ kp > 0.

Based on the latter result it is now clear, that kd > 0. The remaining zj, j = 1, 2, 3, . . .
result in

∆Im
(
zj(kd)

)
= ρθ

(
kp − a

(
zj(kd)

))
and in combination with the interlacing of the roots of ∆Im and ∆Re it is clear that

∆Im
(
z1(kd)

)
< 0 ⇒ kp < a

(
z1(kd)

)
∆Im

(
z2(kd)

)
> 0 ⇒ kp > a

(
z2(kd)

)
∆Im

(
z3(kd)

)
< 0 ⇒ kp < a

(
z3(kd)

)
...

To get an upper bound for kp, the odd values a
(
z1(kd)

)
, a
(
z3(kd)

)
, . . . have to be

considered. The smallest of these bounds is the one restricting the parameter kp,
leading to

0 < kp < min
j=1,3,...

a(zj).

Finally, if the delay δt and the input gains γθ and ρθ are given, the admissible parameter
set of kp and kd can be calculated.

A.5 Application of the results from Farkh et al.
(2009)

In this section, the results of Farkh et al. (2009) are presented and the notation is
changed, to fit the considerations of Section 2.4.3. In the previously mentioned section,
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the retarded TDS

ëθ(t) + aėθ(t) + b

γθ

(kd − a) ėθ(t − δt) + b

γθ

kpeθ(t − δt) = 0 (A.14)

is determined, the asymptotic stability of which has to be analysed. The corresponding
modified quasi-polynomial is

∆(s) = b

γθ

(kd − a)s + b

γθ

kp + (s + a) s exp(sδt).

In Farkh et al. (2009, Sec. 3) the stability of a PI controller for a first-order delay
system with the quasi-polynomial

∆(s) = (KKi + KKps) + (1 + Ts) s exp(Ls)

is investigated, with K, T, L > 0, leading to the range of the proportional gain

− 1
K

< Kp <
T

KL

√
z̃2 +

(
L

T

)2
,

with z̃ the solution of

tan(z̃) = −T

L
z̃

in the interval [π/2, π]. The admissible range of the integral gain is

0 < Ki < min
j=1,3,5,...

a(zj)

with

a(zj) = zj

KL

(
sin(zj) + T

L
zj cos(zj)

)
whereas zj being the roots of the imaginary part

∆Im(z) = z

L

(
KKp + cos(z) − T

L
z sin(z)

)
,

which are z0 = 0 and the solution of

KKp + cos(zj) = T

L
zj sin(zj).

Applying the substitutions

L = δt, a = 1
T

, K = b

γθ

, kp = aKi, kd = aKp + a,

to the latter results is yielding the conditions for the stability of (A.14).
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A.6 Generalisation of the results from Laabidi et al.
(2011)

In the following, the asymptotic stability of the linear second-order system

ÿ(t) = bu(t) − a1ẏ(t) − a0y(t) (A.15)

with a1, a0, b > 0 which is controlled with the MFC law

u(t) = 1
γ

(
ÿr(t) − kd ˙̂e(t) − kpê(t) − f̂(t)

)
(A.16)

with e(t) = y(t) − yr(t) and γ > 0 is investigated. The MFC law (A.16) is based on
the ultra-local model

ÿ(t) = ρu(t) + f(t). (A.17)

Comparing (A.15) with (A.17) leads to

f(t) = −a1ẏ(t) − a0y(t)

and

f̂(t) ≈ −a1ẏ(t − δt) − a0y(t − δt).

According to Remark 2.7, it is necessary to verify the validity of this approximation.
Using the controller (A.16) in (A.15) under the assumption that no disturbance occurs
and the effects of the approximation error of the algebraic differentiator is negligible
yields

ÿ(t) = b

γ

(
ÿr(t) − kd ˙̂e(t) − kpê(t) − f̂(t)

)
− a1ẏ(t) − a0y(t). (A.18)

Thereafter, subtracting ÿr(t), −bγ−1aj ŷ
(j)
r (t), j ∈ {0, 1} and ajy

(j)
r (t), j ∈ {0, 1} on both

sides of (A.18) leads to the differential equation

ë(t) + b

γ
(kd − a1) ˙̂e(t) + b

γ
(kp − a0)ê(t) + a1ė(t) + a0e(t) = gy(ÿr(t), ẏr(t), yr(t))

with

gy(ÿr(t), ẏr(t), yr(t)) =
(

b

γ
− 1

)
ÿr(t) − a1ẏr(t) − a0yr(t)

+ b

γ
a1ẏr(t − δt) + b

γ
a0yr(t − δt).

Neglecting the effects of the function gy yields the modified quasi-polynomial

∆(s) =
(
s2 + a1s + a0

)
exp(sδt) + (κds + κp)
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with the substitutions and assumptions

κp = b

γ
(kp − a0) > 0, κd = b

γ
(kd − a1) > 0.

The following considerations are a generalisation of the results from Laabidi et al.
(2011) and most findings can be transferred to this case. Using s = jω, splitting into
real and imaginary part and applying the substitution z = δtω yields the expressions

∆Re(z) = −
(

z

δt

)2
cos(z) − a1 sin(z) z

δt

+ a0 cos(z) + κp

∆Im(z) = −
(

z

δt

)2
sin(z) + (a1 cos(z) + κd) z

δt

+ a0 sin(z).

Thereafter, Condition 2 of Theorem 1 can be checked by choosing ω0 = 0, leading to

E(ω0) = (a0 + κp) (a1 + κd + a0δt) > 0,

which implies κp > −a0 as well as κd > −a1 − δta0. In the next step, the interlacing
condition of ∆Im and ∆Re has to be checked. The roots zj of the imaginary part are
z0 = 0 on one hand and the solution of

f(zj) = g(zj)

with

f(z) =
(

z

δt

− δt

z
a0

)
sin(z)

g(z) = a1 cos(z) + κd,

on the other hand. Form here on out, two cases have to be considered. In the first
case, the parameter κd has to obey κd,min = −a1 −δta0 < κd < κd,max, whereas κd,max is
the biggest value of the parameter, such that the graphs of f and g are tangent in the
interval [0, 3π/2]. In the second case, the condition κd,max < κd is fulfilled. Following
the statements made in Laabidi et al. (2011) regarding Theorem 2, with η = π/4 it
can be shown that in the first case ∆Im has only real roots and the opposite is true for
the second case. The touching condition for f and g can be calculated by

df

dz

∣∣∣∣∣
z=z̃

= dg

dz

∣∣∣∣∣
z=z̃

resulting in

tan(z) = −
z
δt

− δt

z
a0

1
δt

+ δt

z2 a0 + a1
.
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Thereafter, numerically solve

tan(z̃) = −
z̃
δt

− δt

z̃
a0

1
δt

+ δt

z̃2 a0 + a1
,

in order to obtain z̃ ∈ [0, 3π/2]. Now the latter value can be used to calculate

κd,max = κd(z̄) =
(

z̄

δt

− δt

z̄
a0

)
sin(z̄) − a1 cos(z̄),

the upper bound of the parameter κd. To determine the admissible values of κp, the
real part ∆Re(z) is evaluated at zj, leading to

∆Re(zj) = κp − a(zj)

with

a(zj) =
((

zj

δt

)2
− a0

)
cos(zj) + a1 sin(zj)

zj

δt

.

The root z0 = 0 yields with −a0 the lower bound of the parameter κp. The upper bound
is obtained by the interlacing property with the odd values for j, i.e. j = 1, 3, 5, . . .
from

∆Re(zj) = κp − a(zj) < 0

which leads to

−a0 < κp < min
j=1,3,5,...

a(zj).

At last, if the values for κp and κd are found, the corresponding values for kp and kd
can be calculated as

kp = γ

b
κp + a0

as well as

kd = γ

b
κd + a1.
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