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Abstract. Motif discovery is a powerful and insightful method to quantify network structures and explore
their function. As a case study, we present a comprehensive analysis of regulatory motifs in the connectome
of the model organism Caenorhabditis elegans (C. elegans). Leveraging the Efficient Subgraph Counting
Algorithmic PackagE (ESCAPE) algorithm, we identify network motifs in the multi-layer nervous system
of C. elegans and link them to functional circuits. We further investigate motif enrichment within signal
pathways and benchmark our findings with random networks of similar size and link density. Our findings
provide valuable insights into the organization of the nerve net of this well-documented organism and can
be easily transferred to other species and disciplines alike.

1 Introduction

The nematode Caenorhabditis elegans, commonly known
as C. elegans, has long been a prominent model organ-
ism in genetics and developmental biology research.
Its relatively simple and well-defined anatomy, short
life cycle, and fully sequenced genome make it an
ideal subject for investigating fundamental biological
processes [1,2]. Over the years, extensive studies on
C. elegans have provided valuable insights into various
aspects of cellular and molecular biology, contributing
significantly to our understanding of eukaryotic biol-
ogy [3-6].

In this study, we take a network science-driven
angle [7] and focus on motif discovery in the nervous
system of C. elegans to shed light on (i) the composi-
tion of the multi-layer connectome and (ii) the under-
lying regulatory circuits that govern the behavior of
this model organism. The multi-layer nature arises from
the presence of electrical (gap junction) and synap-
tic connections between the neurons. To achieve this,
we adopt the Efficient Subgraph Counting Algorithmic
PackagE (ESCAPE) algorithm [8], a powerful compu-
tational method that has proven effective in identifying
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regulatory motifs in complex networks extracted from
empirical data.

We focus on network motifs that emerge from sets of
4 or 5 nodes and their connecting links, such as triangles
and cliques. Applying the ESCAPE algorithm to indi-
vidual layers, the aggregated network, and the locomo-
tory circuit, we compare the distribution of these small-
scale, recurrent network structures to random networks
of similar size and link density. This allows identifica-
tion of a fingerprint of the structure of the nervous
system. We hypothesize that the ESCAPE algorithm
will uncover novel and functionally relevant motifs in
C. elegans that play crucial roles for behaviors such
as locomotion. By pursuing these objectives and test-
ing our central hypothesis, we aim to provide valuable
insights into the anatomical and functional landscape
of the C. elegans connectome, exemplifying a univer-
sal approach to characterize network data in biology
and beyond. This study holds the potential to advance
our knowledge of networks in general and has implica-
tions in biological contexts in particular. Our approach
is universally applicable and can be extended to net-
work data (including directed links) from other sources
and invites benchmarking against any network model.
Insights into the motif distribution can also be used for
artificial network generation for realistic in silico stud-
ies.

The rest of the manuscript is organized as follows: In
Sect. 2, we elaborate on the workflow and data set con-
sidered. Section 3 presents our findings and highlights
exemplary cases of significant and insignificant motif
occurrences. Finally, we conclude in Sect.4. We stress
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that we focus on selected examples of motifs involving
3, 4, and 5 nodes in the main text and provide the full
set of results in Appendices A-H

2 Methods and data

This section discusses the methodology applied to the
C. elegans data for motif discovery. We start with a
summary of the multi-layer network and then briefly
review the ESCAPE framework [8].

2.1 Multi-layer network of C. elegans

The complexity of connectome structure in C. elegans
extends beyond simple regulatory interactions, necessi-
tating a comprehensive approach to capture the intri-
cate relationships between anatomy and function. To
achieve a more holistic understanding of the regulatory
landscape, we consider a multi-layer network represen-
tation of C. elegans. This multi-layer network incorpo-
rates different layers of biological information, provid-
ing a powerful framework to investigate the interplay
between neurons (network nodes), connections (net-
work links), and their regulatory motifs (small, recur-
rent network structures). As discussed in the following,
the multi-layer structure consists of (i) electrical con-
nections and (ii) synapses that involve different neuro-
transmitters, monoamines, and peptides (see Fig. 1 for
the different layers in a circular layout):

Acetylcholine Layer (ACh): The Acetylcholine
(ACh) layer, the largest component of the network,
encompasses approximately 33.4% of the total 3538
connections. It is distributed extensively across all neu-
rons without showing a specific preference for any
particular neuron type. In humans, ACh functions at
skeletal neuromuscular junctions, interfaces between
the vagus nerve and cardiac muscle fibers, as well as
various locations within the central nervous system.
Although ACh’s role at neuromuscular junctions is well-
documented, its precise function within the central ner-
vous system remains a subject of incomplete under-
standing [9]. In the context of C. elegans, ACh is intri-
cately involved in a multitude of behaviors, including
but not limited to locomotion [10,11], egg-laying [12],
feeding [13], and defecation [14].

Electrical Layer: Electrical transmission, compris-
ing 29.1% of network connections, is the second-
largest layer after ACh. Electrical synapses are uni-
versally present in nervous systems, allowing direct bi-
directional flow of electrical current between neurons.
This mode of transmission is exceptionally fast, vir-
tually instantaneous, enabling communication without
delay, a departure from typical chemical synapses. Elec-
trical synapses are located where rapid coordination
and synchronization of network activity are required.
For example, certain brainstem neurons synchronize via
electrical synapses for rhythmic breathing, and simi-
lar synchronization occurs in interneuron populations
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in the cerebral cortex, thalamus, and cerebellum [9].
In C. elegans, electrical transmission plays a significant
role in locomotion behavior and development [15,16].

Gamma-Aminobutyric acid Layer (GABA):
The gamma-Aminobutyric acid (GABA) layer stands
as the smallest component within the network, account-
ing for approximately 3.8% of the connections. Most of
these connections are established by interneurons and
motor neurons. GABA serves as the neurotransmitter
for approximately one-third of the synapses in the brain
and is predominantly found in interneurons within local
circuits. Diverging from the excitatory nature of ACh
and Glu, GABA exerts an inhibitory effect [9]. Notably,
in C. elegans, GABA can also function as an excitatory
transmitter, depending on the specific neuroreceptor
involved. In its inhibitory role, GABA regulates head
movements during foraging [17] and relaxes muscle cells
during locomotion [18].

Glutamate Layer (Glu): The Glutamate (Glu)
layer constitutes the third-largest component of the net-
work, utilizing approximately 20.5% of its connections.
In contrast to the ACh layer, this layer involves signif-
icantly fewer motor neurons. In the human brain, Glu
plays a pivotal role as the primary neurotransmitter for
normal brain function, with an estimated release from
more than half of all brain synapses [9]. In the con-
text of C. elegans, Glu contributes to various behav-
ioral aspects, including foraging behavior [19], long-
term memory processes [20], and spontaneous transi-
tions from forward to backward movement, commonly
referred to as reversals [21,22].

Monoamine Layer (MA): MA transmitters con-
stitute approximately 5.8% of network connections,
with no specific neuron-type preference although most
motor neurons primarily receive postsynaptic signals.
Among MA transmitters, dopamine accounts for about
two-thirds. In humans, MA transmitters play a crucial
role in regulating various brain functions, extending
from central homeostatic processes to cognitive phe-
nomena like attention. Dysfunctions in MA-mediated
signal processing can lead to psychiatric disorders,
exemplified by Parkinson’s disease resulting from
dopaminergic neuron degeneration [9]. In C. elegans,
MA transmitters influence a range of behaviors, includ-
ing egg-laying, pharyngeal pumping, locomotion, and
learning, as detailed in [1]. For instance, dopamine
modulates locomotion behavior and learning, facil-
itating the worms’ responsiveness to environmental
changes [23] and efficient exploration of new food
sources [19]. Learning allows worms to adapt their
behavior based on prior experiences, such as responding
to non-localized mechanical stimuli like plate tapping
by either moving backward or increasing forward loco-
motion, with repeated tapping leading to habituation
and reduced reversal frequency [24].

Peptide Layer: Peptides account for approximately
11.8% of network connections, predominantly estab-
lished by interneurons and sensory neurons, with most
originating from the FMRFamide-like peptide (FLP)
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(f) Peptide layer (11.8%)

Fig. 1 The C. elegans multi-layer network consists of nodes (circles) representing 279 neurons in a circular layout. In the
aggregated network, there are 3538 distinct connections (lines) among the nodes. Panels (a)—(f) show the links of the dif-
ferent layers: Acetylcholine (yellow), electrical (red), gamma-Aminobutyric acid (magenta), Glutamate (green), Monoamine
(black), and Peptide (blue) layers, respectively. The percentages refer to the proportion of the links in each layer

and peptide deformylase (PDF) families. Roughly 31%
of these peptides act as neurotransmitters, while about
69% function as co-transmitters. In humans, pep-
tides play roles in pain perception, emotional modu-
lation, and complex responses to stress. Peptide co-
transmission can modulate synaptic activity, impact-
ing functions, such as food intake, metabolism, social

behavior, learning, and memory [9,25]. In C. elegans,
peptides influence a wide array of behaviors, including
locomotion, dauer-stage formation, egg-laying, sleep,
learning, social behavior, mechano- and chemosensa-
tion. Notably, some FLP family peptides are involved
in feeding behavior [26], while others, like nlp-22, regu-
late C. elegans’ sleep-like state (lethargus) during larval
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transitions[27]. Neuropeptides, constituting the third
layer of information flow in neuronal communication
alongside chemical and electrical transmission, are still
not fully understood in C. elegans, with over 300 neu-
ropeptides identified [28,29]. Similar to monoamines,
neuropeptides form a small wired network but a vast
wireless network[30], suggesting their potential involve-
ment in all C. elegans behaviors.

In the subsequent sections, we present our findings
based on this multi-layer network analysis, highlight-
ing the discovery of regulatory motifs. This paves the
way to understand their functional relevance, and the
implications for understanding mechanisms governing
the C. elegans nervous system. We anticipate that
the insights gained from this comprehensive multi-layer
network analysis will contribute significantly to the
broader understanding of the C. elegans connectome
and provide a valuable resource for the scientific com-
munity in further investigations that also invites the
transfer of methodology to other model organisms and
contexts.

2.2 Efficient subgraph counting algorithmic
PackagE: ESCAPE

In a nutshell, the applied algorithmic framework
ESCAPE revolves around breaking down complex pat-
terns into smaller subpatterns and leveraging counts of
these smaller patterns to obtain larger pattern counts.
See Fig. 2 for a complete list of 3-, 4- and 5-node
motif. The list also states their names, which are help-
ful for later identification. By employing this divide-
and-conquer strategy, we can efficiently handle the enu-
meration and computation of subgraphs, even for large
and complex networks. This approach allows us to
avoid the excessive computational overhead associated
with naively counting subgraphs. A key feature of the
algorithm [8] is the exploitation of degree orientations
within the network. By judiciously utilizing information
about the degree distributions, we can further optimize
runtime, resulting in faster computations. This opti-
mization ensures that our algorithm can scale efficiently
even for massive-sized networks.

2.3 Motif discovery algorithm

The enumeration of motifs, also called graphlets, partic-
ularly in the context of large-scale networks with mil-
lions of nodes and links, presents a formidable chal-
lenge due to the exponential growth in computational
complexity. In the past, it was widely believed that
subgraphs beyond three nodes were exceptionally diffi-
cult to enumerate, and conventional enumeration algo-
rithms, which necessitate traversing each subgraph,
were deemed impractical in terms of termination within
a reasonable timeframe.

In response to the combinatorial explosion that ham-
pers typical enumeration algorithms, the ESCAPE
method was introduced by Pinar et al. [8]. This
approach adopts a divide-and-conquer strategy, effec-
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tively identifying substructures within each counting
subgraph and partitioning them into smaller patterns.
In other words, calculating all 5-node motifs counts
requires enumerating only a small set of patterns. The
corresponding formal framework cuts a pattern into
smaller subpatterns, which is the main reason for its
practical feasibility. A degree ordering applied to these
subsets of fundamental patterns significantly cuts down
the combinatorial expansion and results in a practical
technique that is sufficient to count all 5-vertex pat-
terns.

Despite its broad applicability, the method allows
for tailored decomposition choices that facilitate the
derivation of a set of formulas to compute the frequency
of each subgraph efficiently. While the original paper
delineates the resulting formulas for subgraphs up to
size 5, diligent efforts can extend the application to
larger sizes. For further details, we refer to Ref. [8].

To the best of our knowledge, ESCAPE stands as
one of the most efficient algorithms available for count-
ing undirected subgraphs and orbits up to size 5.
Its strength lies in the ability to mitigate the expo-
nential growth in complexity, enabling the enumer-
ation of motifs even in sizable networks with mil-
lions of nodes and links. Through its divide-and-
conquer paradigm and strategic substructure identifica-
tion, ESCAPE opens new avenues for motif discovery,
offering unprecedented opportunities to unravel recur-
ring patterns within complex networks. Its scalability
and performance make it a compelling choice for motif
analysis in diverse domains, such as social networks,
biological networks, and recommendation systems.

2.4 Proposed methodology

Next, we describe the stepwise methodology of the pro-
posed work for C. elegans motif discovery. As schemat-
ically depicted in Fig. 3, the pipeline includes the fol-
lowing steps:

Step 1: Input: Reading multi-layer network data
and generation of random networks of the same size
Step 2: Analysis: Application of the ESCAPE algo-
rithm

Step 3: Output: Motif distribution

Step 4: Comparison: Benchmarking empirical
against random networks

Step 5: Comparison: Identification of significant
motifs

The selection of random networks is one of many
choices of network classes to generate artificial networks
for benchmarking. Other prominent examples include
regular, small-world, or scale-free networks, to name
but a few. For the proper determination of a motif’s
subnetwork significance, we need comparison by an
ensemble of a reference network class, e.g., random net-
works. Thus, the generation of this ensemble due to a
given random network model is a necessary step of the
algorithm. One of the popular random network models
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Fig. 2 Complete list of 3-, 4- and 5-node motifs including names for later identification

INPUT ANALYSIS

Fig. 3 Pipeline for the motif discovery

on which we also focused preserves the degree sequence
of the original network. Note that there has been some
research concerning the problem of subnetwork distri-
bution within such networks for directed sparse random
networks [31,32].

We follow a randomizing approach to generate refer-
ence networks of the same number of nodes and links. In
that approach, similar to Milo’s random model [31,32],
switching operations are repeatedly applied on the ran-
domly chosen vertices of the input network and their
links, until the network is well randomized. By apply-
ing these switching operations, an ensemble of random
networks is generated for comparing the real network
to obtain the significance of each motif.

OUTPUT

COMPARISON FINDING

characteristic
motifs

For the significance of the occurrence of each motif,
statistical measures are introduced that lead us to the
probable motifs in the input network: (i) Frequency:
This is the simplest measurement for estimating the
significance of a motif. The frequency is defined as the
number of occurrences of a motif P in the network.
(ii) KS test: We employ the Kolmogorov—Smirnov (KS)
test to identify significant and insignificant motif fre-
quencies by comparing the input network’s motif fre-
quency with those from 1000 generated random net-
works. First, the motif P frequency is counted in the
input network. Then, the same motif is counted in
each of the random networks, creating a distribution
of motif frequencies for comparison. (iii) p value: The
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Table 1 Data description: Number of nodes and links for the different layers, the aggregated network (All), and the

locomotory circuit (LC)

ACh Electrical GABA Glu MA Peptides All LC
Nodes 258 253 102 197 131 162 279 83
Links 1145 1028 133 727 212 455 3700 435
Undirected links 1080 514 130 708 203 401 2287 435
Table 2 3-node non-induced motifs in C. elegans multi-layer network

Motif ACh Electrical GABA Glu MA Peptides All LC

[ N
Ind set v 2829056 2667126 171700 1254890 366145 695520 3580779 91881

b4
Only link v 276480 129014 13000 138060 26187 64160 633499 35235
Wedge : 16848 3972 678 8035 1565 3028 56984 7056
Triangle : 1083 170 18 376 28 125 4055 680

KS test compares the motif frequency distribution of
the input network against the random networks’ distri-
butions, providing a p value to indicate significance. A
low p value signifies that the motif frequency is signifi-
cantly different from random, indicating the motif’s sig-
nificance, while a high p value indicates insignificance.
Therefore, p values range from 0 to 1. The smaller the p
value, the more significant the motif. Here, we consider
a p value of 0.05, below which we declare the occurrence
of a motif as significant, that is, characteristic.

3 Results and performance evaluation

This section provides the details of dataset and perfor-
mance indicators used for the experiment analysis.

3.1 Data

The dataset [33] used in this study encompasses a com-
prehensive network representation of a biological sys-
tem, capturing the interactions between various types of
molecular entities. The data consists of nodes and links,
representing different neuronal units and their connec-
tions within the biological system. The dataset contains
a total of 279 nodes and 3,538 links. These nodes refer
to neurons, each contributing to the overall function-
ality of the nervous system. The links in the network
represent the connections or interactions between the
neurons. A total of 3,538 links have been identified in
the dataset across several layers (cf. Fig. 1), signifying
the complex web of interactions within the biological
system.

@ Springer

Table 1 provides an overview of the data, showcasing
the different layers and the number of neurons involved
as nodes in the network and the number of links that
connect them. Each network layer corresponds to a spe-
cific neurotransmitter or signaling molecule involved in
the biological system under investigation. The last two
columns represent the total number of nodes in the
aggregated network and the locomotory circuit, which
is added as a functionally relevant subnetwork. In total,
there are 3700 aggregated links, which amounts to 3,538
distinct connections between the neurons. Note that the
electrical layer is—for reasons of neuro-physiology—Dbi-
directional. All other layers are uni-directional. For the
purpose of this study and to keep the combinatorics at
a manageable level, we ignore directionality and treat
all connections as undirected. The last row of Tab. 1
shows the number of links in the considered undirected
network.

3.2 Network motifs

Next, we present the results of our analysis on the
multi-layer network of C. elegans using the ESCAPE
algorithm [8] for counting small subnetwork patterns.
Specifically, we focus on motifs consisting of 3, 4, and
5 nodes and their prevalence across the different layers
within the network. Additionally, we discuss the find-
ings and implications of our motif counting analysis.

3.2.1 3-node motifs

Table 2 summarizes the number of occurrence of all
possible motifs involving 3 nodes, from the independent
set (3 nodes with no links) to the triangle (3-clique or
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all-to-all connected set of 3 nodes). Obviously, the for-

mer is given be the binomial coefficient (Zg ), where NV
denotes the number of nodes in the layer (cf. Table 1).
Evaluating the occurrences, it is important to note that
a brute-force calculation of the motifs inevitably leads
to double and multiple countings. For instance, a tri-
angle automatically includes 3 motifs of wedge type.
Here, network science/graph theory comes to our aid
and provides the notion of non-induced and induced
subnetworks.

As illustrated in Fig. 4, a non-induced subnetwork
consists of a set of nodes, but not all possible edges
that are present in the original network. In contrast, a
motif is called induced if it contains the maximum set of
links connecting its nodes in the original network. In the
schematic example, the link between nodes 2 and 4 is
missing in the non-induced subnetwork of nodes 1, 2, 3,
and 4, while it is accounted for in the induced one. One
can express the induced as a linear combination of the
non-induced count and vice versa, that is, by multiply-
ing the respective count vectors with a transformation
matrix (or its inverse) that provides the combinatorics
of lower-motif inclusions. For 3- and 4-node motifs, it
is given by

11111111111
01223334456
0010001122 3
000133254812

éi;é 0000100102 4
As= {0023, a,=|o00000101024
e 000000124612

000000010412
0000000011 3
0000000001 6
0000000000 1

(1)

where the ordering of motifs corresponds to Fig. 2. For
example, considering the last column of Ay, a 4-clique
gives rise to the following non-induced motifs: 6 dia-
monds, three 4 cycles, 12 tailed triangles etc. For the
case of connected 5-node motifs, that is, 21 out of the
34 motifs in Fig. 2, see the the 21x21 transformation
matrix As given in Appendix B of Ref. [8].

Therefore, it is helpful to focus on the occurrences
of induced motifs, which is given in Table 3. That way,
the count reflects subnetworks that are not part of a
motif with the same set of nodes connected with more
links. One can quantify their appearance via the ratio
of induced to non-induced motifs. As shown in Table 4
that ratio is rather high, that is close to unity. For
instance, considering the ACh layer, we find that 13599
wedges do not stem from triangles with one link left out.
In fact, one can easily verify that the difference between
the number of wedges of the induced to the non-induced
case equals 3 times the number of triangles. In the fol-
lowing, we will consider only induced motifs. For 4- and
5-node motifs, which will be discussed in the subse-
quent sections, the tables for the non-induced case for
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both the original and reference networks can be found
in Appendices A,B,E and F.

3.2.2 4-node motifs

Figure 5 showcases the histogram of the counts of
various 4-node motifs identified within the multi-layer
network, classified by different molecular entity types,
including ACh, Electrical, GABA, Glu, Monoamines,
Peptides, and All (representing the total, aggregated
network). Each motif type is represented by a corre-
sponding graphical depiction. Note that the result of
the independent set, only edge, and matching motifs
are not shown. The respective numbers can be found in
Appendix C.

To highlight some numbers: The motif only edge rep-
resenting a wedge (an unconnected pair of nodes shar-
ing a common neighbor) plus an independent node is
prevalent across all molecular entity types, with counts
ranging from 2856576 in the ACh layer to 52337 in the
GABA layer. In the aggregated network, we observe a
total count of more than 9 million only wedge motifs.
The motifs only triangle (three nodes interconnected
in a closed loop plus a single independent node) are
also frequently observed across the network layers, with
counts varying from 220488 in the ACh layer to 1415 in
the GABA layer and an overall count of 823992 in the
combined-layer network.

As the motif structure becomes more elaborate, the
number of occurrences decreases. The diamond (two
pairs of nodes connected by a central node) and /-
clique (four fully interconnected nodes) motifs feature
the least among all 4-node motifs. In fact, there is not
a single occurrence of a J-cligue in the GABA layer.

The ratios of the induced and non-induced 4-node
motifs are given in Table 5 (See Appendix A for the
absolute values of the non-induced motifs). We find that
for sparser layers, such as Glu and MA, motifs with
more links do not tend to be part of higher-order motifs,
that is, they are induced. See, for instance, ratios of 0.92
(0.63) or 0.76 (0.25) for 3-star and 4-cycle motifs in the
MA (ACh) layer.

The results of the occurrences of motifs in each layer
compared to the aggregated network are summarized
in Table 6. Here, one can see the difference between
edges formed by electrical gap junctions and chemical
synapses. Although the electrical layer is the second-
largest layer, in terms of both number of nodes and
edges, its contribution to the motif count is rather
small. In other works, most of the motifs are found in
the chemical layers. Furthermore, the ACh layer, while
represented at almost 50% of the connections in the
aggregated network (cf. Table 1) do not feature that
prominently in the motif count. This means that many
chemical links involve more than just a single neuro-
transmitter.

In order to identify the occurrences of significant
motifs, we compare the motif distributions of the orig-
inal network to 1000 random networks with the same
number of nodes and edges and repeat the motif analy-
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Original network

Non-induced subnetwork

Eur. Phys. J. B (2025)98:10

Induced subnetwork

Fig. 4 Schematics of a 6-node network, a non-induced 4-node subnetwork, and an induced 4-node subnetwork. The latter
consists of the maximum number of nodes and links taken from the original network

Table 3 3-node induced motifs in C. elegans multi-layer network

Motif Motif ACh Electrical GABA Glu MA Peptides All LC
o0
Ind set o 2568341 2541914 159360 1124489 341495 634263 3000209 63022
e
Only link o 246033 121580 11698 123118 23141 58479 531696 23163
Wedge : 13599 3462 624 6907 1481 2653 44819 5016
Triangle : 1083 170 18 376 28 125 4055 680
Table 4 Ratio of 3-node induced vs non-induced motifs in C. elegans multi-layer network
Motif ACh Electrical GABA Glu MA Peptides All LC
o oW
Ind set © 0.91 0.95 0.93 0.9 0.93 0.91 0.84 0.69
ot
Only link ¢ 0.89 0.94 0.9 0.89 0.88 0.91 0.84 0.66
Wedge : 0.81 0.87 0.92 0.86 0.95 0.88 0.79 0.71
Triangle I 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

sis. The resulting average counts of the different induced
and non-induced 4-node motifs are given in Appen-
dices B and D, respectively. As an exemplary illus-
tration, Fig. 6 depicts the case of a significant motif
(tailed triangle) in panel (a) and an insignificant motif
(3-path) in panel (b). One can clearly see that the num-
ber of tailed triangle motifs (3570) lies outside the dis-
tribution calculated for the random networks, while the
the number of 3-path motifs (12473) can also be found
in a substantial amount of random reference networks.
Interestingly, we find only a few cases of insignificant
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induced motifs. These are indicated by bold values in
Tables 5, 6, and C5. Moreover, in almost all cases of sig-
nificant motifs, the counts extracted from the original
network is far away from those of the random reference
networks.

3.2.3 5-node motifs

Next, we turn our attention to motifs that involve 5
nodes, and focus on those subnetwork structures that
cannot be part of a 4-node motif with 1 additional dis-
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Fig. 6 Examples for a significant and an insignificant 4-node induced motif in the electrical layer of original network (cf.
Fig. 5) as compared to the random reference networks

(b) Insignificance of 3-path motif in electrical
layer as shown in Fig. 5 and Table C5.
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Table 5 Ratios of 4-node induced vs non-induced motifs in C. elegans multi-layer network

Motif ACh Electrical GABA Glu MA Peptides All LC
e 0
Ind set R 0.83 0.91 0.86 0.81 0.87 0.83 0.71 0.50
—e
Only link o0 0.77 0.88 0.79 0.77 0.77 0.81 0.67 0.41
—
Matching —o 0.70 0.86 0.78 0.72 0.74 0.79 0.64 0.36
Ounly wedge : . 0.66 0.78 0.78 0.72 0.79 0.77 0.58 0.36
Only triangle I 3 0.80 0.88 0.79 0.83 0.82 0.88 0.74 0.50
3-star z 0.63 0.81 0.85 0.68 0.92 0.75 0.62 0.54
3-path t: 0.44 0.51 0.60 0.59 0.67 0.66 0.45 0.28
Tailed triangle z 0.52 0.56 0.66 0.65 0.76 0.65 0.56 0.43
Acycle I:I 0.25 0.15 0.25 0.64 0.76 0.61 0.26 0.14
Diamond z 0.61 0.80 1.00 0.76 0.76 0.77 0.63 0.59
4 clique g 1.00 1.00 - 1.00 1.00 1.00 1.00 1.00

The values in bold indicate that the discovered induced motif count is not significant

connected node. This includes 23 out of 34 possible 5-
node motifs (cf. Figure 2). Note that we still include
the wedge+edge and triangle+edge motif.

Table 7 summarizes the findings in terms of the per-
centage of 5-node induced motifs relative the aggre-
gated network case. Again, we find that almost all
motifs are significant in their occurrence and cannot be
expected from random reference networks. It is note-
worthy that except the wedge+link motif, the over-
whelming majority of insignificant motif counts appear
for very small fractions below 1 percent. In those cases,
their existence is unlikely in random networks as well.
This applies to the GABA and MA layers in particular
because they involve the smallest number of links and
nodes. The sparseness of these layers makes the for-
mation of denser motifs less likely. The occurrence of
such motifs is further reduced in the MA layer, whose
nodes are more scattered across the network (cf. Fig-
ure 1(c) and (e)). The absolute values and numbers
for non-induced 5-node motifs can be found in Appen-
dices E to H for the sake of completeness, but are not
displayed here to improve readability.

The exact numbers are also included in Fig. 7 in addi-
tion to the histograms. We find that in general, more
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complex motifs are present in lower numbers and are
completely absent in small layers. At the same time,
layers with more nodes and links have the tendency
to allow for these motifs, e.g., 4-wheel, hatted-4-clique,
almost-5-clique, or 5-clique (see bottom panel of Fig. 7),
and the corresponding motifs remain significant to char-
acterize the layer.

4 Conclusions

We have presented the application of a motif-discovery
algorithm for network analysis. As a case study, the
algorithm has been applied to the multi-layer connec-
tome of C. elegans. We have considered motifs formed
by 3, 4, or 5 nodes. Our analysis of the motif occur-
rences has yielded several important findings. First,
the abundance of wedge motifs indicates the prevalence
of shared regulators across different layers correspond-
ing to different molecular entities (neurotransmitters),
reflecting the existence of conserved regulatory mecha-
nisms. Additionally, the presence of motifs with closed
paths, such as triangles, 4 or 5 cycles and their vari-
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Table 6 Percentage of 4-node induced motifs in C. elegans multi-layer network relative to ALL (aggregated network)

Motif ACh Electrical GABA Glu MA Peptides
o0
Ind set ¢ e 85.29 86.57 2.1 28.03 5.85 13.17
—o
Only link ©ow 46.24 23.98 0.87 17.51 2.18 6.98
v—b!
Matching —o 23.98 6.7 0.37 10.55 0.85 3.72
Only wedge : © 31.08 8.38 0.57 12.26 1.73 4.01
Only triangle I . 26.76 456 0.17 7.36 0.36 2.13
3-star z 19.92 427 0.43 5.46 1.45 1.49
3-path z 18.72 2.11 0.22 8.77 0.69 2.20
Tailed triangle z 18.06 1.64 0.13 4.51 0.26 0.85
Aecycle I:I 19.54 0.85 0.09 15.4 0.97 2.63
Diamond m 20.78 1.94 0.12 3.47 0.12 0.67
A-clique m 92,69 0.81 0.00 1.9 0.06 0.34

The values in bold indicate that the discovered motif count is not significant

Table 7 Percentage of 5-node induced motifs in C. elegans multi-layer network relative to ALL (aggregated network)

Motif ACh Electrical GABA Glu MA Peptides
=)
Wedge-+link 5 16.15 2.67 0.10 5.80 0.35 1.49
=0
Triangle+link ; 13.08 1.43 0.03 3.33 0.08 0.78
4-star X 12.38 2.33 0.1 141 0.50 0.28
Prong t 12.55 1.01 0.08 3.60 0.31 0.66
4-path ﬁ 11.41 0.80 0.04 5.33 0.21 0.93
Forktailed-tri X 11.25 0.91 0.04 1.42 0.11 0.16

The values in bold indicate that the discovered motif count is not significant
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Table 7 (continued)

Motif ACh Electrical GABA Glu MA Peptides
Longtailed-tri Q 10.15 0.48 0.02 2.86 0.05 0.39
Doubletailed-tri ﬁ 12.77 0.46 0.04 2.51 0.12 0.27
Tailed-4-cycle g 11.72 0.4 0.02 6.95 0.35 0.82
5-cycle g 8.76 0.33 0.01 4.11 0.14 0.63
Hourglass X 7.30 0.31 0.01 1.58 0.02 0.15
Cobra $ 13.39 0.41 0.02 2.22 0.01 0.24
Stingray g 13.56 0.80 0.03 1.29 0.06 0.12
Hatted-4-cycle g 9.55 0.16 0.01 3.72 0.08 0.39
3-wedge-col @ 18.5 0.16 0.02 20.50 0.97 1.40
3-tri-collision @ 15.83 1.96 0.04 0.72 0.02 0.09
Tailed-4-clique @ 15.66 0.28 0.00 0.95 0.00 0.07
Triangle-strip g 12.06 0.31 0.01 1.31 0.00 0.13
Diamond-wed-col 6 13.78 0.15 0.01 5.88 0.04 0.51
4-wheel m 16.19 0.21 0.01 3.11 0.00 0.22
Hatted-4-clique g 15.89 0.46 0.00 0.56 0.00 0.08
Almost-5-clique @ 19.34 0.13 0.00 0.45 0.01 0.01
5-clique @ 23.11 0.00 0.00 0.06 0.00 0.00

ous variants with extensions to the core cycle, suggests
the occurrence of regulatory feedback. Similarly, stars
of spokes-and-hub motifs point to central regulators in
the network.

To identify significant motifs, we have compared the
original network to an ensemble of 1000 random net-
works of the same number of nodes and links, that
is, same link density. For almost all layers and motif
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types, we find that the occurrence of motifs cannot be
explained by a random network model. Notably, the 3-
path and 4-path motifs stand out as an exception of
insignificant motifs in the electrical and GABA layer,
which are not suited to characterize the network at
hand. Interestingly, the presence of 4 cycles and dia-
monds across multiple layers implies recurrent regu-
latory patterns and interconnected information path-
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ways. Conversely, 4- and 5-clique motifs feature less
prominently, which suggests that fully interconnected
regulatory clusters are less prevalent in the network.

The proposed approach can be easily extended in
several directions: (i) It invites the characterization of
significant and insignificant motifs in other empirical
networks from various backgrounds. (ii) We have cho-
sen random networks as a reference case. The pipeline,
however, allows to consider other classes of networks as
well. That way, a network extracted from an empirical
dataset can be fingerprinted and uniquely characterized
by its composition of small network substructures. (iii)
Information on the motif composition can also inform
generative models to generate ensembles of realistic net-
works that can be used in simulations. (iv) We have
focused on the occurrences of motifs in different layers.
The general concept of these small network structures,
however, can be extended to configuration where links
are part of different layers. That way, information path-
ways across layers become accessible.
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