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in gleicher oder ähnlicher Form in einem Verfahren zur Erlangung eines akademischen

Grades vorgelegt.

Saarbrücken, 31.1.2025
Ort, Datum Abdurrahman Irscheid





Zusammenfassung

Eine neuartige Entwurfsmethodik wird für die Regelung von linearen hyperbolischen

oder parabolischen partiellen Differentialgleichungen (PDEs) vorgestellt, welche an

einem Rand aktuiert und am anderen Rand mit nichtlinearen gewöhnlichen Differential-

gleichungen (ODEs) gekoppelt sind. In Anlehnung an die wohlbekannte Backstepping-

Methode für lineare Systeme wird eine nichtlineare Zustandstransformation herangezo-

gen, um das System in eine für den Reglerentwurf besonders geeignete Form zu bringen.

Das zentrale Ergebnis der vorliegenden Arbeit ist die Konstruktion dieser Zustands-

transformation mithilfe der Lösung eines angemessen formulierten Cauchy-Problems.

Die Verwendung einer flachheitsbasierten Parametrierung der entsprechenden PDE-

Teilsysteme erleichtert diesen Entwurfsschritt. Zudem gestattet die Kombination von

Backstepping und flachheitsbasierten Parametrierungen, auf bekannte Ergebnisse aus

der bestehenden Literatur aufzubauen. Des Weiteren wird für den Spezialfall lin-

earer Systeme gezeigt, dass der vorgestellte Ansatz sowohl für hyperbolische als auch

für parabolische PDE-ODE-Systeme äquivalent zur Backstepping-Methode ist. Die

in dieser Arbeit für den Reglerentwurf präsentierte Vorgehensweise bewältigt zuvor

ungelöste Probleme und lässt sich aufgrund ihrer Systematik auf eine breitere Sys-

temklasse erweitern. Allerdings sind im Rahmen dessen auch eine Vielzahl an Her-

ausforderungen und interessanten Fragestellungen für weiterführende Untersuchungen

entstanden.





Abstract

A novel framework is presented for the late-lumping boundary control of linear hyper-

bolic or parabolic partial differential equations (PDEs) that are interconnected with

nonlinear ordinary differential equations (ODEs) at the unactuated boundary. In-

spired by the well-established backstepping method for linear systems, a nonlinear

state transformation is utilized to map the plant into a desired target system. The

central result of this thesis is the construction of the state transformation through the

solution of an appropriately formulated Cauchy problem. This is facilitated by the use

of flatness-based parameterizations of the corresponding PDE subsystems. In fact, the

combination of backstepping and flatness-based parameterizations allows this work to

build upon a substantial body of existing literature. Furthermore, for the special case

of linear systems, the approach is shown to be equivalent to the backstepping method

for both hyperbolic and parabolic PDE-ODE systems. Although the presented control

strategy overcomes previously unsolved problems and enables the systematic develop-

ment of advanced designs for a broader system class, it has also given rise to numerous

challenges and interesting problems for future research.
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Chapter 1

Introduction

Numerous technological processes, engineering problems and industrial applications

can be modeled by distributed-parameter systems: for instance, torsional-axial drilling

(Saldivar et al., 2014), communication networks (Espitia et al., 2017), stacker cranes

(Staudecker et al., 2008), fire-rescue turntable ladders (Zimmert et al., 2011), evapora-

tive cooling facades (Gschweng et al., 2024), plug-flow reactors (Bastin and Dochain,

1990, Ch. 1), canalized water-ways and irrigation networks (de Halleux et al., 2003),

biomass separation settlers in wastewater treatment plants (Dochain and Vanrolleghem,

2005, Ch. 2), single-crystals production of compound semi-conductors (Rudolph et al.,

2005), heavy-chain systems (Petit and Rouchon, 2002) and vehicular traffic flow (Lat-

tanzio et al., 2011), to name but a few. In most cases, the corresponding mathematical

descriptions are represented by partial differential equations (PDEs) that are directly

deduced from laws of physics and first principles such as, e.g., energy and mass balance,

conservation of momentum as well as heat transfer relations. Distributed-parameter

systems offer higher accuracy than their largely simplified counterparts whenever the

spatial distribution of physical quantities has a significant influence on a given process.

Despite their potential complexity, it is of undeniable importance to understand the

structure of these models for useful engineering applications that range from condition

monitoring and fault diagnosis (see, e.g., Fischer and Deutscher (2022)) to controlled

high-performance and high-precision tasks (see, e.g., Aoustin et al. (1997) and Meurer

et al. (2008) for vibration control of flexible robot arms and piezoelectric cantilever

beams, respectively). In view of these considerations, the design of controllers and

observers for this class of systems has become a crucial aspect in various technological

domains. However, from the perspective of control engineering, even simple systems

can give rise to difficult challenges. One reason for that is the lack of a general (control)

theory for PDEs. This is particularly evident in the context of linear PDEs compared to

the well-understood theory for linear systems comprised of ordinary differential equa-

tions (ODEs). As such, there is considerable potential for further advancement in the

field of control engineering for PDEs.
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Figure 1.1: A triangle suspended by heavy ropes that are each actuated by a tricopter

(Irscheid et al., 2019). Reproduced with permission from Springer Nature.

Of particular interest for this work are the challenges associated with boundary control

for a subclass of distributed-parameter systems comprising linear PDEs, of either hy-

perbolic or parabolic type, that are defined on a finite, one-dimensional spatial domain.

Its boundary is defined by two distinct spatial points, on which boundary conditions

are imposed. For simplicity, the considered systems represent well-posed problems, i.e.,

both the existence of a unique solution of the associated PDEs as well as continuous de-

pendence on initial data are guaranteed. Moreover, due to the restriction to boundary

control, distributed in-domain actuation is disregarded1. In fact, the control input is

assumed to be located at one of the boundaries only. Furthermore, dynamical bound-

ary conditions yield PDEs that are (in general bidirectionally) coupled with ODEs,

i.e., so-called PDE-ODE systems. The objective of this work is to propose a strategy

for the boundary control of linear (hyperbolic or parabolic) PDEs that are coupled

with nonlinear ODEs at the unactuated boundary. Apart from the scarcity of results

in this field, the system class in question is inspired by the previous work of the author

on cooperative load transportation with heavy ropes (see Figure 1.1) in Irscheid et al.

(2019). The experimental validations therein indicate that a flatness-based open-loop

controller produces excellent results in the absence of external disturbances, but fails

to meet performance requirements otherwise.

1In the case of in-domain actuation, geometric and Lyapunov techniques can be found in, e.g.,

Christofides (2001) for nonlinear control of PDE systems.
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1.1 State of the art

There exist two prominent and very distinct control strategies for boundary actuated

PDEs. The first one is based on model reduction, i.e., obtaining a finite-dimensional

approximation through a spatial discretization method. As noted in, e.g., Meurer

(2013, Ch. 1), the employed discretization could vary from simple finite differences

schemes on a predefined grid to more advanced schemes such as modal projections and

balanced truncation. The resulting approximation is a system of ODEs, for which any

standard control method can be designed. Such techniques are referred to as early

lumping due to the fact that a finite-dimensional lumped-parameter model is used as

a basis for the control design. In spite of that, the resulting closed loop is still an

infinite-dimensional system, the stability of which has to be thoroughly investigated.

In particular, the neglected dynamics of the system could be excited to the point of

instability, which marks the main drawback of an early-lumping approach. This effect

is also known as spillover (see, e.g., Balas (1978)). Contrary to that, late-lumping

methods take into account the infinite-dimensional model description of the system

dynamics. This oftentimes necessitates more involved mathematical concepts to derive

the corresponding controllers. However, for practical reasons, the implementation still

requires a finite-dimensional approximation of the resulting control law. With finer

discretization of the latter, one obtains a more accurate approximation of the late-

lumping controller, whereas the derivation of the control law itself is independent of

the discretization scheme. This is not true for an early-lumping approach, where a

more accurate finite-dimensional approximation of the system dynamics results in a

different controller.

In contrast to the simplicity of an early-lumping design, the mathematical intricacies

inherent to late lumping can be a deterrent for many engineers. That said, the benefits

of late lumping have been demonstrated in numerous applications, thereby making it

a valuable technique in control engineering. One such example is the undoubtedly suc-

cessful backstepping method developed for linear distributed-parameter systems with

boundary actuation (see, e.g., Krstic and Smyshlyaev (2008) for an introduction). In

the last two decades, it allowed a new era to unfold for the boundary control of both

hyperbolic and parabolic PDEs. It can also be generalized to encompass bidirectionally

coupled PDE-ODE systems (see, e.g., Di Meglio et al. (2018); Deutscher et al. (2018);

Wang and Krstic (2022) for hyperbolic systems and Wang and Krstic (2019); Deutscher

and Gehring (2021) for parabolic systems). Numerous extensions were incorporated to

account for, e.g., delay robustness in Auriol et al. (2018), underactuation of PDEs in

Redaud et al. (2021), prescribed-time stability in Steeves et al. (2019), tracking control

with flatness-based open-loop design in Meurer and Kugi (2009); Meurer (2013) and

output regulation in Deutscher (2015), among other developments. However, backstep-

ping mainly relies on (mostly linear) integral state transformations. As a consequence,

an extension to linear PDEs that are coupled with nonlinear ODEs is not obvious.
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For a wide class of hyperbolic systems, alternative methods have emerged to over-

come the challenges associated with nonlinearities. For example, in Bekiaris-Liberis

and Krstic (2013, Ch. 5) and Bekiaris-Liberis and Krstic (2014), prediction-based con-

trollers are proposed for nonlinear ODEs interconnected with transport equations or

wave actuator dynamics, respectively. The approach taken in Irscheid et al. (2021c)

provides first insights into tracking control for heterodirectional 2×2 linear hyperbolic

PDEs that are bidirectionally coupled with nonlinear ODEs, with the generalization

to the n × n case presented in Irscheid et al. (2023). To deal with nonlinearities,

Irscheid et al. (2021c) and Irscheid et al. (2023) use online predictions in the control

and observer designs that follow from the solution of associated Cauchy problems. It

is worth noting that Irscheid et al. (2022b) shows the equivalence with backstepping in

the linear case, where online predictions are superfluous. This is in line with the find-

ings in Strecker and Aamo (2017), which proposes a prediction-based output feedback

method for 2 × 2 heterodirectional semilinear hyperbolic PDEs. Moreover, Strecker

et al. (2022) and Irscheid et al. (2022a) demonstrate the validity of prediction-based

methods when nonlinear terms are allowed in both the PDE and the ODE. Further-

more, the flatness-based feedback design for linear hyperbolic PDE-ODE systems in

Woittennek (2013); Gehring and Woittennek (2022) has been successfully extended to

the case of nonlinear boundary ODEs in Woittennek et al. (2022). Therein, flatness al-

lows for a parameterization of system solutions by the trajectory of a flat output, upon

which a state transformation into a hyperbolic controller form is constructed. This

allows for a straightforward control design by assigning an appropriate closed-loop

dynamics.

It should be noted that flatness-based parameterizations find use in numerous appli-

cations of open-loop control designs for both hyperbolic and parabolic systems (see,

e.g., Rudolph (2003)). As stated before, Woittennek (2013); Woittennek et al. (2022)

deduce feedback controllers from flatness-based parameterizations in the hyperbolic

case. This raises the question, whether such parameterizations are the key to better

understand the closed-loop control of parabolic systems as well and, thus, allow for an

extension to the nonlinear case. For the latter system class, flatness-based open-loop

controllers already exist and are derived by solving an associated nonlinear Cauchy

problem (see, e.g., Lynch and Rudolph (2002); Schörkhuber et al. (2012, 2013)). How-

ever, up until most recently, flatness-based parameterizations had not been used for

late-lumping closed-loop control designs, even for the linear examples considered in,

e.g., Fliess et al. (1998); Laroche et al. (1998, 2000). To the best knowledge of the

author, Irscheid et al. (2024) marks the first such use. Therein, a novel strategy is

developed for controlling a linear reaction-diffusion equation that is cascaded with

nonlinear ODEs at its unactuated boundary. Given the intricate nature of this prob-

lem, it had not been previously addressed in the existing literature. It is noteworthy

that, for linear systems, the resulting control law coincides with the one obtained with

backstepping (see, e.g., Smyshlyaev and Krstic (2004); Krstic (2009)).
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In general, there is a scarcity of results on the control of nonlinear parabolic PDEs:

Meurer and Zeitz (2005) proposes flatness-based open-loop control combined with an

early-lumping feedback design and Bekiaris-Liberis and Vazquez (2019) suggests an

output-feedback control for a class of Hamilton-Jacobi PDEs. For stabilizing semilin-

ear parabolic plants comprising Volterra series nonlinearities, a nonlinear state trans-

formation based on Volterra kernels is proposed in Vazquez and Krstic (2008a,b).

The main body of this thesis is based on the aforementioned publications of the author,

especially Irscheid et al. (2023) and Irscheid et al. (2024). The following section presents

a concise overview of the central results and methodological contributions.

1.2 Contributions of this work

This work presents new findings on the boundary control of linear hyperbolic or

parabolic PDEs that are interconnected with nonlinear ODEs at the unactuated bound-

ary. For both types of PDEs it offers a unifying perspective by establishing a control

strategy based on the formulation of an appropriate Cauchy problem. Its solution is uti-

lized to construct a nonlinear state transformation, which maps the plant into a desired

target system. Interestingly, this state transformation reduces to a Volterra integral

transformation for linear systems, which coincides with the well-known backstepping

transformation (see, e.g., Krstic (2009) and Deutscher et al. (2017) for parabolic and

hyperbolic PDE-ODE systems, respectively).

The results of this work exploit flatness-based parameterizations of the PDE subsystems

in order to solve the corresponding Cauchy problems. Contrary to the ones used in the

context of flatness-based open-loop control designs (see, e.g., Rudolph and Woittennek

(2008)), the Cauchy problems considered here are defined for an auxiliary variable that

is excited by the system state. This facilitates the introduction of a state transformation

in the spirit of backstepping. As such, the methodology chosen in this work makes use

of flatness-based parameterizations and concepts from backstepping. This differs from

existing research combining the two, wherein flatness is typically used for an open-loop

control design and a subsequent backstepping design stabilizes the tracking error (see,

e.g., Meurer and Kugi (2009)). Other works using flatness-based parameterizations

for a closed-loop control design are either restricted to the hyperbolic case (see, e.g.,

Woittennek (2013); Gehring et al. (2023)) or deploy an early-lumping approach (see,

e.g., Meurer and Zeitz (2005)). In the latter, a finite-dimensional system approximation

is obtained by truncating the flatness-based parameterization of the control input. In

contrast, the design presented here yields a late-lumping controller.

Besides meeting the aforementioned control objective, this thesis lays down the ground-

work to facilitate the development of new methods for a larger system class. For

instance, the fundamental principles involved in the boundary control for hyperbolic
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PDE-ODE systems are transferred in Irscheid et al. (2021b, 2023) to a corresponding

observer design based on boundary measurements. Another example is the prescribed-

time controller developed in Irscheid et al. (2022a) for a semilinear PDE-ODE system.

It can be reasonably deduced that Irscheid et al. (2024) enables similar advancements

in the parabolic case. These and numerous other interesting questions remain open,

and new problems have emerged as an implication of this thesis.

The constructive approach pursued in this work has limitations with regards to the

mathematical rigor such as a thorough investigation of stability, convergence of series

and other mathematical details. Nevertheless, these limitations do not invalidate the

overall significance of this work. Moreover, the primary findings focus on the new

perspectives for boundary control and highlight the opportunities for further improve-

ments. Yet, it is of utmost importance to pursue a careful investigation of the details

that come short in this thesis within a suitable mathematical framework. In fact, a

number of significant obstacles to the further development of the proposed approach

have been identified.

1.2.1 Contributions for hyperbolic systems

The central findings on hyperbolic PDE-ODE systems have been published in

(H1) Irscheid, A., Gehring, N., and Rudolph, J. (2021c). Trajectory tracking control for

a class of 2×2 hyperbolic PDE-ODE systems. IFAC-PapersOnLine, 54(9):416–

421,

(H2) Irscheid, A., Gehring, N., Deutscher, J., and Rudolph, J. (2021b). Observer design

for 2×2 linear hyperbolic PDEs that are bidirectionally coupled with nonlinear

ODEs. In 2021 European Control Conference (ECC), pages 2506–2511,

(H3) Irscheid, A., Gehring, N., Deutscher, J., and Rudolph, J. (2022b). Tracking

control for 2×2 linear heterodirectional hyperbolic PDEs that are bidirectionally

coupled with nonlinear ODEs. In Auriol, J., Deutscher, J., Mazanti, G., and

Valmorbida, G., editors, Advances in Distributed Parameter Systems, pages 117–

142. Springer,

(H4) Irscheid, A., Espitia, N., Perruquetti, W., and Rudolph, J. (2022a). Prescribed-

time control for a class of semilinear hyperbolic PDE-ODE systems. IFAC-

PapersOnLine, 55(26):47–52

and

(H5) Irscheid, A., Deutscher, J., Gehring, N., and Rudolph, J. (2023). Output regula-

tion for general heterodirectional linear hyperbolic PDEs coupled with nonlinear

ODEs. Automatica, 148:110748.
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In particular, (H1) introduced first results concerning tracking control for linear het-

erodirectional 2× 2 hyperbolic PDEs with boundary actuation and bidirectional cou-

pling with a nonlinear ODE at the unactuated boundary. Further developments in

(H3) embedded the design in a systematic framework and characterized the control

strategy by the solution of a Cauchy problem. Inspired by the latter, the proposed

method is coined solution-based control. Moreover, (H3) also proved the equivalence

to the backstepping controller from Deutscher et al. (2017) in the special case of linear

systems. For the same system class with collocated measurement, the first solution-

based observer design was established in (H2). A generalization of both control and

observer designs to the case of n × n PDEs was proposed in (H5). Therein, an out-

put regulation problem is solved in the presence of disturbances by taking advantage

of solution-based methods. In fact, the results therein can be easily adjusted to de-

sign a trajectory tracking controller instead, as presented in Chapter 2 of this thesis.

Furthermore, it is shown that a trivial modification of the design yields additional

improvements of the results in (H5) (or equivalently Irscheid et al. (2023)).

It is worth noting that the solution-based method is not restricted to linear PDE

subsystems: (H4) presented a prescribed-time controller for a semilinear PDE that is

bidirectionally coupled with a nonlinear ODE. However, the system class considered in

the present work comprises linear PDE subsystems for simplicity of presentation.

1.2.2 Contributions for parabolic systems

Transferring the solution-based control strategy developed for hyperbolic PDE-ODE

systems onto the parabolic case resulted in the publication

(P1) Irscheid, A., Gehring, N., Deutscher, J., and Rudolph, J. (2024). Stabilizing

nonlinear ODEs with diffusive actuator dynamics. IEEE Control Syst. Lett.,

8:1259–1264.

It solves the stabilization problem for a (scalar) linear parabolic PDE with nonlinear

boundary dynamics. To the best knowledge of the author, this problem had not been

considered in the literature before. By that, the preliminary results in (P1) are of

great significance for the boundary control of nonlinear parabolic PDE-ODE systems.

Moreover, in the linear case, (P1) shows the equivalence to the backstepping method

(see, e.g., Krstic (2009)). Chapter 3 revisits the contents of (P1) (or equivalently

Irscheid et al. (2024)) to give an outline of solution-based control for parabolic PDE-

ODE systems.

The central idea of the proposed design is inspired by the Cauchy problems that are

well-known in the context of flatness-based open-loop control design (see, e.g., Fliess

et al. (1998); Laroche et al. (1998)). Defining an appropriate (linear) Cauchy prob-

lem that depends on the system state makes it possible to deduce a nonlinear state

transformation. It is meticulously designed to map the plant into a form that greatly
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facilitates the design of a stabilizing state feedback. The latter only requires the ex-

istence of a suitable controller for the nonlinear ODE subsystem. In addition to this

inherent assumption, only a set of technical requirements is imposed. Concerning the

practicability of the design, (P1) proposes a numerical scheme for implementing the

control law.

1.3 Organization

The main body of this thesis comprises Chapters 2 and 3 that are concerned with hy-

perbolic and parabolic PDE-ODE systems, respectively. Both chapters briefly present

the respective outline of Irscheid et al. (2023) and Irscheid et al. (2024) in order to give

an intuitive understanding of the developed methods.

Chapter 2 revisits the publication Irscheid et al. (2023) to introduce the central idea

of the proposed control strategy. The methods therein allow for the derivation of

tracking controllers for a general class of heterodirectional linear hyperbolic PDEs

that are bidirectionally coupled with nonlinear ODEs at the unactuated boundary.

Furthermore, slight modifications of the published results achieve a stabilization of the

PDE subsystem in the theoretically minimal time. It is shown that this improvement

of the result in Irscheid et al. (2023) stems from a straightforward modification of the

design.

The insights gained for the control of hyperbolic systems are then adapted to the

parabolic case. In particular, Chapter 3 encompasses the strategy proposed in Irscheid

et al. (2024) for the control of parabolic PDE-ODE systems. The chapter starts with an

introduction of a novel perspective for the control design in the linear case and shows

its equivalence to existing backstepping controllers. This is followed by a discussion of

the modifications necessary to account for a nonlinear ODE subsystem that is cascaded

with a linear reaction-diffusion equation.

To conclude, Chapter 4 summarizes the findings and implications of this work, high-

lights open problems and offers directions for future research. Additionally, the effec-

tiveness of the theory developed in this thesis is demonstrated in a numerical example

on cooperative transportation with heavy ropes. Finally, the peer-reviewed and pub-

lished journal papers Irscheid et al. (2023) and Irscheid et al. (2024) are attached in

Chapter 5.



Chapter 2

Hyperbolic systems

The solution-based control design for hyperbolic systems was first introduced in Irscheid

et al. (2021c) as a prediction-based control strategy that delivered preliminary results

for a previously unsolved problem. In particular, it yields a tracking controller for linear

heterodirectional 2 × 2 hyperbolic PDEs with boundary actuation and bidirectional

coupling with a nonlinear ODE at the unactuated boundary. The method was further

developed in Irscheid et al. (2022b) and, in the linear case, shown to be equivalent

to the backstepping controller from Deutscher et al. (2017). As such, solution-based

control is considered an extension of the latter. Furthermore, the first solution-based

observer design was proposed in Irscheid et al. (2021b) for the same system class with

collocated measurement. A generalization of both control and observer designs to the

case of n × n PDEs was proposed in Irscheid et al. (2023) in the context of output

regulation in the presence of disturbances. Moreover, the solution-based method is

modular in the sense that it embeds a known control method for ODEs in a framework

for PDE-ODE systems. For instance, Irscheid et al. (2022a) presented a prescribed-

time controller for a semilinear PDE that is bidirectionally coupled with a nonlinear

ODE by using a known prescribed-time controller for the ODE subsystem.

The foundation of solution-based control revolves around finding a particularly crafted

Cauchy problem, the solution of which determines the control input. While the design

of the Cauchy problem remains relatively simple, guaranteeing its well-posedness be-

comes more involved with increasing system complexity. This is the main disadvantage

of the method. In general, solving the Cauchy problem for hyperbolic systems necessi-

tates a state predictor. The emergence of such predictors is not surprising and can be

traced back to the inherent nature of hyperbolic systems modeling time delays. In a

linear setting, an analytical solution of the Cauchy problem can be obtained in terms

of the system state and, thus, online prediction is avoided. However, for nonlinear

systems, such expressions are hardly possible to find. To overcome this, the controller

relies on a numerical scheme that has to be implemented online. Numerical predic-
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tors have previously been proposed in Bekiaris-Liberis and Krstic (2013, Ch. 5) and

Bekiaris-Liberis and Krstic (2014) for the stabilization of PDE-ODE cascades compris-

ing nonlinear ODEs with actuator dynamics modeled as transport equations or wave

equations, respectively. Additionally, they are also utilized in Strecker et al. (2022)

to solve the output regulation problem for semilinear and quasilinear 2× 2 hyperbolic

PDE-ODE systems.

Beside the aforementioned relation to backstepping control for linear PDE-ODE sys-

tems (see, e.g., Di Meglio et al. (2018); Deutscher et al. (2019)), there exists a close

relation to flatness-based control (see, e.g., Woittennek (2013)). Using differential pa-

rameterizations of system trajectories, the latter utilizes a controller canonical form

that is well-suited for control design. For the nonlinear SISO system considered in

Woittennek et al. (2022), obtaining the state of the canonical form requires the (on-

line) solution of integral equations. In fact, they could be reformulated and interpreted

as online predictors, which, however, is not necessary in the context of flatness-based

parameterizations. It is worth noting that generalizing the controller canonical form

to the MIMO case considered here represents one of the relevant research frontiers of

flatness-based methods.

In what follows, the outline of solution-based control is introduced briefly for a non-

linear hyperbolic system. The main results are stated in Irscheid et al. (2023) and,

thus, this chapter is intended to offer an intuitive presentation of the method. How-

ever, the contents of Irscheid et al. (2023) are slightly adjusted to solve a trajectory

tracking problem instead of output regulation. In order to further demonstrate the

modular nature of solution-based control, a trivial modification of the control design

in Irscheid et al. (2023) is shown to yield improved performance in closed loop. In

particular, the asymptotically stable closed-loop system is characterized by parallel

transport equations (instead of a cascade) to impose minimal convergence time on the

infinite-dimensional subsystem (similar to, e.g., Auriol and Di Meglio (2016) for linear

PDEs).

2.1 Problem formulation

Instead of solving an output regulation problem in the presence of disturbances as done

in Irscheid et al. (2023), a trajectory tracking problem is solved here for the undisturbed

system. Additionally, in comparison with the system class considered in Irscheid et al.

(2023), the nonlinearity that appears at the unactuated boundary condition depends

not only on the ODE state but also on the PDE state. Note that these adjustments

do not necessitate a significant modification of the design strategy.
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2.1.1 System class

Consider a class of hyperbolic PDE-ODE systems of the form

ẇ(t) = f(w(t),x−(0, t)) (2.1a)

x+(0, t) = Q0x−(0, t) + c(w(t),x−(0, t)) (2.1b)

∂tx(z, t) = Λ(z)∂zx(z, t) + A(z)x(z, t) (2.1c)

x−(1, t) = Q1x+(1, t) + u(t) (2.1d)

consisting of a nonlinear ODE subsystem (2.1a) with the lumped state w(t) ∈ Rnw and

a linear heterodirectional hyperbolic PDE subsystem (2.1b)–(2.1d) with the distributed

state x(z, t) ∈ Rn defined for z ∈ [0, 1] and t ≥ 0. The subsystems are bidirectionally

coupled by means of the vector field f in (2.1a) and the function c in (2.1b), that are

both locally Lipschitz continuous w.r.t. the ODE state w(t) on any domain of interest.

The function c is also locally Lipschitz continuous w.r.t. its second argument x−(0, t).

Furthermore, let

Λ(z) = diag(λ−1 (z), . . . , λ
−
n−(z), λ

+
1 (z), . . . , λ

+
n+
(z)) (2.2a)

with strictly descending (and continuously differentiable) transport speeds

λ−1 (z) > · · · > λ−n−(z) > 0 > λ+1 (z) > · · · > λ+n+
(z) (2.2b)

for z ∈ [0, 1] and define the corresponding state components1 x−(z, t) = ET
−x(z, t) ∈

Rn− , x+(z, t) = ET
+x(z, t) ∈ Rn+ with n = n− + n+ as well as

E− =

[
In−

0

]
∈ Rn×n− , E+ =

[
0

In+

]
∈ Rn×n+ . (2.3)

This implies that x−(z, t) and x+(z, t), coupled at the boundaries via Q0 ∈ Rn+×n−

and Q1 ∈ Rn−×n+ , describe the transport in the negative and positive z-direction,

respectively. Moreover, define the functions

ϕ−
i (z) =

∫ z

0

1

λ−i (ζ)
dζ > 0, z ∈ [0, 1] (2.4a)

for i ∈ {1, . . . , n−} to obtain the time delay

∆−
i = ϕ−

i (1) (2.4b)

for the transport of the i-th component of x−(z, t) between z = 1 and z = 0 as well as

the functions

ϕ+
i (z) =

∫ z

0

−1

λ+i (ζ)
dζ > 0, z ∈ [0, 1] (2.4c)

1In the following, for any vector x ∈ Rn, define x− = ET
−x ∈ Rn− and x+ = ET

+x ∈ Rn+ .
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0 1 z

x−(z, t)

x+(z, t)

u(t)

ODE
w(t)

Figure 2.1: Schematic depiction of the PDE-ODE system (2.1).

for i ∈ {1, . . . , n+} to obtain the respective time delay

∆+
i = ϕ+

i (1) (2.4d)

for the transport of the i-th component of x+(z, t) between z = 0 and z = 1. Note

that the inverse functions ψ−
i with ψ−

i (ϕ
−
i (z)) = z for i ∈ {1, . . . , n−} and ψ+

i with

ψ+
i (ϕ

+
i (z)) = z for i ∈ {1, . . . , n+} exist since both ϕ−

i and ϕ+
i are strictly monotonically

increasing. The in-domain coupling matrix A(z) = [aij(z)] with aij ∈ C0([0, 1]) is

assumed to satisfy aii(z) = 0, z ∈ [0, 1] for i ∈ {1, . . . , n}, which poses no restriction

(see, e.g., Hu et al. (2016)). The PDE-ODE system (2.1) with the input u(t) ∈ Rn− is

completed by initial conditions w(0) = w0 ∈ Rnw and piecewise continuous x(z, 0) =

x0(z) ∈ Rn. The system structure and the interconnections between the PDE and

ODE subsystems are illustrated in Figure 2.1.

Remark 2.1. System (2.1) describes the plant considered in Irscheid et al. (2023)

in the undisturbed case with a more general nonlinear function c in (2.1b). Here, c

depends not only on the ODE state w(t) but also on the boundary value x−(0, t).

The objective is to design a state feedback that stabilizes a sufficiently smooth reference

trajectory

t 7→ (wr(t),xr(·, t),ur(t)) (2.5)

that satisfies the system dynamics (2.1), i.e.

ẇr(t) = f(wr(t),x−,r(0, t)) (2.6a)

x+,r(0, t) = Q0x−,r(0, t) + c(wr(t),x−,r(0, t)) (2.6b)

∂txr(z, t) = Λ(z)∂zxr(z, t) + A(z)xr(z, t) (2.6c)

x−,r(1, t) = Q1x+,r(1, t) + ur(t). (2.6d)

In order to guarantee trajectory tracking with the solution-based approach, a set of

assumptions is imposed in the following.
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2.1.2 Assumptions

The solution-based controller proposed in Section 2.2 makes use of a coordinate change

that transforms the bidirectionally coupled PDE-ODE system (2.1) into a form suitable

for control. The design is based on the fact that the x−-subsystem is fully boundary-

actuated at z = 1 (cf. (2.1d)). This can be utilized to control not only the x−-subsystem

but also the nonlinear ODE subsystem and the x+-subsystem, that are both driven

by the boundary value x−(0, t) (see (2.1a) and (2.1b), respectively). In particular, the

control design for the nonlinear ODE subsystem (2.1a) can be traced back to prediction-

based methods for ODEs with delayed actuation. Hence, the following assumptions

are made in order to facilitate the design and to ensure its feasibility.

Assumption 2.1. The ODE subsystem (2.1a) is forward complete, i.e., there exists

a unique solution w(t) on R+
0 for all initial conditions and every (measurable locally

essentially) bounded x−(0, t) (see, e.g., Angeli and Sontag (1999)).

Note that forward completeness excludes finite escape time. Moreover, it is a typical

assumption for the control of nonlinear ODEs with delays in the actuation channel

(see, e.g., Bekiaris-Liberis and Krstic (2014)). The reason for this is the fact that a

control action at the boundary z = 1 acts on the ODE subsystem (2.1a) at z = 0 only

after a finite delay. In addition to that, Assumption 2.1 is essential for the control

design in Section 2.2 since the latter requires a prediction of the ODE state w(t) on a

(finite) time horizon.

Assumption 2.2. For reference trajectories wr(t) and x−,r(0, t) satisfying (2.1a), there

exists a tracking controller κ(t,w(t)) such that

ẇ(t) = f(w(t),κ(t,w(t))) (2.7)

implies global asymptotic stability of wr(t). Furthermore, let x−,r(0, t) = κ(t,wr(t))

with

lim
w(t)→wr(t)

∥κ(t,w(t))− x−,r(0, t)∥ = 0. (2.8)

Existence of a tracking controller κ(t,w(t)) for the nonlinear ODE subsystem (2.1a) in

the case of immediate actuation is necessary for designing a solution-based controller

for the PDE-ODE system (2.1). The explicit time dependence of κ(t,w(t)) represents

its dependence on the reference trajectory wr(t) and its derivatives. Furthermore, the

second part of the assumption is required to show that convergence of the ODE state

tracking error w(t) −wr(t) implies the same for the PDE state tracking error. For a

Lipschitz continuous κ(t,w(t)), condition (2.8) is always true. Note that the stated

property of global asymptotic convergence in Assumption 2.2 leads to global results for

the controlled PDE-ODE system (2.1). A locally stabilizing κ(t,w(t)) is also possible

in the context of the design in Section 2.2, however, the results would then be valid at

least locally for initial conditions w(0) and wr(0) in a subset of Rnw . In particular, the
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region of attraction would depend on the initial profile x(z, 0) as well. For simplicity,

only global results are pursued in the following, whereas for local results one may refer

to the arguments made in Irscheid et al. (2022b).

Remark 2.2. Assumptions 2.1 and 2.2 are always met in the case of stabilizable linear

time-invariant ODE subsystems (2.1a).

The remainder of this chapter is organized as follows. A solution-based tracking con-

troller is derived in the next section. The resulting feedback law necessitates a predic-

tion of the ODE state. Section 2.3 shows that the corresponding prediction problem

can be formulated as a nonlinear integro-differential equation and investigates its solv-

ability. An analysis of the tracking error in closed loop is given in Section 2.4, which

concludes the chapter.

2.2 Solution-based control design

The control design relies on the solution of a Cauchy problem of hyperbolic character.

More specifically, it is composed of PDEs that inherit the structure of the actuation

channel, i.e., the subsystem describing the transport from the actuated boundary at

z = 1 to the unactuated one at z = 0, however, the boundary condition is given at

z = 0. In fact, PDEs for a transport in the negative z-direction with a boundary

condition at z = 0 constitute a final value problem. Nevertheless, effectively, the

Cauchy problem is solved backward in time, which is why it is also referred to as an

inverse problem.

As depicted in Figure 2.1, the actuation channel, i.e., the x−-subsystem, and the

x+-subsystem are coupled due to the source term A(z)x(z, t) in (2.1c). Therefore,

it is of great benefit to simplify the coupling in (2.1c) before commencing with the

control design. For that, a preliminary coordinate transformation is introduced in

Section 2.2.1. The main part of the solution-based approach is then carried out in

Section 2.2.2 to decouple the PDE and ODE subsystems through yet another change

of coordinates. The latter is formulated with the help of the aforementioned hyperbolic

Cauchy problem. Afterwards, the control law is derived in Section 2.2.3 on the basis

of the structure of the transformed PDE-ODE system.

2.2.1 Preliminary backstepping transformation

The solution-based control design is significantly simplified through the use of the

invertible backstepping transformation2

x̃(z, t) = x(z, t)−
∫ z

0

K(z, ζ)x(ζ, t) dζ =: Tb[x(t)](z) (2.9)

2The square brackets in Tb[x(t)](z) stand for a functional dependence on x(z, t) w.r.t. the spatial

variable z.



2.2. Solution-based control design 15

(see, e.g., Krstic and Smyshlyaev (2008)) with the kernel K(z, ζ) ∈ Rn×n being the

unique piecewise C0-solution of the kernel equations

Λ(z)∂zK(z, ζ) + ∂ζ (K(z, ζ)Λ(ζ)) = K(z, ζ)A(ζ) (2.10a)

K(z, z)Λ(z)− Λ(z)K(z, z) = A(z) (2.10b)

K(z, 0)Λ(0)[E− + E+Q0] = A0(z), (2.10c)

that are defined on the domain 0 ≤ ζ ≤ z ≤ 1. Note that the matrix-valued equation

(2.10c) is considered to be a boundary condition only for those rows i and columns j

satisfying 1 ≤ i ≤ j ≤ n−, allowing to freely assign the corresponding elements a0,ij
of the matrix A0(z) ∈ Rn×n− , whereas the remainder of (2.10c) defines the remaining

elements of A0(z). In fact, choosing a0,ij(z) = 0 for 1 ≤ i ≤ j ≤ n− and z ∈ [0, 1]

results in ET
−A0(z) being strictly lower triangular and, hence, yields a simpler structure

of the PDE subsystem in transformed coordinates. This is a typical choice of boundary

conditions for the kernelK(z, ζ) that is commonly used in the context of linear systems,

where additional artificial conditions are imposed for uniqueness of the solution (see,

e.g., Hu et al. (2019) for more details).

The transformation (2.9) maps (2.1) into the intermediate PDE-ODE system

ẇ(t) = f(w(t), x̃−(0, t)) (2.11a)

x̃+(0, t) = Q0x̃−(0, t) + c(w(t), x̃−(0, t)) (2.11b)

∂tx̃(z, t) = Λ(z)∂zx̃(z, t) + A0(z)x̃−(0, t) +H(z)c(w(t), x̃−(0, t)) (2.11c)

x̃−(1, t) = ũ(t), (2.11d)

where

H(z) = K(z, 0)Λ(0)E+ (2.12)

and the state feedback

ũ(t) = Q1x+(1, t) + u(t)−
∫ 1

0

ET
−K(1, z)x(z, t) dz (2.13)

introduces the new input ũ(t) ∈ Rn− . The in-domain coupling term A(z)x(z, t), which

is present in (2.1c) in original coordinates, is replaced with a distributed coupling of the

boundary values x̃−(0, t) and w(t) on the PDE subsystem (2.11c) in transformed coor-

dinates by means of the terms A0(z)x̃−(0, t) and H(z)c(w(t), x̃−(0, t)). This coupling

structure is illustrated in Figure 2.2.

Recalling that ET
−A0(z) is strictly lower triangular, the PDE subsystem (2.11c) would

be a cascade of transport equations if it were not for the term H(z)c(w(t), x̃−(0, t)).

As a matter of fact, it is sufficient for control purposes to focus on the x̃−-subsystem

and, thus, the next transformation aims to decouple this subsystem from the ODE

state w(t).
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0 1 z

x̃−(z, t)

x̃+(z, t)

ũ(t)

ODE
w(t)

Figure 2.2: Schematic depiction of the intermediate PDE-ODE system (2.11).

2.2.2 Decoupling transformation

The central idea of the solution-based approach is the decoupling of the actuation

channel through a change of coordinates that is derived from the solution of a suitable

Cauchy problem. The latter comprises transport equations for a transport in the

negative z-direction with boundary conditions given at z = 0. It is regarded as an

inverse problem in the sense that the information at the boundary provides the solution

backward in time. This will be further clarified in Section 2.3.

Introduce the Cauchy problem

∂tχ̃−(z, t) = Λ−(z)∂zχ̃−(z, t) + ET
− (A0(z)x̃−(0, t) +H(z)c(w(t), x̃−(0, t))) (2.14a)

χ̃−(0, t) = κ(t,w(t)) (2.14b)

on the domain (z, t) ∈ [0, 1] × R+
0 , where the state feedback κ(t,w(t)) ∈ Rn− is the

one in Assumption 2.2 and Λ−(z) = ET
−Λ(z)E−. Analogously, define the notation

Λ+(z) = ET
+Λ(z)E+. Then, the decoupling transformation

x̆−(z, t) = x̃−(z, t)− χ̃−(z, t) (2.15a)

x̆+(z, t) = x̃+(z, t) (2.15b)

maps the intermediate PDE-ODE system (2.11) into the cascaded system

x̆−(1, t) = ũ(t)− χ̃−(1, t) (2.16a)

∂tx̆−(z, t) = Λ−(z)∂zx̆−(z, t) (2.16b)

ẇ(t) = f(w(t),κ(t,w(t)) + x̆−(0, t)) (2.16c)

x̆+(0, t) = Q0(κ(t,w(t)) + x̆−(0, t)) + c(w(t),κ(t,w(t)) + x̆−(0, t)) (2.16d)

∂tx̆+(z, t) = Λ+(z)∂zx̆+(z, t) + ET
+A0(z)(κ(t,w(t)) + x̆−(0, t))

+ ET
+H(z)c(w(t),κ(t,w(t)) + x̆−(0, t)). (2.16e)

As depicted in Figure 2.3, the x̆−-PDE (2.16b), which is fully boundary actuated

through (2.16a), is cascaded with the ODE subsystem (2.16c) as well as the x̆+-

subsystem (2.16d)–(2.16e). In fact, to achieve tracking control, it is sufficient to sta-

bilize the x̆−-subsystem. This is a trivial task if χ̃−(1, t) is known. For simplicity of
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0 1 z

x̆−(z, t)

x̆+(z, t)

ũ(t)− χ̃−(1, t)

ODE
w(t)

Figure 2.3: Schematic depiction of the system (2.16), where the x̆−-subsystem is cas-

caded with the ODE as well as with the x̆+-subsystem.

presentation, the subsequent design step assumes knowledge of the solution χ̃−(z, t) of

the inverse problem (2.14), which is discussed afterwards in Section 2.3.

Remark 2.3. Disregarding the differences between the system class (2.1) and the one

considered in Irscheid et al. (2023) (cf. Remark 2.1), the decoupling transformation

used here is novel. It stems from a trivial modification of the Cauchy problem (2.14). As

a consequence, the x̆−-PDE (2.16b) describes a system of parallel transport equations

(in the negative z-direction) that can be stabilized in the theoretically minimal time ∆−
n−

(see the closed loop (2.22) in Section 2.2). This is a significant improvement of the

result in Irscheid et al. (2023), where the corresponding transport equations are cascaded

and, thus, the convergence time is the sum of all transport delays ∆−
i , i ∈ {1, . . . , n−}.

Remark 2.4. Although superfluous for the control design, one could try to eliminate

the influence of the boundary values x̆−(0, t) and w(t) on the x̆+-subsystem (2.16d)–

(2.16e) through an extension of the inverse problem (2.14). In particular, define the

inverse problem

∂tχ̃(z, t) = Λ(z)∂zχ̃(z, t) + A0(z)x̃−(0, t) +H(z)c(w(t), x̃−(0, t)) (2.17a)

χ̃−(0, t) = κ(t,w(t)) (2.17b)

χ̃+(0, t) = Q0x̃−(0, t) + c(w(t), x̃−(0, t)) (2.17c)

instead of (2.14), and replace (2.15b) with

x̆+(z, t) = x̃+(z, t)− χ̃+(z, t) (2.18)

to obtain the transformed system

ẇ(t) = f(w(t),κ(t,w(t)) + x̆−(0, t)) (2.19a)

x̆+(0, t) = 0 (2.19b)

∂tx̆(z, t) = Λ(z)∂zx̆(z, t) (2.19c)

x̆−(1, t) = ũ(t)− χ̃−(1, t) (2.19d)

instead of (2.16). Despite the result (2.19) having a simpler structure in comparison

with (2.16), the subsequent control design remains unaffected by the simplification of
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the x̆+-subsystem. As the benefit of this adjustment is questionable, using the extended

inverse problem (2.17) instead of (2.14) will not be pursued further.

2.2.3 Control law

From the structure of the cascaded PDE-ODE system (2.16) it is obvious that the

control law

ũ(t) = χ̃−(1, t), (2.20)

or equivalently

u(t) = χ̃−(1, t)−Q1x+(1, t) +

∫ 1

0

ET
−K(1, z)x(z, t) dz (2.21)

(cf. (2.13)), stabilizes the x̆−-subsystem in finite time ∆−
n− (recall its definition in

(2.4b)). In fact, the control law (2.20) yields the closed loop

x̆−(1, t) = 0 (2.22a)

∂tx̆−(z, t) = Λ−(z)∂zx̆−(z, t) (2.22b)

ẇ(t) = f(w(t),κ(t,w(t)) + x̆−(0, t)) (2.22c)

x̆+(0, t) = Q0(κ(t,w(t)) + x̆−(0, t)) + c(w(t),κ(t,w(t)) + x̆−(0, t)) (2.22d)

∂tx̆+(z, t) = Λ+(z)∂zx̆+(z, t) + ET
+A0(z)(κ(t,w(t)) + x̆−(0, t))

+ ET
+H(z)c(w(t),κ(t,w(t)) + x̆−(0, t)) (2.22e)

(see (2.16)). Special emphasis is given to the fact that

x̆−,i(z, t) = 0, t > ∆−
i (2.23)

for i ∈ {1, . . . , n−}, which implies

x̆−(z, t) = 0, t > ∆−
n− (2.24)

for z ∈ [0, 1]. This differs from the results in Irscheid et al. (2023), where the finite-time

convergence occurs only for t >
∑n−

i=1∆
−
i , as mentioned in Remark 2.3.

The next section is concerned with the solution of the inverse problem (2.14). More

specifically, its solution will be shown to have a functional dependence on the PDE

state x(z, t) and the ODE state w(t). Consequently, the control law (2.21) can be

represented as a state feedback.

2.3 Solution of the inverse problem

For i ∈ {1, . . . , n−}, let χ̃i(z, t) and κi(t,w(t)) as well as aT
0,i(z) and hT

i (z) be the i-th

entry of χ̃−(z, t) and κ(t,w(t)) as well as the i-th row of A0(z) and H(z), respectively.
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Then, the (formal) solution χ̃−(z, t) of the inverse problem (2.14) is composed of the

entries

χ̃i(z, t) = κi
(
t+ ϕ−

i (z),w
(
t+ ϕ−

i (z)
))

−
∫ ϕ−

i (z)

0

aT
0,i

(
ψ−
i

(
ϕ−
i (z)− σ

))
x̃−(0, t+ σ) dσ

−
∫ ϕ−

i (z)

0

hT
i

(
ψ−
i

(
ϕ−
i (z)− σ

))
c(w(t+ σ), x̃−(0, t+ σ)) dσ. (2.25)

This result follows from using the method of characteristics. In order to evaluate the

formal solution (2.25) for i ∈ {1, . . . , n−} and z ∈ [0, 1], the boundary values x̃−(0, t+τ)

and w(t+ τ) at the boundary z = 0 have to be predicted for τ ∈ [0,∆−
n− ]. An explicit

method is presented in Irscheid et al. (2023) for determining the required predictions

on the basis of the PDE state x̃(z, t) and the ODE state w(t), both available at time t.

The nature of the underlying prediction problem is discussed briefly in the following.

2.3.1 State prediction at the unactuated boundary

To refer to the predicted ODE state that is determined on the basis of the available

system state at time t, introduce the notation

wp(τ ; t) = w(t+ τ), (2.26)

where t plays the role of a parameter and w(t + τ) always exists by Assumption 2.1.

A substitution of the ODE state w(t+ τ) with wp(τ ; t) in (2.11a) yields the prediction

problem
dwp

dτ
(τ ; t) = f(wp(τ ; t), x̃−(0, t+ τ)) (2.27)

with the initial value wp(0; t) = w(t). Hence, predicting the ODE state w(t + τ) for

τ ∈ Ip = [0,∆−
n− ] amounts to the solution of (2.27) on Ip. In what follows, it is shown

that the future values x̃−(0, t+ τ), appearing in the prediction problem (2.27), can be

written as a functional of wp(τ ; t) and x̃−(z, t) for fixed t.

Obtaining the future values x̃−(0, t + τ) is closely related to the solution (2.25) of

the inverse problem (2.14). Applying the method of characteristics to solve (2.11c)

component-wise yields the relation

x̃−,i(0, t+ τ) = x̃−,i(ψ
−
i (τ), t) +

∫ τ

0

aT
0,i

(
ψ−
i (τ − σ)

)
x̃−(0, t+ σ) dσ

+

∫ τ

0

hT
i

(
ψ−
i (τ − σ)

)
c(w(t+ σ), x̃−(0, t+ σ)) dσ (2.28)

for τ ∈ [0,∆−
i ] and i ∈ {1, . . . , n−}. However, the corresponding solution branch for

τ ∈ (∆−
i ,∆

−
n− ] is more involved and can be obtained on the basis of the following

observation.
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Determining the i-th entry ũi(t) of ũ(t) in the control law (2.20) requires a prediction

until τ = ∆−
i only (cf. (2.25) for z = 1). This infers that the solution branch (2.28)

is sufficient to assign ũi(t) = χ̃−,i(1, t) in (2.20). In fact, under the assumption that

the latter holds for all future times, i.e., that the control law (2.20) is implemented

for all t ≥ 0, the closed-loop system (2.22) can be used to determine x̃−,i(0, t + τ) for

τ ∈ (∆−
i ,∆

−
n− ]. This is clarified in the next step.

Evaluating the transformation (2.15a) at z = 0 and shifting time by τ results in

x̃−(0, t+ τ) = χ̃−(0, t+ τ) + x̆−(0, t+ τ). (2.29)

By using this together with (2.14b) and (2.23), it follows that

x̃−,i(0, t+ τ) = κi(t+ τ,w(t+ τ)) (2.30)

for τ ∈ (∆−
i ,∆

−
n− ] and i ∈ {1, . . . , n−} in closed loop under the assumption that the

control law (2.20) holds for all t ≥ 0. Hence, in order to obtain the future values

x̃−(0, t + τ) for τ ∈ Ip, the solution branches (2.28) and (2.30) are combined. Both

branches are illustrated in Figure 2.4 for the cases i = 1, i ∈ {2, . . . , n− − 1} as well

as i = n−, wherein the variables τ Ii ∈ [0,∆−
i ] and τ

II
i ∈ (∆−

i ,∆
−
n− ] are introduced to

differentiate between boundary values that correspond to both solution branches. Note

that the solution branch (2.28) is sufficient for the case i = n−.

Remark 2.5. The second solution branch (2.30) is obtained component-wise in closed

loop on the basis of (2.23) at z = 0 after the time shift t 7→ t + τ for τ ∈ (∆−
i ,∆

−
n− ]

and i ∈ {1, . . . , n−}. Although the prediction problem (2.27) necessitates knowledge of

x̃−,i(0, t+ τ) only, it is possible to obtain x̃−,i on the entire region in Figure 2.4 that is

highlighted in blue. This computation can be done using the method of characteristics.

Consequently, one obtains trajectories ũi(t+ τ), which denote the i-th entry of ũ(t+ τ)

for τ ∈ (∆−
i ,∆

−
n− ], as illustrated in Figure 2.4. In other words, future input trajectories

at z = 1 are determined by the desired closed-loop behavior at z = 0 in the future.

This can be interpreted as quasi-static state feedback, tracing back the terminology to

the context of flatness-based control of nonlinear ODEs (see, e.g., Rudolph (2021) for

a detailed description). Note that an alternative approach could be a dynamic state

feedback in the spirit of Knüppel et al. (2014), which necessitates state extensions.

In summary, introducing the abbreviation

c̃i(z,w(t), x̃−(0, t)) = aT
0,i(z)x̃−(0, t) + hT

i (z)c(w(t), x̃−(0, t)) (2.31)

yields

x̃−,i(0, t+ τ) =


x̃−,i(ψ

−
i (τ), t)

+
∫ τ

0
c̃i
(
ψ−
i (τ − σ),w(t+ σ), x̃−(0, t+ σ)

)
dσ, τ ∈ [0,∆−

i ]

κi(t+ τ,w(t+ τ)), τ ∈ (∆−
i ,∆

−
n− ]

(2.32)
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zx̃−,1(z, t)

x̃−,1(0, t+ τ I1 )

x̃−,1(0, t+ τ II1 )

ũ1(t+ τ II1 )

0 1

t+∆−
1

t

t+∆−
n−

zx̃−,i(z, t)

x̃−,i(0, t+ τ Ii )

x̃−,i(0, t+ τ IIi )

ũi(t+ τ IIi )

0 1

t+∆−
i

t

t+∆−
n−

zx̃−,n−(z, t)

x̃−,n−(0, t+ τ In−)

0 1
t

t+∆−
n−

Figure 2.4: Composition of the solution branches (2.28), highlighted in red, and (2.30),

highlighted in blue, for the cases i = 1, i ∈ {2, . . . , n− − 1} and i = n−. Therein, ũi(t)

denotes the i-th entry of ũ(t), τ Ii ∈ [0,∆−
i ] and τ

II
i ∈ (∆−

i ,∆
−
n− ].
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for τ ∈ Ip and i ∈ {1, . . . , n−}. Inserting (2.32) into (2.27) and taking (2.26) into

account results in the nonlinear integro-differential equation

dwp

dτ
(τ ; t) = f(wp(τ ; t), x̃−(0, t+ τ)) (2.33a)

x̃−,i(0, t+ τ) =


x̃−,i(ψ

−
i (τ), t)

+
∫ τ

0
c̃i
(
ψ−
i (τ − σ),wp(σ; t), x̃−(0, t+ σ)

)
dσ, τ ∈ [0,∆−

i ]

κi(t+ τ,wp(τ ; t)), τ ∈ (∆−
i ,∆

−
n− ]

(2.33b)

for wp(τ ; t), the solvability of which is investigated in the following on Ip for a given

initial condition wp(0; t) = w(t).

2.3.2 Solvability of the nonlinear integro-differential equation

Note that the results in Irscheid et al. (2023) guarantee existence and uniqueness of the

solution of (2.33) or equivalently (2.27) and (2.32). Nevertheless, the difference of the

system classes under investigation (see Remark 2.1) necessitates a preceding analysis

of (2.32).

For that, let τ ∈ [0,∆−
1 ] and recall that ∆−

1 < ∆−
i for i ∈ {2, . . . , n−} (cf. (2.4a)–(2.4b)).

Therefore, for all i ∈ {1, . . . , n−}, the first solution branch in (2.32) can be used to

obtain x̃−,i(0, t+τ). Note that this requires the solution of a nonlinear Volterra integral

equation of the second kind for x̃−,i(0, t + τ). Moreover, due to the coupling between

all entries of x̃−(0, t) by means of c̃i(z,w(t), x̃−(0, t)), the resulting n− equations have

to be solved simultaneously. Hence, one obtains a vector-valued nonlinear Volterra

integral equation of the second kind for x̃−(0, t+ τ). However, this poses no restriction

as the solvability of the integral equation is guaranteed by the Lipschitz continuity

of c̃i(z,w(t), x̃−(0, t)) (defined in (2.31)) w.r.t. its third argument and the continuity

w.r.t. its remaining arguments (see, e.g., Linz (1985, Ch. 4) for more details). A similar

argument can be made for all τ ∈ Ip after combining both solution branches in (2.32).

Hence, the latter can be solved for x̃−(0, t+ τ) for all τ ∈ Ip. Altogether, this makes it

possible to obtain a general nonlinear Volterra integro-differential equation (GNVIDE)

in the explicit form presented in Irscheid et al. (2023), for which existence of a unique

solution is shown. Therefore, this will not be further pursued here.

2.3.3 Interpretation of the state dependency

Predicting the system state at z = 0 amounts to the solution of the GNVIDE (2.33).

It can be shown, at least formally, that its solution wp(τ ; t) and similarly x̃−(0, t+ τ)

both not only depend on the ODE state w(t) but also have a functional dependence

on the PDE state x̃(z, t). Inserting this into (2.25), i.e., the entries χ̃i(z, t) of the
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solution χ̃−(z, t) of the inverse problem (2.14), yields the same functional dependence

for χ̃−(z, t). This may be denoted as

χ̃−(z, t) = X̃−[x̃(t),w(t)](z). (2.34)

Therefore, the decoupling transformation (2.15) can be written as a state transforma-

tion of the form

x̆(z, t) = x̃(z, t)− E−X̃−[x̃(t),w(t)](z) =: Td[x̃(t),w(t)](z). (2.35)

Note that a more explicit representation of this state dependency is omitted here.

Inverse transformation

The inverse of the decoupling transformation (2.15), i.e.,

x̃−(z, t) = x̆−(z, t) + χ̃−(z, t) (2.36a)

x̃+(z, t) = x̆+(z, t) (2.36b)

is investigated in what follows. Particular focus lies on its representation as an inverse

state transformation x̃(z, t) = T −1
d [x̆(t),w(t)](z), mapping (2.16) into (2.11). For that,

the Cauchy problem (2.14) has to be rewritten in terms of x̆(z, t). In particular, replace

x̃−(0, t) in (2.14) with κ(t,w(t)) + x̆−(0, t) to obtain

∂tχ̃−(z, t) = Λ−(z)∂zχ̃−(z, t) + ET
−A0(z)(κ(t,w(t)) + x̆−(0, t))

+ ET
−H(z)c(w(t),κ(t,w(t)) + x̆−(0, t)) (2.37a)

χ̃−(0, t) = κ(t,w(t)). (2.37b)

Obviously, the latter can be solved component-wise with the method of characteristics

(cf. (2.25)) since it has the same dependencies as (2.14). In fact, by the same reasoning

as in Section 2.3.1, the corresponding prediction problem results in the GNVIDE

dwp

dτ
(τ ; t) = f(wp(τ ; t),κ(t,wp(τ ; t)) + x̆−(0, t+ τ)) (2.38a)

x̆−,i(0, t+ τ) =


x̆−,i(ψ

−
i (τ), t), τ ∈ [0,∆−

i ]

0, τ ∈ (∆−
i ,∆

−
n− ]

(2.38b)

(cf. (2.33)) for wp(τ ; t) with τ ∈ Ip and i ∈ {1, . . . , n−}. This result is an immediate

consequence of (2.16c) with the application of the method of characteristics on (2.22a)–

(2.22b) in closed loop. The solvability of (2.38) with the initial condition wp(0; t) =

w(t) can be concluded analogously to Section 2.3.2. By that, the solution of (2.38)

depends on the ODE state w(t) and has a functional dependence on the PDE state

x̆(z, t). As such, the inverse transformation (2.36) is indeed a state transformation of

the form x̃(z, t) = T −1
d [x̆(t),w(t)](z).
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State feedback

In light of the expression (2.34) for the solution χ̃−(z, t) of the inverse problem (2.14)

and the preliminary backstepping transformation (2.9), the control law (2.21) is a

feedback of the ODE state w(t) and the PDE state x(z, t) in original coordinates. In

particular, (2.21) can be written as

u(t) = X̃−
[
Tb[x(t)],w(t)

]
(1)−Q1x+(1, t) +

∫ 1

0

ET
−K(1, z)x(z, t) dz. (2.39)

The closed-loop system follows from inserting the latter (or equivalently the state

feedback (2.21)) into the PDE-ODE system (2.1). Next, the stability properties of the

closed-loop system are discussed.

Remark 2.6. Note that the kernel equations (2.10) can be solved offline using, e.g., the

coni Matlab library in Fischer et al. (2021). However, solving the GNVIDE (2.33)

as suggested in Irscheid et al. (2023) yields a numerical scheme for online evaluation.

2.4 Stability analysis

The stability analysis of the tracking error follows the proof in Irscheid et al. (2022b)

with appropriate adjustments to account for differences in notation, system class and

assumptions. In order to infer tracking in original coordinates, the tracking error

dynamics is first investigated in transformed coordinates. For that, the transformations

(2.9) and (2.15) are applied to the reference system (2.6).

2.4.1 The reference system in transformed coordinates

Applying the preliminary backstepping transformation (2.9) to the reference system

(2.6), i.e., x̃r(z, t) = Tb[xr(t)](z), yields the intermediate reference system

ẇr(t) = f(wr(t), x̃−,r(0, t)) (2.40a)

x̃+,r(0, t) = Q0x̃−,r(0, t) + c(wr(t), x̃−,r(0, t))) (2.40b)

∂tx̃r(z, t) = Λ(z)∂zx̃r(z, t) + A0(z)x̃−,r(0, t) +H(z)c(wr(t), x̃−,r(0, t)) (2.40c)

x̃−,r(1, t) = ũr(t) (2.40d)

(cf. (2.11)) with the new reference input

ũr(t) = Q1x+,r(1, t) + ur(t)−
∫ 1

0

ET
−K(1, z)xr(z, t) dz (2.41)

(cf. (2.13)). Next, define χ̃−,r(z, t) to be the solution of

∂tχ̃−,r(z, t) = Λ−(z)∂zχ̃−,r(z, t)

+ ET
− (A0(z)x̃−,r(0, t) +H(z)c(wr(t), x̃−,r(0, t))) (2.42a)

χ̃−,r(0, t) = κ(t,wr(t)), (2.42b)
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i.e., the Cauchy problem (2.14) after replacing w(t) and x(z, t) with wr(t) and xr(z, t),

respectively. With that, the decoupling transformation x̆r(z, t) = Td[x̃r(t),wr(t)](z),

as defined in (2.35), maps (2.40) into

x̆−,r(1, t) = ũr(t)− χ̃−,r(1, t) (2.43a)

∂tx̆−,r(z, t) = Λ−(z)∂zx̆−,r(z, t) (2.43b)

ẇr(t) = f(wr(t),κ(t,wr(t))) (2.43c)

x̆+,r(0, t) = Q0κ(t,wr(t)) + c(wr(t),κ(t,wr(t))) (2.43d)

∂tx̆+,r(z, t) = Λ+(z)∂zx̆+,r(z, t) + ET
+(A0(z)κ(t,wr(t)) +H(z)c(wr(t),κ(t,wr(t))))

(2.43e)

(cf. (2.16)), after taking into account that

x̆−,r(0, t) = x̃−,r(z, t)− χ̃−,r(z, t) = 0. (2.44)

The latter holds in light of (2.42b), the evaluation of the backstepping transformation

(2.9) at z = 0 and Assumption 2.2.

Note that (2.44) enables further simplification of (2.43). In fact, taking into account

that x̆−,r(z, t) satisfies the homogeneous transport equation (2.43b), it can be shown

with the method of characteristics that (2.44) implies

x̆−,r(z, t) = 0. (2.45)

Together with (2.43a), this yields

ũr(t) = χ̃−,r(1, t). (2.46)

2.4.2 ODE state tracking error

Note that Assumption 2.1 in fact guarantees the existence of a unique solution w(t),

especially for t ∈ [0,∆−
n− ], i.e., before the requirements of Assumption 2.2 hold. As a

consequence of (2.24) in closed loop, the ODE subsystem (2.16c) takes the form (2.7)

for t > ∆−
n− . Therefore, by Assumption 2.2,

lim
t→∞

∥w(t)−wr(t)∥ = 0. (2.47)

Another consequence of (2.24) is x̃−(0, t) = κ(t,w(t)) for t > ∆−
n− , which follows from

(2.14b) and the evaluation of (2.15a) at z = 0. In light of Assumption 2.2, particularly

(2.8), this yields

lim
t→∞

∥x̃−(0, t)− x̃−,r(0, t)∥ = 0. (2.48)
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2.4.3 PDE state tracking error

For t > ∆−
n− , the PDE subsystems of the closed-loop system (2.22) and the correspond-

ing reference system (2.43) read

x̆−(z, t) = 0 (2.49a)

x̆+(0, t) = Q0κ(t,w(t))) + c(w(t),κ(t,w(t))) (2.49b)

∂tx̆+(z, t) = Λ+(z)∂zx̆+(z, t) + ET
+(A0(z)κ(t,w(t)) +H(z)c(w(t),κ(t,w(t))))

(2.49c)

and

x̆−,r(z, t) = 0 (2.50a)

x̆+,r(0, t) = Q0κ(t,wr(t)) + c(wr(t),κ(t,wr(t))) (2.50b)

∂tx̆+,r(z, t) = Λ+(z)∂zx̆+,r(z, t) + ET
+(A0(z)κ(t,wr(t)) +H(z)c(wr(t),κ(t,wr(t))))

(2.50c)

in light of (2.24) and (2.45), respectively. Taking into account (2.8) as well as the

Lipschitz continuity of c yields3

lim
t→∞

∥x̆(t)− x̆r(t)∥∞ = 0 (2.51)

(refer to the proof in Irscheid et al. (2022b)). The same argument can be made to show

that

lim
t→∞

∥χ̃−(t)− χ̃−,r(t)∥∞ = 0 (2.52)

as a consequence of (2.14), (2.42) and (2.48). Taking into account the definition of the

decoupling transformation (2.15), (2.51) and (2.52) imply

lim
t→∞

∥x̃(t)− x̃r(t)∥∞ = 0. (2.53)

Hence, by the invertibility of the preliminary backstepping transformation (2.9), track-

ing is achieved in original coordinates, i.e.,

lim
t→∞

∥x(t)− xr(t)∥∞ = 0. (2.54)

In summary, (2.47) and (2.54) infer tracking of the reference trajectory (2.5) in the

closed-loop system that results from inserting the control law (2.21) into the PDE-

ODE system (2.1).

3For any distributed variable x(z, t) ∈ Rn, (z, t) ∈ [0, 1] × R+
0 , denote by ∥x(t)∥∞ the supremum

norm supz∈[0,1] ∥x(z, t)∥.



Chapter 3

Parabolic systems

In the previous chapter, the control strategy proposed for hyperbolic systems revolves

around the solution of an appropriately chosen Cauchy problem w.r.t. the spatial vari-

able. This is closely linked to a flatness-based parameterization of solutions, which

exist for parabolic systems as well (see, e.g., Rudolph and Woittennek (2008)). This

motivates an investigation of a solution-based control strategy for parabolic PDE-ODE

systems. As a matter of fact, the ideas explored in this chapter are used in Irscheid

et al. (2024) to design a stabilizing controller for a (scalar) linear parabolic PDE with

nonlinear boundary dynamics. This recent result marks an important advancement

because the latter control problem had not been resolved with existing methods in the

literature.

Although the control of linear parabolic systems is well-understood through the lens of

backstepping (see, e.g., Smyshlyaev and Krstic (2004); Krstic and Smyshlyaev (2008);

Deutscher and Gehring (2021)), the main idea of solution-based control for parabolic

systems is introduced in the following for two linear examples before presenting the

nonlinear case. In fact, the strategies employed for each of the linear examples are

utilized in the control design for the nonlinear problem. It should be noted that the

resulting controller is expressed implicitly in terms of the system state, in contrast to

the explicit state feedback that is obtained in the linear setting.

First, revisiting a reaction-diffusion equation, the explicit solution of the corresponding

parabolic Cauchy problem is derived as a functional of the system state in Section 3.1.

Despite the calculations being tedious, an interesting equivalence is established with

the well-known backstepping transformations. Similarly, a linear PDE-ODE system is

studied afterwards in Section 3.2 to better understand the impact of the ODE subsys-

tem on the solution of the Cauchy problem. Finally, the main results of Irscheid et al.

(2024) are presented in Section 3.3 for the case of nonlinear boundary ODEs.
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Notation

This chapter uses the same notation as in Irscheid et al. (2024), which is briefly recalled

in the following. The k-th derivative h(k), k ∈ N0 of a smooth function t 7→ h(t) is

written as h(k) =
(

d
dt

)k
h, indicating that the operator d

dt
is applied k times to the

function h. The class of analytic functions is denoted as Cω. A function h is called

Gevrey of order α > 0, in short h ∈ Gα, if ∃M,R > 0 such that supt≥0

∣∣h(k)(t)∣∣ ≤M (k!)α

Rk

for all k ∈ N0 (see, e.g., Rodino (1993, Def. 1.4.1)). Note that analytic functions are

Gevrey of order α = 1, i.e., Cω = G1, and that h ∈ Gα1 implies h ∈ Gα2 for all α1 ≤ α2.

Furthermore, introduce the class CωG2 of functions (z, t) 7→ x(z, t) that are analytic in

z and of Gevrey class two w.r.t. t, i.e., x ∈ CωG2.

3.1 Linear reaction-diffusion equation

Consider the boundary-actuated parabolic system

∂zx(0, t) = 0 (3.1a)

∂tx(z, t) = ∂2zx(z, t) + rx(z, t) (3.1b)

x(1, t) = u(t) (3.1c)

for r ∈ R and (z, t) ∈ [0, 1]×R+
0 with state x(z, t) ∈ R, input u(t) and initial condition

x(z, 0) = x0(z) ∈ R. This linear reaction-diffusion equation with Neumann boundary

at z = 0 and Dirichlet actuation1 at z = 1 is known to admit a so-called flat output

y(t) = x(0, t), which allows for a differential parameterization of not only the boundary

values but also the entire distributed state (see, e.g., Fliess et al. (1998); Laroche et al.

(1998) for details). In Laroche et al. (2000), this flatness-based parameterization is

represented by the solution of the Cauchy problem

∂2zx(z, t) = ∂tx(z, t)− rx(z, t) (3.2a)

x(0, t) = y(t) (3.2b)

∂zx(0, t) = 0 (3.2c)

w.r.t. z, where the control input u(t) = x(1, t) takes the role of an output. Note that

(3.2) is an inverse2 problem because y(t) is prescribed and u(t) is sought, conversely

to the original problem (3.1). Solving (3.2) formally with a power-series ansatz yields

x(z, t) =
∞∑
k=0

z2k

(2k)!

(
d
dt
− r

)k
y(t), (3.3)

1Other types of boundary conditions can be treated similarly, as detailed in Appendix A.1.2 for a

Dirichlet boundary at z = 0 and sketched in Remark 3.2 for Neumann actuation at z = 1.
2This terminology is used in Chapter 2 to refer to Cauchy problems that are solved backward in

time, without mentioning the role of input and output.
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i.e., infinitely many time derivatives of the flat output y(t) appear in the parameteriza-

tion of the PDE state x(z, t). In fact, inserting a suitable3 reference yr for y in (3.3), an

open-loop controller is obtained by evaluating the resulting expression at z = 1. Hence,

a flatness-based parameterization is very useful for the open-loop control design (see,

e.g., Rudolph (2003) for applications of flatness-based open-loop control designs).

3.1.1 From open-loop control to state feedback

In the context of open-loop control, it is beneficial to plan the reference yr without

introducing an initial error. Therefore, yr should be chosen to match the (infinitely

many) initial conditions y(k)(0), k ∈ N0, of the flat output y(t), which are implied by

the initial profile x0(z), z ∈ [0, 1], of the PDE state x(z, t) via (3.3) evaluated at t = 0.

In order to examine the influence of a differently chosen reference, consider the inverse

problem

∂2zχ(z, t) = ∂tχ(z, t)− rχ(z, t) (3.4a)

χ(0, t) = yr(t) (3.4b)

∂zχ(0, t) = 0 (3.4c)

for χ(z, t) ∈ R, (z, t) ∈ [0, 1] × R+
0 , with output ur(t) = χ(1, t) and arbitrary initial

conditions for yr. Furthermore, define the error

x̃(z, t) = x(z, t)− χ(z, t), (3.5)

for which

∂zx̃(0, t) = 0 (3.6a)

∂tx̃(z, t) = ∂2z x̃(z, t) + rx̃(z, t) (3.6b)

x̃(1, t) = u(t)− ur(t) (3.6c)

can be deduced from the plant (3.1) and the Cauchy problem (3.4). In the case of open-

loop control, i.e., u(t) = ur(t), the error system (3.6) is easily shown to be exponentially

stable in L2([0, 1]) and in the supremum norm if and only if r < π2/4 (see, e.g., Meurer

and Kugi (2009, Lem. 6 and 7)). This provokes the question whether it is possible to

modify the inverse problem (3.4) such that the error system is exponentially stable for

arbitrary reaction coefficients r ∈ R.

The (possibly destabilizing) reaction term rx̃(z, t) in (3.6b) can be eliminated by re-

placing (3.4) with the Cauchy problem

∂2zχ(z, t) = ∂tχ(z, t)− rx(z, t) (3.7a)

χ(0, t) = yr(t) (3.7b)

∂zχ(0, t) = 0, (3.7c)

3The series in (3.3) converges for any y of Gevrey class two (see, e.g., Fliess et al. (1998); Laroche

et al. (1998)). Thus, a reference yr ∈ G2 is chosen.
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which is excited by both the PDE state x(z, t) and the reference yr(t) in (3.7a) and

(3.7b), respectively. As a result, the error system reads

∂zx̃(0, t) = 0 (3.8a)

∂tx̃(z, t) = ∂2z x̃(z, t) (3.8b)

x̃(1, t) = u(t)− χ(1, t) (3.8c)

instead of (3.6). Note that (3.8) can be made exponentially stable by the controller

u(t) = χ(1, t), (3.9)

which will be shown to be a state feedback due to the dependence of the inverse problem

(3.7) on x(z, t). As this type of feedback requires solving an inverse problem, similar to

the method proposed in Chapter 2, it will be referred to as solution-based controller.

3.1.2 Analytical solution of the inverse problem

The linearity of the inverse problem (3.7) allows to obtain its solution by superposing

the solutions of two simpler problems: the case yr(t) = 0 and the case x(z, t) = 0. The

latter is solved in, e.g., Laroche et al. (1998) and is, thus, omitted here. Hence, for

simplicity, consider the special case of stabilization, i.e., yr(t) = 0.

By using a power-series ansatz for χ(z, t) in (3.7) and inserting the solution (3.3) for

x(z, t) as well as yr(t) = 0, one obtains

χ(z, t) =
∞∑
k=0

z2k

(2k)!

((
d
dt
− r

)k − (
d
dt

)k)
y(t). (3.10)

It is shown in Appendix A.1.1 that this solution can equivalently be expressed as

χ(z, t) =

z∫
0

k(z, ζ)x(ζ, t) dζ (3.11a)

with the integral kernel

k(z, ζ) = −rz
I1(

√
r (z2 − ζ2))√
r (z2 − ζ2)

, (3.11b)

where I1 is the modified Bessel function of first kind and first order. With that, the

solution χ(z, t) given in (3.11) takes the form of a Volterra integral and, thus,

x̃(z, t) = x(z, t)−
z∫

0

k(z, ζ)x(ζ, t) dζ (3.12)

(cf. (3.5)) is as a Volterra integral transformation of the PDE state x(z, t).
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Note that (3.12) is the (invertible) backstepping transformation that is employed in,

e.g., Smyshlyaev and Krstic (2004) to map the plant (3.1) into the so-called target

system (3.8). Furthermore, the resulting backstepping controller coincides with the one

found here after inserting the solution (3.11) for z = 1 into the control law (3.9). This

yields a static feedback of the state x(z, t). At last, stability of the error system (3.8)

infers the same in original coordinates by the bounded invertibility of the backstepping

transformation (3.12). As the inverse can be obtained in a similar fashion, its explicit

determination is omitted here.

Remark 3.1. Instead of the power-series ansatz (3.10), one could use a Volterra in-

tegral (3.11a) with an unknown kernel k(z, ζ) for the solution of (3.7). By inserting

this ansatz in (3.7), it can be shown that the kernel has to satisfy

∂2zk(z, ζ)− ∂2ζk(z, ζ) = rk(z, ζ) (3.13a)

2k(z, z) = −rz (3.13b)

∂ζk(z, 0) = 0 (3.13c)

for 0 ≤ ζ ≤ z ≤ 1. As detailed in, e.g., Smyshlyaev and Krstic (2004), solving these

kernel equations yields (3.11b).

Remark 3.2. The flatness-based parameterization (3.3) of the PDE state x(z, t) is

preserved when the Dirichlet actuation in (3.1c) is replaced with Neumann actuation.

As a consequence, both the Cauchy problem (3.7) and its solution (3.11) remain unal-

tered. However, the resulting control law differs from (3.9) as it has to be chosen in

such a way that the corresponding error system

∂zx̃(0, t) = 0 (3.14a)

∂tx̃(z, t) = ∂2z x̃(z, t) (3.14b)

∂zx̃(1, t) = u(t)− ∂zχ(1, t) (3.14c)

(cf. (3.8)) is made asymptotically stable. For instance, using Meurer and Kugi (2009,

Lem. 6), exponential stability can be proven with the controller

u(t) = ∂zχ(1, t)− γ(x(1, t)− χ(1, t)) (3.15)

for γ > 0. In contrast, changing the type of boundary condition at z = 0 does not

preserve the flatness-based parameterization of x(z, t) nor the solution of the Cauchy

problem (3.7). This is detailed in Appendix A.1.2 for the sake of completeness.

3.2 Linear parabolic PDE-ODE system

Thus far, the Cauchy problem (3.7) for the linear reaction-diffusion equation has been

shown to admit a solution that has a functional dependence on the PDE state x(z, t)



32 Chapter 3. Parabolic systems

as can be seen from the Volterra integral in (3.11a). Moreover, this makes the change

of coordinates (3.5) a Volterra integral state transformation (cf. (3.12)), usually re-

ferred to as a backstepping transformation (see, e.g., Krstic and Smyshlyaev (2008)).

Furthermore, Krstic (2009) extends the backstepping method to linear parabolic PDE-

ODE cascades. This motivates an investigation of solution-based control for this class

of systems in order to better understand the impact of an ODE subsystem on the

solution of the corresponding Cauchy problem.

For that, consider the linear parabolic PDE-ODE cascade

ẇ(t) = Fw(t) + bx(0, t) (3.16a)

∂zx(0, t) = 0 (3.16b)

∂tx(z, t) = ∂2zx(z, t) (3.16c)

x(1, t) = u(t) (3.16d)

with the ODE state w(t) ∈ Rn, the PDE state x(z, t) ∈ R and a stabilizable pair

(F, b), i.e., there exists a k ∈ Rn such that F + bkT is Hurwitz. The initial conditions

w(0) = w0 ∈ Rn and x(0, t) = x0(z) ∈ R complete the system.

3.2.1 Control design

In order to stabilize (3.16) in the spirit of solution-based control, introduce the Cauchy

problem

∂2zχ(z, t) = ∂tχ(z, t) (3.17a)

χ(0, t) = kTw(t) (3.17b)

∂zχ(0, t) = 0 (3.17c)

for χ(z, t) ∈ R, (z, t) ∈ [0, 1]×R+
0 , which is excited by the ODE state w(t). Then, the

change of coordinates

x̃(z, t) = x(z, t)− χ(z, t), (3.18)

together with the control law

u(t) = χ(1, t), (3.19)

maps (3.16) into the asymptotically stable error system

ẇ(t) = F̃w(t) + bx̃(0, t) (3.20a)

∂zx̃(0, t) = 0 (3.20b)

∂tx̃(z, t) = ∂2z x̃(z, t) (3.20c)

x̃(1, t) = 0, (3.20d)

wherein F̃ = F+bkT is Hurwitz. It is straightforward to show the exponential stability

of (3.20), especially due to its cascaded structure (see, e.g., Krstic (2009) for the proof

of exponential stability in an appropriate norm). Next, it is shown that the control

law (3.19) can be expressed as a state feedback by solving (3.17) analytically.
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3.2.2 Analytical solution of the inverse problem

Note that the PDE subsystem (3.16b)–(3.16d) is identical to (3.1) with r = 0. Con-

sequently, the PDE subsystem admits the flat output y(t) = x(0, t) and it follows

that

x(z, t) =
∞∑
k=0

z2k

(2k)!

(
d
dt

)k
y(t) (3.21)

(cf. (3.3)) is a parameterization of the PDE state x(z, t). Similarly, inserting a power-

series ansatz for the solution χ(z, t) of the inverse problem (3.17) yields

χ(z, t) =
∞∑
k=0

z2k

(2k)!

(
d
dt

)k
kTw(t). (3.22)

The goal is to find an expression of the latter in terms of the ODE state w(t) and the

PDE state x(z, t). For that, motivated by the parameterization (3.21) of x(z, t), it is

useful to first rewrite (3.22) in terms of w(t) and derivatives of the flat output y(t)

as an intermediate step. In particular, the k-th derivative of kTw(t) in (3.22) can be

expressed as (
d
dt

)k
kTw(t) = kTF kw(t) + kT

k−1∑
l=0

F k−1−lby(l)(t) (3.23)

by successively inserting the ODE (3.16a) in light of y(t) = x(0, t). Taking into account

(3.23), the manipulations in Appendix A.2.1 reveal that (3.22) can equivalently be

expressed as

χ(z, t) = nT(z)w(t) +

z∫
0

mT(z − ζ)bx(ζ, t) dζ, (3.24)

where nT(z) is the unique solution of the initial value problem

d2nT

dz2
(z) = nT(z)F (3.25a)

nT(0) = kT (3.25b)

dnT

dz
(0) = 0T (3.25c)

on z ∈ [0, 1] and

mT(z) =

z∫
0

nT(ζ) dζ. (3.26)

As a consequence, by inserting the solution (3.24), evaluated at z = 1, into (3.19), one

obtains a feedback of the states w(t) and x(z, t). Furthermore, (3.24) allows to express

the change of coordinates (3.18) as

x̃(z, t) = x(z, t)−
z∫

0

mT(z − ζ)bx(ζ, t) dζ − nT(z)w(t), (3.27)
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which is a Volterra integral state transformation. In fact, it is easy to verify that the

inverse transformation reads

x(z, t) = x̃(z, t) +

z∫
0

m̃T(z − ζ)bx̃(ζ, t) dζ + ñT(z)w(t), (3.28)

where ñT(z) is the unique solution of the initial value problem

d2ñT

dz2
(z) = ñT(z)F̃ (3.29a)

ñT(0) = kT (3.29b)

dñT

dz
(0) = 0T (3.29c)

(cf. (3.25)) on z ∈ [0, 1] and

m̃T(z) =

z∫
0

ñT(ζ) dζ (3.30)

(cf. (3.26)). It can be derived as follows. Taking the control law (3.19) as well as

(3.18) into account, the inverse transformation x(z, t) = x̃(z, t) + χ(z, t) maps (3.20)

into (3.16). Similar to (3.23), the time derivatives of kTw(t) in (3.22) can be expressed

by successively inserting the ODE (3.20a). As a result, the subsequent calculations

are identical to the ones in Appendix A.2.1 after replacing F and y(t) with F̃ and

ỹ(t) = x̃(0, t), respectively, where ỹ(t) denotes the flat output of the PDE subsystem

(3.20b)–(3.20d).

Remark 3.3. The state transformation (3.27) and its inverse (3.28) coincide with

the ones in Krstic (2009) that are derived from the perspective of backstepping for the

PDE-ODE system (3.16).

Remark 3.4. The control design for the PDE-ODE system (3.16) can easily be adapted

to the case of unactuated Dirichlet boundary. Such a system is considered as an example

in Irscheid et al. (2024). However, the required calculations are only briefly discussed

therein, which is why they are presented in more detail in Appendix A.2.2.

3.3 Nonlinear parabolic PDE-ODE system

The ideas presented for the previous elementary examples are combined in the following

to control a more complex and, in particular, nonlinear PDE-ODE system. The main

results are stated in Irscheid et al. (2024) and, thus, this section is intended to offer

a brief presentation of the challenges associated with nonlinearities. In particular, it

is shown that the solution-based control of a PDE-ODE cascade with nonlinear ODE

differs from its linear counterpart only in the time derivatives of the (presumed to be
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known) controller for the ODE subsystem (cf. (3.23)). It is worth noting that Irscheid

et al. (2024) considers a PDE-ODE cascade with Dirichlet boundary at z = 0, whereas

the case with Neumann boundary is considered in what follows.

The boundary-actuated PDE-ODE cascade

ẇ(t) = f(w(t), x(0, t)) (3.31a)

∂zx(0, t) = 0 (3.31b)

∂tx(z, t) = ∂2zx(z, t) + rx(z, t) (3.31c)

x(1, t) = u(t) (3.31d)

consists of the nonlinear ODE subsystem (3.31a) with the lumped state w(t) ∈ Rn and

the parabolic PDE subsystem (3.31b)–(3.31d) with the distributed state x(z, t) ∈ R
defined for (z, t) ∈ [0, 1] × R+

0 . The subsystems are cascaded in the sense that the

boundary value x(0, t) acts on the ODE (3.31a) through the second argument of the

Lipschitz continuous vector field f . Moreover, the PDE (3.31c) is a linear reaction-

diffusion equation with reaction coefficient r ∈ R. System (3.31) is completed with

initial conditions w(0) = w0 ∈ Rn and x(z, 0) = x0(z) ∈ R.

Remark 3.5. Note that the PDE subsystem (3.31b)–(3.31d) has previously been con-

sidered in Section 3.1. Furthermore, the linear ODE dynamics (3.16a) considered in

Section 3.2 is a special case of (3.31a).

This section aims to derive a controller that asymptotically stabilizes the origin of the

PDE-ODE cascade (3.31). In the spirit of Irscheid et al. (2024), the control design

for (3.31) is based on a stabilizing controller for the ODE subsystem (3.31a), wherein

x(0, t) takes the role of an input. This is guaranteed by the following assumption.

Assumption 3.1 (cf. Irscheid et al. (2024)). There exists an analytic function κ(w(t))

such that

ẇ(t) = f(w(t), κ(w(t)) +ϖ(t)) (3.32)

implies input-to-state stability of the origin w.r.t. ϖ(t) ∈ R.

Assuming existence of a controller κ(w(t)) is analogous to Assumption 2.2 for the

hyperbolic system in Chapter 2. Moreover, input-to-state stability is sufficient for the

control design presented in the sequel, and it is a typical prerequisite for similar classes

of cascaded systems (see, e.g., Krstic et al. (1995); Irscheid et al. (2023)).

Remark 3.6. Assumption 3.1 is automatically satisfied for the linear PDE-ODE sys-

tem (3.16) considered in Section 3.2 with κ(w(t)) = kTw(t). This is due to the fact

that the pair (F, b) in (3.16a) is stabilizable.

For the well-posedness of the Cauchy problem considered in the sequel, the following

technical assumption is imposed.
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Assumption 3.2 (cf. Irscheid et al. (2024)). The ODE subsystem (3.31a) is forward

complete, the nonlinear function f is analytic, and the initial condition x0 is analytic

on [0, 1].

Forward completeness of the ODE subsystem (3.31a) ensures existence of a unique so-

lution w(t) for all initial conditions and every (measurable locally essentially) bounded

x(0, t) (recall Assumption 2.1 in Chapter 2 and see, e.g., Angeli and Sontag (1999) for

details). Hence, the ODE subsystem cannot exhibit a finite escape time.

As a matter of fact, Assumptions 3.1 and 3.2 ensure that the theoretical results in

Irscheid et al. (2024) are applicable in the following. This is especially important

for the well-posedness of the Cauchy problem and convergence of the formal power-

series representation of its solution. Hence, the subsequent design steps will only give

an outline of the control strategy as all details can be found in the latter reference.

Moreover, the control design for the nonlinear PDE-ODE system (3.31) is inspired

by the ideas presented for the linear reaction-diffusion equation (3.1) and the linear

parabolic PDE-ODE system (3.16) in Sections 3.1 and 3.2, respectively (recall Remark

3.5). In particular, the control design is split into two steps: a preliminary backstepping

transformation and a subsequent nonlinear state transformation in order to facilitate

the stabilization of the PDE and ODE subsystems, respectively.

3.3.1 Preliminary backstepping transformation

Analogously to Section 3.1, the possibly destabilizing reaction term rx(z, t) in (3.31c)

can be eliminated by utilizing the backstepping transformation (3.12). It can be verified

that it maps the PDE-ODE system (3.31) into the intermediate system

ẇ(t) = f(w(t), x̃(0, t)) (3.33a)

∂zx̃(0, t) = 0 (3.33b)

∂tx̃(z, t) = ∂2z x̃(z, t) (3.33c)

x̃(1, t) = ũ(t) (3.33d)

with the new input

ũ(t) = u(t)−
∫ 1

0

k(1, ζ)x(ζ, t) dζ (3.34)

(cf. (3.8), (3.9) and (3.11)). Setting aside the nonlinearity of the vector field f , note

that (3.33) admits the same structure as the linear PDE-ODE system (3.16) considered

in Section 3.2. This motivates the next transformation.



3.3. Nonlinear parabolic PDE-ODE system 37

3.3.2 Nonlinear state transformation and state feedback

Inspired by the control design in Section 3.2.1, introduce the Cauchy problem

∂2z χ̃(z, t) = ∂tχ̃(z, t) (3.35a)

χ̃(0, t) = κ(w(t)) (3.35b)

∂zχ̃(0, t) = 0 (3.35c)

(cf. (3.17)) for χ̃(z, t) ∈ R and (z, t) ∈ [0, 1]×R+
0 . With that, the change of coordinates

x̆(z, t) = x̃(z, t)− χ̃(z, t) (3.36)

and the control law

ũ(t) = χ̃(1, t), (3.37)

map the intermediate PDE-ODE system (3.33) into the target system

ẇ(t) = f(w(t), κ(w(t)) + x̆(0, t)) (3.38a)

∂zx̆(0, t) = 0 (3.38b)

∂tx̆(z, t) = ∂2z x̆(z, t) (3.38c)

x̆(1, t) = 0. (3.38d)

Note the structural similarity to the asymptotically stable error system (3.20). In fact,

by the arguments made in Irscheid et al. (2024), it can be verified that the origin of

the nonlinear target system (3.38) is asymptotically stable. This is a consequence of

the exponential stability of the linear PDE subsystem (3.38b)–(3.38d) in the H1-norm

as well as the supremum norm (see, e.g., Meurer and Kugi (2009, Lem. 7)) and, by

Assumption 3.1, the presumed input-to-state stability of the ODE subsystem (3.38a)

w.r.t. x̆(0, t).

For the special case of a linear system, it is possible to express the solution χ̃(z, t)

of (3.35) explicitly in terms of w(t) and x̃(z, t) (cf. (3.24)). However, due to the

nonlinearity of the vector field f and the ODE controller κ, only an implicit expression

can be derived in the following. It is based on the formal solution

χ̃(z, t) =
∞∑
k=0

z2k

(2k)!

(
d
dt

)k
κ(w(t)), (3.39)

which is obtained by inserting a power-series ansatz for the solution χ̃(z, t) of (3.35),

similar to (3.22).

Implicit solution of the inverse problem

The intermediate PDE subsystem (3.33b)–(3.33d) admits the flat output ỹ(t) = x̃(0, t),

by which the parameterization

x̃(z, t) =
∞∑
k=0

z2k

(2k)!

(
d
dt

)k
ỹ(t) (3.40)
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of the PDE state x̃(z, t) can be inferred analogously to (3.21). This motivates the

definition of the following equivalent state representation of the intermediate system

(3.33). For that, introduce the flat coordinates

ỹk(t) =
(

d
dt

)k
ỹ(t), k ∈ N0 (3.41)

and insert the power series (3.40) into the intermediate system (3.33) to obtain

d
dt


w(t)

ỹ0(t)

ỹ1(t)
...


︸ ︷︷ ︸

w̃(t)

=


f(w(t), ỹ0(t))

ỹ1(t)

ỹ2(t)
...


︸ ︷︷ ︸

g̃(w̃(t))

(3.42a)

∞∑
k=0

1

(2k)!
ỹk(t) = ũ(t) (3.42b)

with the (infinite-dimensional) state w̃(t). The series representation (3.40) may also

be expressed in terms of the flat coordinates ỹk(t), which yields

x̃(z, t) =
∞∑
k=0

z2k

(2k)!
ỹk(t). (3.43)

Note that the set of monomials z2k of even degree is linearly independent and dense in

L2([0, 1]). Therefore, (3.43) can be viewed as a transformation between the PDE state

x̃(z, t) of (3.33) and the flat coordinates ỹk(t) that constitute the infinite-dimensional

subsystem of (3.42).

Remark 3.7. The equivalence between the system representations (3.33) and (3.42) is

to be understood for x̃ ∈ CωG2, i.e., when the power series (3.40) and (3.43) converge

on [0, 1]. Then, ỹk(t) = ∂2kz x̃(0, t) for k ∈ N0.

Using the auxiliary variable ỹ[k] = (ỹ0, . . . , ỹk) for k ∈ N0, the k-th derivative of κ(w(t))

in (3.39) can be written in terms of the infinite-dimensional state w̃(t) as(
d
dt

)k
κ(w(t)) = ϕ̃k(w(t), ỹ[k−1](t)), (3.44)

where ϕ̃k = Lk
g̃η̃ denotes the k-th Lie-derivative of η̃(w̃) := κ(w) along g̃ and ỹ[−1] is

defined to be empty. Inserting the Lie derivatives (3.44) into the formal solution (3.39)

allows to express χ̃(z, t) in terms of w̃(t), i.e.,

χ̃(z, t) =
∞∑
k=0

z2k

(2k)!
ϕ̃k(w(t), ỹ[k−1](t)). (3.45)

Remark 3.8. For the linear PDE-ODE cascade (3.16), (3.44) can be expressed explic-

itly in the form (3.23). Therein, y has to be replaced with ỹ to maintain a consistent

notation. The linear counterpart of (3.45) can be rearranged (see the manipulations

in Appendix A.2.1) in such a way that χ̃(z, t) is expressed in terms of the ODE state

w(t) and the PDE state x̃(z, t) (cf. (3.24)).
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Interpretation of the state dependency

Inserting the representations (3.43) and (3.45) of x̃(z, t) and χ̃(z, t), respectively, into

the coordinate change (3.36) gives

x̆(z, t) =
∞∑
k=0

z2k

(2k)!

(
ỹk(t)− ϕ̃k(w(t), ỹ[k−1](t))

)
. (3.46)

This makes the latter a nonlinear state transformation that maps (3.42) into (3.38).

Due to the equivalence between the flat coordinates ỹk(t) and the PDE state x̃(z, t) in

the sense of (3.43), x̆(z, t) can be expressed implicitly in terms of the ODE state w(t)

and the PDE state x̃(z, t) of the intermediate system (3.33). This state transformation

is, thus, a generalization of the classical backstepping transformation of Volterra type

(cf. (3.24)) to nonlinear settings. Furthermore, with the same reasoning, the control

law (3.37) is a state feedback of w(t) and x̃(z, t). In light of the input transformation

(3.34) and the preliminary backstepping transformation (3.12), it can be verified that

u(t) = χ̃(1, t) +

∫ 1

0

k(1, ζ)x(ζ, t) dζ (3.47)

is a state feedback of w(t) and x(z, t), i.e., the state of the nonlinear PDE-ODE system

(3.31) in original coordinates.

Remark 3.9. In order to implement the controller (3.47), χ̃(1, t) can be approxi-

mated with the numerical scheme presented in Irscheid et al. (2024) after replacing

the odd powers z2k+1/(2k+1)! with their even counterparts z2k/(2k)! as a consequence

of interchanging the Dirichlet boundary condition therein with the Neumann boundary

condition (3.31b) considered here.

Next, the inverse transformation is investigated in detail on the basis of the method

sketched in Irscheid et al. (2024, Rem. 3).

Inverse transformation

Taking into account the control law (3.37), the inverse transformation x̃(z, t) = x̆(z, t)+

χ̃(z, t) maps (3.38) into the intermediate PDE-ODE system (3.33). In order to express

this change of coordinates as a state transformation (at least implicitly) in terms of

the ODE state w(t) and the PDE state x̆(z, t), introduce the flat coordinates

y̆k(t) =
(

d
dt

)k
y̆(t), k ∈ N0 (3.48)

(cf. (3.41)), where y̆(t) = x̆(0, t) denotes the flat output of the PDE subsystem (3.31b)–

(3.31d). Then, similar to (3.43), one obtains the parameterization

x̆(z, t) =
∞∑
k=0

z2k

(2k)!
y̆k(t) (3.49)
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of the PDE state x̆(z, t). Inserting this parameterization into the error system (3.38)

yields the equivalent representation

d
dt


w(t)

y̆0(t)

y̆1(t)
...


︸ ︷︷ ︸

w̆(t)

=


f(w(t), κ(w(t)) + y̆0(t))

y̆1(t)

y̆2(t)
...


︸ ︷︷ ︸

ğ(w̆(t))

(3.50a)

∞∑
k=0

1

(2k)!
y̆k(t) = 0 (3.50b)

(cf. (3.42)) with the (infinite-dimensional) state w̆(t). With that it is possible to express

the time derivatives in (3.39) in terms of the infinite-dimensional state w̆(t), as follows.

Defining y̆[k] = (y̆0, . . . , y̆k) for k ∈ N0 and in analogy to (3.44), the k-th derivative of

κ(w(t)) in (3.39) can be written as(
d
dt

)k
κ(w(t)) = ϕ̆k(w(t), y̆[k−1](t)), (3.51)

where ϕ̆k = Lk
ğη̆ denotes the k-th Lie-derivative of η̆(w̆) := κ(w) along ğ and y̆[−1] is

defined to be empty. Finally, χ̃(z, t) can be expressed in terms of w̆(t) by inserting

(3.51) into (3.39). This results in

χ̃(z, t) =
∞∑
k=0

z2k

(2k)!
ϕ̆k(w(t), y̆[k−1](t)) (3.52)

(cf. (3.45)). In light of (3.49) and (3.52), the inverse of the coordinate change (3.36)

(or equivalently (3.46)) reads

x̃(z, t) =
∞∑
k=0

z2k

(2k)!

(
y̆k(t) + ϕ̆k(w(t), y̆[k−1](t))

)
. (3.53)

As such, recalling (3.49), the latter can be expressed implicitly in terms of the ODE

state w(t) and the PDE state x̆(z, t) of the error system (3.38).

Remark 3.10. The implicit nature of the transformation between the PDE state x̃(z, t)

of the intermediate system (3.33) and the PDE state x̆(z, t) of the target system (3.38)

obstructs a thorough examination of the stability properties of the closed loop in original

coordinates. This is the subject of future research. Interestingly, dispensing with the

notion of the PDE states x̃(z, t) and x̆(z, t), one could instead examine the mapping

between the system description (3.42) and its counterpart (3.50) for the target system.

In particular, this amounts to an investigation of the relations

y̆k(t) = ỹk(t)− ϕ̃k(w(t), ỹ[k−1](t)) (3.54a)

ỹk(t) = y̆k(t) + ϕ̆k(w(t), y̆[k−1](t)) (3.54b)
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between the corresponding flat coordinates ỹk(t) and y̆k(t) for k ∈ N0. Note that the

transformation (3.54a) and its inverse (3.54b) are implied by (3.49) and (3.46) as well

as (3.43) and (3.53), respectively.





Chapter 4

Conclusions and future work

The solution-based control strategy presented in this thesis offers a promising perspec-

tive for the boundary control of nonlinear PDE-ODE systems of both hyperbolic or

parabolic type. It extends backstepping designs for linear PDE-ODE systems in the

sense that both are equivalent in the linear case. Furthermore, the proposed approach

builds upon established control strategies, thus yielding a new tool with the potential

to solve challenging, open problems.

The following sections recapitulate the main results for hyperbolic and parabolic sys-

tems that are stated in Chapters 2 and 3 as well as in the papers incorporated into

this thesis. Additionally, recommendations for future research as well as a selection of

open problems are given for each system class separately. The chapter concludes with

preliminary results on cooperative transportation with heavy ropes as an application

of the theory developed in this thesis.

4.1 Hyperbolic systems

The solution-based approach allows to derive tracking controllers for a general class

of heterodirectional linear hyperbolic PDEs that are bidirectionally coupled with non-

linear ODEs. The findings of Chapter 2 can be easily generalized for larger system

classes. For instance, the preliminary backstepping transformation (2.9) can be for-

mulated with the help of a corresponding Cauchy problem, which can be extended to

account for certain PDE nonlinearities. However, the drawback is a higher complexity

for solving the prediction problem. Related methods in, e.g., Strecker et al. (2022)

address such problems in the case of semilinear and quasilinear 2 × 2 PDE-ODE sys-

tems. It is also possible to use the results of this chapter to achieve tracking in finite

time by choosing κ(t,w(t)) to be a prescribed finite-time tracking controller. Such

controllers are systematically derived in Irscheid et al. (2021a) for flat ODEs on the

basis of a time-scale transformation (different from the perspective presented in the
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original work Song et al. (2017)). In fact, Irscheid et al. (2022a) incorporates such

a control method into the framework of semilinear hyperbolic PDE-ODE systems by

constructing an appropriate Cauchy problem in the same way as proposed here. This

demonstrates that solution-based control is not restricted to linear hyperbolic PDEs.

As a matter of fact, solution-based observer designs are also possible on the basis of

analogous ideas. For a system class similar to (2.1) with collocated boundary mea-

surement, Irscheid et al. (2023) presents an observer that comprises the same steps: a

preliminary backstepping transformation, a change of coordinates that is inferred from

the solution of a Cauchy problem as well as a prediction of the nonlinear boundary

dynamics. In particular, the backstepping transformation is used to derive an observer

for the PDE subsystem. The second state transformation aims to decouple the PDE

observer error dynamics from the ODE subsystem. Then, the solution of a prediction

problem yields the estimates of the ODE state based on the ones obtained from a re-

tarded observer for the nonlinear boundary dynamics. For that, existence of an ODE

observer is presumed (in analogy to Assumption 2.2 for control design). The overall

design is modular in the sense that the ODE observer can be interchanged easily. An

introduction to solution-based observer designs is given in Irscheid et al. (2021b) for a

2× 2 PDE subsystem, whereas more details can be found in Irscheid et al. (2023) for

general heterodirectional PDE subsystems.

In spite of these achievements, there are many open problems that have not yet been ad-

dressed for both controller and observer designs. One of the more interesting problems

is the control of not fully boundary-actuated systems. An application of solution-based

methods seems promising, however, no thorough investigation has taken place yet. An-

other open problem is to address the class of so-called ODE-PDE-ODE systems, which

arise when a finite-dimensional actuator model is considered. These (and many more)

open issues shape the frontier of current research.

4.2 Parabolic systems

Chapter 3 gives an outline on the boundary control of parabolic PDE-ODE systems.

As shown for the linear examples in Sections 3.1 and 3.2, the resulting control law is

equivalent to the one obtained through backstepping. In fact, the approach can be

interpreted as an extension of the latter in the sense that the nonlinear state transfor-

mation (3.46) in Section 3.3 generalizes the well-known Volterra integral state transfor-

mation. This is an important result for further extensions. However, it is not obvious

whether asymptotic stability of the origin of the target system (3.38) implies the same

in original coordinates or only the weaker property of attractivity. Therefore, it remains

to study the continuity of the map (3.46) and its inverse (3.53). In particular, Remark

3.10 suggests that the transformation (3.54) should be examined first. As such, this is

but one of the many interesting questions that arise from this work.



4.3. Application to cooperative transportation with heavy ropes 45

After resolving the aforementioned stability issue, it is essentially straightforward to

generalize the findings of this work to stabilize a reference trajectory, to account for

bidirectional coupling between the ODE and PDE subsystems as well as to consider

semilinear parabolic PDEs. Investigating the latter, it is reasonable to expect a rela-

tion to Vazquez and Krstic (2008a,b), wherein a nonlinear state transformation based

on Volterra kernels is proposed for stabilizing semilinear parabolic plants comprising

Volterra series nonlinearities. Moreover, it is of interest to explore observer designs

for nonlinear parabolic systems with the tools introduced here, especially since the

solution-based approach is used for observer designs in the hyperbolic case (see, e.g.,

Irscheid et al. (2021b, 2023)). Naturally, these problems represent only a sample of the

next steps for future research.

4.3 Application to cooperative transportation with

heavy ropes

Investigating the particular class of distributed-parameter systems considered in this

thesis is originally inspired by the author’s previous work on cooperative load trans-

portation with heavy ropes (see Figure 1.1). Modeling the load as a rigid body in

space results in nonlinear equations of motion. These nonlinear ODEs are bidirection-

ally coupled with linear hyperbolic PDEs describing the horizontal deflection of the

ropes, yielding a nonlinear hyperbolic PDE-ODE system with bidirectional coupling at

the unactuated boundary (see Irscheid et al. (2019) for a detailed model description).

The flatness-based open-loop controller in Irscheid et al. (2019) is designed for a rest-to-

rest motion between equilibrium configurations in finite time. The control objective is

to transition the load to a desired position with a desired orientation. The experimental

results in Irscheid et al. (2019) show excellent open-loop performance, thus indirectly

demonstrating the validity of the chosen PDE-ODE model that describes the system.

However, open-loop control fails in the presence of external disturbances or initial

errors. This necessitates the use of a stabilizing state feedback to improve the tracking

performance. By using the solution-based methods proposed in Chapter 2, it is possible

to obtain an asymptotically stable closed loop. Nevertheless, the number of ropes and

the position of their load-side suspension points must yield an at least fully-actuated

ODE subsystem in order to satisfy Assumption 2.2. For instance, if the load is, e.g.,

a point mass, attaching one rope is sufficient, whereas for a rigid rod it is necessary

to attach two ropes at two distinct points. Similarly, transporting a membrane in the

horizontal plane requires three attachment points that determine the plane, i.e., they

cannot lie on a straight line.

Note that the design of a solution-based state feedback for the planar transportation

problem is particularly facilitated by the fact that the only coupling between the ropes
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occurs at the load-side end, i.e., through the load dynamics. As a consequence of this

system structure, the PDE subsystems can be controlled independently for each rope

in parallel. In contrast, the ODE subsystem describing the load is affected by all rope

subsystems, which implies that both the ODE controller in Assumption 2.2 as well as

the prediction problem (see Section 2.3.1) require a coordination between all ropes. In

light of these considerations, the solution-based methods developed in Chapter 2 can

be directly applied to the cooperative load transportation with heavy ropes. This is

the subject of future research.

For the time being, preliminary simulation results for a rigid rod carried by two heavy

ropes serve as a proof of concept. As depicted in Figure 4.1, the reference configuration

of the load is planned in such a way that its center of mass transitions in finite time

between two equilibrium positions in the horizontal plane, while the rod completes a

quarter turn. Figures 4.2 and 4.3 illustrate the closed-loop behavior for nonzero initial

tracking errors of both the ODE and PDE subsystems. The coordinates xm(t) and

ym(t) of the rod’s center of mass in the horizontal x-y-plane as well as the angle θ(t)

between the rod and the positive x-direction converge to their respective references

xm,r(t), ym,r(t) and θr(t), as depicted in Figure 4.4.
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Figure 4.1: Snapshots of the desired planar transition of the rod configuration are

depicted with a solid line, whereas the path of each of its end points is depicted with

a dash-dotted line. The center of mass transitions from the origin to the coordinates

(1, 2) in the x-y-plane, while the rod makes a clock-wise quarter turn.
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Figure 4.2: Snapshots during the cooperative load transportation with two heavy ropes

in closed loop. For better contrast, the opacity of the ropes decreases with increasing

time. The reference configuration of the rod is depicted with the dashed lines, whereas

the solid horizontal line depicts its actual configuration, which starts with an initial

position and orientation error. Moreover, the initial rope deflection introduces an initial

PDE state tracking error.
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Figure 4.3: The projection of the snapshots from Figure 4.2 onto the horizontal plane

illustrates the convergence in closed loop.
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Figure 4.4: The vertical lines depict the start and end times for the planned transition

between the two equilibrium configurations of the reference rod. The configuration

of the rod converges to its reference although the initial conditions xm(0) = −0.25,

ym(0) = 0 and θ(0) = π/6 lead to initial position and orientation tracking errors.
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Scientific publications

The peer-reviewed and published journal papers

Irscheid, A., Deutscher, J., Gehring, N., and Rudolph, J. (2023). Output regulation

for general heterodirectional linear hyperbolic PDEs coupled with nonlinear ODEs.

Automatica, 148:110748

and

Irscheid, A., Gehring, N., Deutscher, J., and Rudolph, J. (2024). Stabilizing

nonlinear ODEs with diffusive actuator dynamics. IEEE Control Syst. Lett.,

8:1259–1264

are attached below. For each paper, the following terminology suggested in Allen et al.

(2019) is used to indicate the authors’ contribution.

• Conceptualization

Ideas; formulation of overarching research goals and aims

• Methodology

Development or design of methodology; creation of models

• Software

Programming, software development; designing computer programs; implemen-

tation of the computer code and supporting algorithms; testing of existing code

components

• Validation

Verification, whether as a part of the activity or separate, of the overall replica-

tion/reproducibility of results/experiments and other research outputs
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• Writing of Original Draft

Preparation, creation and/or presentation of the published work, specifically writ-

ing the initial draft (including substantive translation)

• Review & Editing

Preparation, creation and/or presentation of the published work by those from

the original research group, specifically critical review, commentary or revision –

including pre- or postpublication stages

• Visualization

Preparation, creation and/or presentation of the published work, specifically vi-

sualization/ data presentation

• Supervision

Oversight and leadership responsibility for the research activity planning and

execution, including mentorship external to the core team
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linear hyperbolic PDEs coupled with nonlinear

ODEs
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a b s t r a c t

This paper considers general heterodirectional linear hyperbolic PDEs with boundary actuation and
collocated measurement, that are bidirectionally coupled with nonlinear ODEs at the unactuated
boundary. An output feedback regulator is designed to have the control output track a reference
in the presence of disturbances, with a nonlinear signal model generating the reference and the
disturbances. This leads to new challenges for both the observer and controller design. The regulator
design makes use of results from output regulation theory for nonlinear lumped-parameter and
distributed-parameter systems. The derivation of the state feedback regulator requires solving a new
type of regulator equations, which consist of a Cauchy problem for linear and semilinear hyperbolic
PDEs. A key component of the novel observer design is a nonlinear retarded observer for a finite-
dimensional subsystem. Both the controller and the observer design are systematic in nature and
derived in several successive steps, that include backstepping transformations and, most notably,
predictions of PDE and ODE states. The latter are shown to be the unique solution of general nonlinear
Volterra integro-differential equations. Combining the observer with the state feedback regulator is
proven to achieve output regulation for the closed-loop system. A numerical example illustrates and
confirms the theoretical results.

© 2022 Elsevier Ltd. All rights reserved.

1. Introduction

1.1. Background and motivation

In recent years, there has been considerable research ac-
tivity concerning the output regulation of boundary controlled
distributed-parameter systems (DPSs) to ensure reference track-
ing in the presence of disturbances. As the reference and distur-
bance signals are assumed to be generated by a known finite-
dimensional exogenous model, there exist systematic methods
for the regulator design (see, e.g., Aulisa and Gilliam (2016) for an
overview and Natarajan, Gilliam, andWeiss (2014), Paunonen and
Pohjolainen (2014) for general abstract systems). In this setup,
the so-called regulator equations have to be solved to determine
the regulator. If the state of the DPS and the signal model is

✩ The material in this paper was not presented at any conference. This paper
was recommended for publication in revised form by Associate Editor Rafael
Vazquez under the direction of Editor Miroslav Krstic.

∗ Corresponding author.
E-mail addresses: a.irscheid@lsr.uni-saarland.de (A. Irscheid),

joachim.deutscher@uni-ulm.de (J. Deutscher), nicole.gehring@jku.at
(N. Gehring), j.rudolph@lsr.uni-saarland.de (J. Rudolph).

known, the regulator can be interpreted as a state feedback
with a feedforward part that ensures tracking and disturbance
rejection w.r.t. the output to be controlled. Otherwise, based on
a measurement (that does not have to coincide with the control
output), an observer is required for both the DPS and the signal
model.

A very constructive and general regulator design makes use of
the backstepping approach in, e.g., Krstic and Smyshlyaev (2008).
First results proposing backstepping-based output regulation of
2 × 2 hyperbolic partial differential equations (PDEs) can be
found in Aamo (2013). This result is extended to general het-
erodirectional hyperbolic PDEs in Anfinsen and Aamo (2017) and
Deutscher (2017). Backstepping is also used in, e.g., Deutscher,
Gehring, and Kern (2018) and Di Meglio, Argomedo, Hu, and
Krstic (2018) for the control of hyperbolic PDEs that are coupled
with ordinary differential equations (ODEs), which arise from dy-
namic boundary conditions (BCs) or from the coupling of lumped-
parameter systems at the boundary. Therefore, it is natural to
extend backstepping-based output regulation to this class of so-
called PDE–ODE systems. Output regulators for linear wave-ODE
systems are presented in Deutscher and Gabriel (2021), Gu, Wang,
and Guo (2018), Liu and Wang (2017) and Zhou, Guo, and Wu
(2016), where the former are restricted to PDE–ODE cascades. In

https://doi.org/10.1016/j.automatica.2022.110748
0005-1098/© 2022 Elsevier Ltd. All rights reserved.
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the present paper, the output regulation problem is solved for the
significantly more challenging case of general heterodirectional
linear hyperbolic PDEs bidirectionally coupled with nonlinear
ODEs. This general class of hyperbolic PDE–ODE systems, where
the ODEs are nonlinear, covers a variety of models for technical
applications, most famously oil well drilling (Bekiaris-Liberis &
Krstic, 2014; Sagert, Di Meglio, Krstic, & Rouchon, 2013; Saldivar
et al., 2014). However, even disregarding output regulation, most
control designs found in the literature only apply to linear PDE–
ODE systems, which is why Sagert et al. (2013) makes use of a
linearized model. The leading standard for the control of these
linear DPSs is the backstepping method (see Di Meglio et al., 2018
for stabilization, Auriol, Bribiesca-Argomedo, Bou Saba, Di Loreto,
and Di Meglio (2018) for delay-robust stabilization, Deutscher
et al. (2018), Deutscher, Gehring, and Kern (2019) for output
feedback control and Auriol, Bribiesca-Argomedo, Niculescu, &
Redaud, 2021; Redaud, Auriol, & Niculescu, 2021 for networked
systems that are not-fully boundary actuated). In the case of
nonlinear boundary ODEs, the results are scarce. To the best of
the authors’ knowledge, it is only cascades of linear PDEs and
nonlinear ODEs, for which backstepping designs exist (see Cai and
Diagne (2021)).

Control strategies for PDEs interconnected with nonlinear
ODEs are not restricted to backstepping. Regarding the flatness-
based designs in Gehring and Woittennek (2022), Knüppel, Woit-
tennek, Boussaada, Mounier, and Niculescu (2014) and Woitten-
nek (2013), it seems tangible to extend their underlying ideas
to the general setup considered in this paper. Moreover, re-
cently, prediction-based methods emerged for the control and
observer design for PDE–ODE systems. For instance, prediction-
based controllers are proposed for nonlinear ODEs interconnected
with transport equations or a wave PDE in Bekiaris-Liberis and
Krstic (2013) and Bekiaris-Liberis and Krstic (2014, Ch. 5), re-
spectively. The strategy pursued in Irscheid, Gehring and Rudolph
(2021) yields first results on the tracking control of general
2 × 2 linear hyperbolic PDEs that are bidirectionally coupled with
nonlinear ODEs. An observer design for the same class of PDE–
ODE systems can be found in Irscheid, Gehring, Deutscher and
Rudolph (2021). In fact, prediction-based methods and backstep-
ping are closely related, with their equivalence proven in Irscheid,
Gehring, Deutscher, and Rudolph (2022) for a class of linear PDE–
ODE systems. This matches the observation made in Strecker and
Aamo (2017), in which a prediction-based output feedback is
designed for 2 × 2 heterodirectional semilinear hyperbolic PDEs.

1.2. Contributions

This paper solves the output regulation problem for boundary-
controlled general heterodirectional linear hyperbolic PDEs that
are bidirectionally coupled with nonlinear ODEs at the unac-
tuated boundary. A very general setup is obtained by allowing
for disturbances to act at the unactuated PDE boundary, the
nonlinear ODEs and the output to be controlled. Both the dis-
turbances and the reference for the control output are generated
by a nonlinear signal model. This leads to new challenges in
the regulator design. In particular, one has to combine ideas
from output regulation theory for nonlinear lumped-parameter
systems (see, e.g., Huang (2004) and Isidori (1995, Ch. 8)) with
results for DPS (see, e.g. Deutscher et al. (2019) and in par-
ticular Irscheid et al., 2022; Irscheid, Gehring, Rudolph, 2021).
This yields a new type of regulator equations, which consist of
a Cauchy problem for linear and semilinear hyperbolic PDEs. Its
solvability is verified and a systematic design procedure for the
state feedback regulator is obtained. Another challenge concerns
the observer design on the basis of a collocated measurement.
In fact, this paper generalizes the ideas from Irscheid, Gehring,

Deutscher et al. (2021) developed for 2 × 2 PDEs to the general
heterodirectional case considered here. The proposed observer is
combined with the state feedback regulator to achieve output
regulation for the closed-loop system.

Note that the output regulation problem has previously not
even been solved for those general heterodirectional hyperbolic
PDE–ODE systems, where the ODEs and the signal model are
linear. This contribution directly presents the results for the non-
linear case by basing the regulator and observer design on pre-
dictions of the PDE and ODE states.

1.3. Organization

The paper is structured as follows. The output regulation prob-
lem is stated in Section 2. By three consecutive state transfor-
mations, a state feedback regulator is designed in Section 3.
The observer, constructively derived in Section 4, estimates the
state of the plant and the signal model. Combining the results
from Sections 3 and 4, the output feedback regulator is obtained,
which is shown in Section 5 to achieve both output tracking and
disturbance rejection. Finally, the numerical example in Section 6
illustrates the closed-loop behavior and the overall performance.

1.4. Notation

The ith component of a vector h ∈ Rn is denoted by hi for
i = 1, . . . , n, i.e., h = coln1(hi) = col(h1, . . . , hn). As usual, ei ∈ Rn,
i = 1, . . . , n, is a unit vector, In the identity matrix in Rn×n.
Furthermore, introduce the matrices

E− =

[
In−

0

]
∈ Rn×n− and E+ =

[
0
In+

]
∈ Rn×n+ . (1)

Then, define −M = E⊤
−
M , M− = ME−, +M = E⊤

+
M and M+ =

ME+ for matrices M of suitable dimensions. For v ∈ Rn with
∥v∥ = ∥v∥Rn , define v− = E⊤

−
v ∈ Rn− and v+ = E⊤

+
v ∈ Rn+ .

Where convenient, the time argument is omitted (for example
x(z, t) ≡ x(z)).

2. Problem formulation

Consider the coupled hyperbolic PDE–ODE system

∂tx(z, t) = Λ(z)∂zx(z, t) + A(z)x(z, t) (2a)

x+(0, t) = Q0x−(0, t) + c(w(t), d(t)), t > 0 (2b)

x−(1, t) = Q1x+(1, t) + u(t), t > 0 (2c)

ẇ(t) = f (w(t), x−(0, t), d(t)), t > 0 (2d)

y(t) = Gx−(0, t) + g(w(t), d(t)), t ≥ 0 (2e)

η(t) = x+(1, t), t ≥ 0. (2f)

Therein, the PDE (2a) is defined on (0, 1) × R+ and

Λ(z) = diag(λ−

1 (z), . . . , λ
−

n−
(z), λ+

1 (z), . . . , λ
+

n+
(z)) (3)

with C1-functions λ−

1 (z) > · · · > λ−
n−

(z) > 0 > λ+

1 (z) >

· · · > λ+
n+

(z), z ∈ [0, 1], n− + n+ = n, is assumed, giving rise
to a heterodirectional PDE subsystem with the state x(z, t) =

col(x−(z, t), x+(z, t)) ∈ Rn, where x−(z, t) ∈ Rn− propagates
in the negative z-direction and x+(z, t) ∈ Rn+ in the opposite
direction. For i = 1, . . . , n− define φ−

i (z) =
∫ z
0 ( dζ/λ

−

i (ζ )) > 0,
z ∈ [0, 1], the inverse ψ−

i = (φ−

i )−1 and ∆−

i = φ−

i (1). Similarly,
φ+

i (z) = −
∫ z
0 ( dζ/λ

+

i (ζ )) > 0, ψ+

i = (φ+

i )−1 and ∆+

i = φ+

i (1) for
i = 1, . . . , n+. Note that ψ−

i and ψ+

i exist, because φ−

i and φ+

i
are strictly monotonically increasing. The entries of A(z) = [Aij(z)]
are C1-functions and satisfy Aii(z) = 0, z ∈ [0, 1], i = 1, . . . , n,
without loss of generality (see, e.g., Hu, Di Meglio, Vazquez, and
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Krstic (2016)). The state of the ODE (2d) is w(t) ∈ Rnw with (2b)
and (2d) stemming from a dynamic boundary condition at the
unactuated boundary z = 0. It is assumed that the functions c , f
and g are known and sufficiently smooth w.r.t. their arguments,
with c(0, 0) = 0, f (0, 0, 0) = 0 and g(0, 0) = 0. The control input
of the system is u(t) ∈ Rn− and the unmeasurable disturbance
input is d(t) ∈ Rρ . The output to be controlled is y(t) ∈ Rn− and
the measurement is the collocated output η(t) ∈ Rn+ . The initial
condition (IC) of (2) comprises x(z, 0) = x0(z) ∈ Rn, assumed
piecewise continuous, and w(0) = w0 ∈ Rnw .

The reference r(t) = qr (vr (t)) ∈ Rn− is the output of a
known reference model v̇r (t) = sr (vr (t)), vr (0) = vr,0 ∈ Rnr .
Similarly, the disturbance d(t) = pd(vd(t)) is the output of a
known disturbance model v̇d(t) = sd(vd(t)), vd(0) = vd,0 ∈ Rnd .
With v = col(vr , vd) and nr + nd = nv this gives rise to the joint
nonlinear signal model

v̇(t) = s(v(t)), t > 0, v(0) = v0 ∈ Rnv (4a)

d(t) = p(v(t)), t ≥ 0 (4b)

r(t) = q(v(t)), t ≥ 0 (4c)

with sufficiently smooth functions s, p and q satisfying s(0) = 0,
p(0) = 0 and q(0) = 0. It is assumed that only r(t) is available
to the regulator. This situation occurs, for example, if a human
operator or superimposed central system solely supplies r(t).

For the solution of the output regulation problem, the follow-
ing assumptions are imposed on (2d) and (4a), with detG ̸= 0 for
simplicity in (2e) (see also Remark 7).

Assumption 1. The ODE subsystem (2d) is forward complete
(see Krstic (2010)) and ẇ = f (w, k(w)+ϖ1,ϖ2) is input-to-state
stable w.r.t. ϖ = col(ϖ1,ϖ2) for a continuously differentiable
function k : Rnw → Rn− with k(0) = 0. Furthermore, the linear
approximation of ẇ = f (w, k(w), 0) about its equilibrium w = 0
is asymptotically stable. ◁

Forward completeness means that the solution of (2d) ex-
ists for all ICs and locally bounded input signals x−(0, t) and
d(t) for t ≥ 0. In particular, the system does not exhibit a
finite escape time. This is a fundamental requirement, because
a stabilizing feedback acts on the ODE subsystem only after a
finite delay, due to the hyperbolic character of the PDE sub-
system. Note that input-to-state stability implies that k(w) is a
globally asymptotically stabilizing state feedback. Various sys-
tem classes with these properties are discussed in Krstic (2010).
Finally, a prerequisite for the required asymptotic stability of
the linearized approximation is the stabilizability of the pair
(∂wf (0, 0, 0), ∂x−(0,·)f (0, 0, 0)).

Assumption 2. The system (4a) is neutrally stable, i.e., its
origin is Lyapunov stable and every point in an open neighbor-
hood is Poisson stable (see, e.g., Huang (2004, Rem. 3.2) for a
definition). ◁

Note that Poisson stability of (4) implies that the signals gen-
erated by (4) are persistent and bounded. This is a standard
assumption in nonlinear output regulation theory (see Huang
(2004, Ch. 3)) and together with Assumption 1, these two re-
quirements are imposed for the design of the state feedback
regulator (in Section 3). The next two assumptions concern the
existence of ODE observers. Introduce the combined state wo =

col(vd, w) such that co(wo) = c(w, pd(vd)) and fo(wo, x−(0)) =

col(sd(vd), f (w, x−(0), pd(vd))) can be used.

Assumption 3. There exists a (forward-complete) observer
˙̂vr (t) = s̄r (v̂r (t), r(t)) (5)

for v̇r (t) = sr (vr (t)) such that the origin of the dynamics in error
coordinates vr − v̂r is globally attractive. ◁

Assumption 4. There exists a (forward-complete) observer
˙̂wo = f̄o(ŵo, x−(0) +ϖ1, co(wo) +ϖ2) (6)

for ẇo = fo(wo, x−(0)) such that the dynamics of the errorwo−ŵo
is input-to-state stable w.r.t. ϖ = col(ϖ1,ϖ2). Furthermore, for
ϖ = 0, the origin of the corresponding error dynamics is globally
attractive. ◁

The observer (6) is basically a standard nonlinear observer
designed with inputs x−(0) and co(wo), where the former is
interpreted as the input of the wo-dynamics and the latter as
its output. As x−(0) and co(wo) are unknown, the observer (6) is
introduced with a respective error ϖ (see Section 4.3 for details).
Moreover, the forward completeness of (5) and (6) ensures the
absence of a finite escape time. Standard methods for the design
of such observers can be found in Bernard (2019), whereas Birk
and Zeitz (1988) and Röbenack and Lynch (2007) present sys-
tematic methods to determine observers and give conditions for
global convergence.

Remark 5. The existence of an observer for the PDE–ODE system
(2) and the signal model (4) requires that the observers (5) and
(6) for the nonlinear subsystems (2d) and (4a) exist. The global
convergence of the estimates v̂r and ŵo to their respective system
states vr and wo, stated in Assumptions 3 and 4, is imposed
for convenience and is irrelevant for the proposed method. If,
instead, only a locally convergent observer is available, the design
proposed in the paper can be extended to this setup. In particular,
the overall observer error inherits its stability properties from
those assumed for the observers of the nonlinear subsystems (2d)
and (4a).

In this paper, the (local) nonlinear output regulation problem
is solved for (2) by output feedback control. This amounts to
designing a compensator ensuring local closed-loop stability such
that

lim
t→∞

ey(t) = lim
t→∞

(y(t) − r(t)) = 0 (7)

for all ICs of the plant (2) and the compensator located in open
neighborhoods of their respective origins.

3. State feedback regulator

The design of the state feedback regulator is split into mul-
tiple, successive steps, each of which pursues a specific goal.
Fig. 1 offers an overview of the design with its three consecutive
transformations as well as a prediction step. First, a backstepping
transformation maps the PDE subsystem into a simpler structure.
Based on that, another PDE state transformation allows to de-
couple the PDE from the ODE subsystem, resulting in a cascaded
system representation. In the absence of a signal model (4), this
second step is sufficient to determine a stabilizing controller. In
order to achieve output regulation (7), a third state transforma-
tion is invoked. It leads to a set of new regulator equations, the
solvability of which is shown in Section 3.3. As the resulting
regulator requires future values of both the ODE and the PDE
states, a prediction problem is solved in the forth and final design
step. In the end, the state feedback regulator in Section 3.5 is
shown to guarantee reference tracking for the control output in
the presence of disturbances.

3.1. Stabilization of the PDE subsystem

In order to stabilize the PDE subsystem in (2) as well as to
simplify the structure of the decoupling and regulator equations,
the invertible backstepping transformation

x̃(z, t) = x(z, t) −

∫ z

0
K (z, ζ )x(ζ , t) dζ = T [x(t)](z) (8)
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(2) (9) (13) (18)
backstepping

(8) with K

ODE

(12) with µ

decoupling of
signal model

(17) with π

decoupling of

predictor

regulatorSection 3.1 Section 3.2 Section 3.3

Section 3.4

Section 3.5

Fig. 1. Overview of the state feedback regulator design, highlighting the
transformations and predictor.

(cf., e.g., Krstic and Smyshlyaev (2008)) with the kernel K (z, ζ ) ∈

Rn×n is utilized to map (2a)–(2e) into the intermediate target
system

∂t x̃(z, t) = Λ(z)∂z x̃(z, t) + A0(z)x̃−(0, t) + H(z)c(w(t), d(t)) (9a)

x̃+(0, t) = Q0x̃−(0, t) + c(w(t), d(t)) (9b)

x̃−(1, t) = ũ(t) (9c)

ẇ(t) = f (w(t), x̃−(0, t), d(t)) (9d)

y(t) = Gx̃−(0, t) + g(w(t), d(t)) (9e)

with H(z) = K (z, 0)Λ+(0) and a matrix A0(z), where −A0(z) =

[a−

ij (z)] ∈ Rn−×n− is strictly lower triangular and +A0(z) =

[a+

ij (z)] ∈ Rn+×n− has no specific form. Hence, disregarding the
impact of the ODE states w(t) and d(t), (9a) is a cascade of
transport PDEs. Based on that, following the subsequent design
steps, the PDE subsystem becomes finite-time stable in the final
target system. In order to obtain (9c), the new input

ũ(t) = Q1x+(1, t) + u(t) −

∫ 1

0
−K (1, ζ )x(ζ , t) dζ (10)

is introduced. Furthermore, Hu, Vazquez, Di Meglio, and Krstic
(2019) shows that K (z, ζ ) is the unique piecewise C1-solution of
the kernel equations

Λ(z)∂zK (z, ζ ) + ∂ζ (K (z, ζ )Λ(ζ )) = K (z, ζ )A(ζ ) (11a)

K (z, 0)(Λ−(0) +Λ+(0)Q0) = A0(z) (11b)

K (z, z)Λ(z) −Λ(z)K (z, z) = A(z), (11c)

that are defined on the domain 0 ≤ ζ ≤ z ≤ 1. Note that
(11) is only a BC for a−

ij (z), i ≤ j, with the remaining equations
defining the elements of A0(z). Additionally, artificial BCs have
to be imposed for uniqueness of solution (see Hu et al. (2019)).
Therefore, (11) is a simplified way of stating the kernel equations
and the definition of A0(z).

3.2. Decoupling of the PDE subsystem

In order to map (9) into a PDE–ODE cascade, the decoupling
transformation

ε(z, t) = x̃(z, t) − µ(z, t) (12)

is introduced. Therein, µ(z, t) ∈ Rn is determined such that (9)
takes the form

∂tε(z, t) = Λ(z)∂zε(z, t) + A0(z)ε−(0, t) (13a)

ε+(0, t) = Q0ε−(0, t) (13b)

ε−(1, t) = ũ(t) − µ−(1, t) (13c)

ẇ(t) = f (w(t), k(w(t)) + ε−(0, t), d(t)) (13d)

y(t) = G(ε−(0, t) + k(w(t))) + g(w(t), d(t)), (13e)

where the state feedback k(w(t)) ∈ Rn− is known by Assump-
tion 1. In order to obtain (13), differentiate (12) w.r.t. time and

make use of (9) to show that µ(z, t) has to satisfy the decoupling
equations

∂tµ(z, t) = Λ(z)∂zµ(z, t) + A0(z)k(w(t)) + H(z)c(w(t), p(v(t)))
(14a)

µ+(0, t) = Q0k(w(t)) + c(w(t), p(v(t))) (14b)

µ−(0, t) = k(w(t)) (14c)

defined on the domain (z, t) ∈ [0, 1] × R+

0 . The following lemma
clarifies the solvability of (14).

Lemma 6 (Decoupling Equations). The decoupling Eqs. (14) have
a unique piecewise C-solution µ(z, t) ∈ Rn on the domain (z, t) ∈

[0, 1] × R+

0 for any piecewise continuous IC µ+(z, 0) = µ+,0(z).

Proof. The solution of the Cauchy problem (14) can be directly
determined using the method of characteristics for each com-
ponent µi of µ. With H = coln1(h

⊤

i ) and Q0 = coln+

1 (q⊤

0,i), one
obtains

µ−,i(z, t) = ki(w(t + φ−

i (z)))

−

∫ z

0

h⊤
i (ζ )c(w(t+φ−

i (z)−φ−

i (ζ )),p(v(t+φ−

i (z)−φ−

i (ζ ))))

λ−

i (ζ )
dζ

−

∫ z

0

i−1∑
j=1

a−

ij (ζ )kj(w(t + φ−

i (z) − φ−

i (ζ )))

λ−

i (ζ )
dζ (15)

for i = 1, . . . , n−. Similarly, for i = 1, . . . , n+,

µ+,i(z, t) = µ+,0,i(ψ+

i (φ+

i (z) − t))

+

∫ t

0
h⊤

i+n−
(ψ+

i (φ+

i (z) − t + τ ))c(w(τ ), p(v(τ ))) dτ

+

∫ t

0

n−∑
j=1

a+

ij (ψ
+

i (φ+

i (z) − t + τ ))kj(w(τ )) dτ (16a)

if t ∈ [0, φ+

i (z)) and

µ+,i(z, t) = q⊤

0,ik(w(t − φ+

i (z)))
+ ci(w(t − φ+

i (z)), p(v(t − φ+

i (z))))

−

∫ z

0

h⊤
i+n−

(ζ )c(w(t−φ+

i (z)+φ+

i (ζ )),p(v(t−φ+

i (z)+φ+

i (ζ ))))

λ+

i (ζ )
dζ

−

∫ z

0

n−∑
j=1

a+

ij (ζ )kj(w(t − φ+

i (z) + φ+

i (ζ )))

λ+

i (ζ )
dζ (16b)

if t ≥ φ+

i (z). Hence, µ(z, t) is continuous w.r.t. space and time,
where (z, t) ∈ [0, 1] × R+

0 . □

In view of (15), the proof of Lemma 6 shows that the eval-
uation of µ−(1, t) in (13c) requires an online prediction of the
ODE states v and w (see (4) and (2d)). For this, online predictors
will be derived in Section 3.4. Note that µ+(z, t) is not needed to
determine the regulator.

3.3. Regulator equations

For the design of the state feedback regulator, the PDE subsys-
tem (13a)–(13c) is decoupled from the signal model (4). To this
end, the transformation

ε̃(z, t) = ε(z, t) − π (z, v(t)) (17)

and a mapping γ : v ↦→ γ (v) ∈ Rnw , defined in an open neighbor-
hood of the origin in Rnv , are utilized. The function π (z, v(t)) ∈ Rn

4
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is chosen such that (13) with the output tracking error ey defined
in (7) takes the form

∂t ε̃(z) = Λ(z)∂z ε̃(z) + A0(z)ε̃−(0) (18a)

ε̃+(0) = Q0ε̃−(0) (18b)

ε̃−(1) = 0 (18c)

ẇ = f (w, k(w) + ε̃−(0) + q̃(v), p(v)) (18d)

ey = G(ε̃−(0) + q̃(v) + k(w)) + g(w, p(v)) − q(v), (18e)

where q̃(v) is defined later (by (22)) and

ũ = µ−(1) + π−(1, v). (19)

From (18a)–(18c) it is apparent that ε̃(z, t) = 0 for t ≥ tc =∑n−

i=1∆
−

i +∆+

1 .
Differentiating (17) w.r.t. time as well as inserting (4) and (13)

shows that (17) maps (13) into (18) if π (z, v) is the solution of

∂vπ (z, v)s(v) −Λ(z)∂zπ (z, v) = A0(z)q̃(v) (20a)

π+(0, v) = Q0q̃(v) (20b)

π−(0, v) = q̃(v) (20c)

for (z, v) ∈ [0, 1] × Rnv and γ (v) satisfies the PDE

∂vγ (v)s(v) = f (γ (v), k(γ (v)) + q̃(v), p(v)) (21)

with γ (0) = 0 as well as

0 = G(q̃(v) + k(γ (v))) + g(γ (v), p(v)) − q(v). (22)

Both (21) and (22) are obtained under the assumption ε̃(z, t) = 0,
which is valid for t ≥ tc , and by requiring that w = γ (v) is
an invariant manifold (see, e.g., Isidori (1995)). Note that (22)
implies the definition of q̃(v) because detG ̸= 0, by assumption.
Consequently, (20) and (21) are the regulator equations.

The PDE (21) is well-known from the center manifold theory.
Hence, there exists a (local) Ck-solution γ (v) of (21) for any k ∈

N0 (see Isidori (1995, B.1)) allowing for a power series ansatz
(see Huang (2004, Ch. 4) for details).

Remark 7. If detG = 0, (21) and (22) constitute a classical
output regulation problem. Results for its solution γ (v), q̃(v) can
be found in Isidori (1995, Ch. 8).

The next lemma clarifies the solvability of (20).

Lemma 8 (Cauchy Problem). The Cauchy problem (20) has a
C-solution π (z, v) ∈ Rn.

Proof. Defining θ (z, v) = A0(z)q̃(v), the PDE

∂vπ−,i(z, v)s(v) − λ−,i(z)∂zπ−,i(z, v) = θ−,i(z, v) (23)

follows from (20a) for the components π−,i of π−. Its solution
depends on the flow ϕs : R × Rnv → Rnv of the smooth vector
field s(v) with v(t + σ ) = ϕs(σ , v(t)). Then, solving the PDE (23)
with the BC (20c) by the method of characteristics yields

π−,i(z, v) = q̃i(ϕs(φ−

i (z), v))

+

∫
−φ−

i (z)

0
θ−,i(ψ−

i (−σ ), ϕs(σ + φ−

i (z), v)) dσ (24)

for i = 1, . . . , n−. In a similar fashion, one obtains

π+,i(z, v) = q⊤

0,iq̃(ϕs(−φ
+

i (z), v))

+

∫ φ+

i (z)

0
θ+,i(ψ+

i (σ ), ϕs(σ − φ+

i (z), v)) dσ (25)

for i = 1, . . . , n+. Hence, the solution π (z, v) of the Cauchy
problem (20) is continuous w.r.t. both its arguments z and v. □

Remark 9. The state feedback regulator (19) consists of a
stabilizing part µ−(1, t) and a part π−(1, v(t)) responsible for
output regulation in the presence of disturbance and reference
signals originating from the signal model (4). This interpretation
motivates the use of two separate transformations (12) and (17)
instead of a combined one. In particular, in the absence of any
disturbance or reference, i.e., when nv = 0, the second transfor-
mation (17) is not required to ensure asymptotic stability. This is
apparent from (13) with ũ(t) = µ−(1, t).

In view of (15) and (24), the implementation of the state
feedback regulator (19) (and (10)) requires an online prediction
of both ODE states v(t+τ ) and w(t+τ ) for τ ∈ (0,∆−

n−
]. To better

highlight that, introduce µ(z, t) = M[w, v](z, t) and π (z, v(t)) =

P[v](z, t) for the solutions of (14) and (20), respectively. With a
slight abuse, this notation illustrates the functional dependence
of µ and π on w and v. Specifically, the state feedback regulator
(19) uses the components

µ−,i(ψ−

i (τ ), t) = M−,i[w, v](ψ−

i (τ ), t) = ki(w(t + τ ))

−

∫ τ

0

i−1∑
j=1

a−

ij (ψ
−

i (τ − σ ))kj(w(t + σ )) dσ

−

∫ τ

0
h⊤

i (ψ
−

i (τ − σ ))c(w(t + σ ), p(v(t + σ ))) dσ , (26a)

τ ∈ (0,∆−

i ], i = 1, . . . , n−, which essentially follow from (15) by
substituting the integration variable, and

π−,i(z, v(t)) = P−,i[v](z, t) = q̃i(v(t + φ−

i (z)))

−

∫ φ−

i (z)

0
θ−,i(ψ−

i (φ−

i (z) − σ ), v(t + σ )) dσ (26b)

for i = 1, . . . , n−, as obtained from (24) by using v(t + σ ) =

ϕs(σ , v(t)) and a substitution of the integration variable.

3.4. Prediction of the ODE states

To determine the ODE states on the interval (t, t + ∆−
n−

], the
prediction problem

dτvp(τ ; t) = s(vp(τ ; t)) (27a)

dτwp(τ ; t) = f (wp(τ ; t), x−(0, t + τ ), p(vp(τ ; t))) (27b)

with the ICs vp(0; t) = v(t) and wp(0; t) = w(t) is solved for
τ ∈ (0,∆−

n−
]. It follows from (4a) and (2d) by substituting vp(τ ; t)

for v(t + τ ) and wp(τ ; t) for w(t + τ ). Note that t plays the role
of a parameter in (27).

The solution of the nonlinear ODE (27a) directly produces
vp(τ ; t) for τ ∈ (0,∆−

n−
] at each time t . It is thus considered

to be known for the determination of wp(τ ; t). It is shown in
the following that the required future values x−(0, t + τ ) can be
written as

x−(0, t + τ ) = Sc[wp, vp, x](τ , t) (28)

for τ ∈ (0,∆−
n−

] and fixed t , i.e. a functional of wp(τ ; t), vp(τ ; t)
and x. In particular, by evaluating the transformations (8), (12),
and (17) at z = 0 and inserting (14c) and (20c) it follows that

x−(0) = ε̃−(0) + k(w) + q̃(v) (29)

on τ ∈ (0,∆−
n−

]. Note that (12) and (17) imply ε̃−,i(ψ−

i (τ ), t) =

x̃−,i(ψ−

i (τ ), t)−µ−,i(ψ−

i (τ ), t)−π−,i(ψ−

i (τ ), v(t)), i = 1, . . . , n−.

5
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Hence, ε̃−(0) in (29) can be expressed as

ε̃−,i(0, t + τ ) = e⊤

i T [x(t)](ψ−

i (τ ))
− M−,i[w, v](ψ−

i (τ ), t) − P−,i[v](ψ−

i (τ ), t)

+

∫ τ

0

i−1∑
j=1

a−

ij (ψ
−

i (τ − σ ))ε̃−,j(0, t + σ ) dσ (30a)

for τ ∈ (0,∆−

i ], which follows from the solution of the PDE (18a)
and taking the backstepping transformation (8) as well as (26)
into account. For τ ∈ (∆−

i ,
∑i

k=1∆
−

k ) the solution

ε̃−,i(0, t + τ ) =

∫ ∆
−

i

0

i−1∑
j=1

a−

ij (ψ
−

i (σ ))ε̃−,j(0, t + τ − σ ) dσ (30b)

is obtained from (18a) and (18c), with

ε̃−,i(0, t + τ ) = 0 (30c)

for τ ≥
∑i

k=1∆
−

k . Inserting the solution branches of ε̃−,i(0, t+τ ),
piecewise defined in (30), into (29) and using vp(τ ; t) andwp(τ ; t)
instead of v(t + τ ) and w(t + τ ) defines Sc in (28). Together
with (27b), this results in a general nonlinear Volterra integro-
differential equation (GNVIDE) for wp(τ ; t). This is clarified in the
next lemma and proven in Appendix A.

Lemma 10 (Prediction). There exists a unique solution wp(τ ; t)
for τ ∈ (0,∆−

n−
] of the GNVIDE resulting from (27b), (29), (30)

and using vp(τ ; t) and wp(τ ; t) instead of v(t + τ ) and w(t + τ ),
respectively, with the IC wp(0; t) = w(t).

The prediction problem can be solved online using a time
discretization. Details on the analysis of the corresponding im-
plementation can be found in Feldstein and Sopka (1974). The
various approximation schemes that are used in Karafyllis and
Krstic (2017, Ch. 4) for prediction problems without an integral
term can be applied in a similar fashion. Note that in the case
of linear ODEs (2d) and (4), their analytical solution replaces the
necessity of an online prediction (see, e.g., Irscheid et al. (2022)).

Corollary 11. The solution wp(τ ; t) of the GNVIDE in Lemma 10
satisfies w(t + τ ) = wp(τ ; t), for τ ∈ [0,∆−

n−
], and v(t + τ ) =

vp(τ ; t) holds for vp(τ ; t) in (27a) with the IC vp(0; t) = v(t).

Proof. As both v(t + τ ) and vp(τ ; t) satisfy the same ODE w.r.t. τ
(cf. (4a) and (27a)) and share the same IC, v(t+τ ) = vp(τ ; t) holds
in view of the smoothness of the vector field s. Based on that,
the GNVIDE for wp(τ ; t) in Lemma 10 and the one for w(t + τ )
(resulting from (27b) with w(t + τ ) instead of wp(τ ; t), (29) and
(30)) are identical. Therefore, the equality w(t+τ ) = wp(τ ; t) is a
consequence of the shared IC and the uniqueness of the solution
of the GNVIDE (see Lemma 10). □

3.5. Stability of the tracking error dynamics

The next theorem presents the solution of the state feed-
back regulation problem. It depends on the results derived in
Sections 3.1–3.4, as illustrated in Fig. 2. Define X [w, v](z) =

T −1
[P[v]+M[w, v]](z) and introduce xref(z) = X [γ (v), v](z) and

wref = γ (v).

Theorem 12 (State Feedback Regulator). Under the Assumptions 1
and 2, the state feedback regulator

u(t) = U[wp, vp, x](t) = M−[wp, vp](1, t) + P−[vp](1, t)

+

∫ 1

0
−K (1, ζ )x(ζ , t) dζ − Q1x+(1, t) (31)

Assumptions 1 & 2

Theorem 12
state feedback regulator

u = U[wp, vp, x]

Lemma 6
decoupling equations

µ

π
Lemma 8

Cauchy problem

Lemma 10
prediction

kernel equations
(11)

regulator equation
(21)

K

γ

Fig. 2. Dependencies of the state feedback regulator design.

achieves output regulation (7) for all piecewise continuous ICs of
the plant (2) and the signal model (4a) in open neighborhoods of
the respective origins. Furthermore, the dynamics of the tracking
errors x(z, t)−xref(z, t) and w(t)−wref(t) are asymptotically stable
pointwise in space.

Proof. In view of Corollary 11, U[wp, vp, x](t) = U[w, v, x](t)
and the regulator (31) is equivalent to (10) and (19), in which
the future values w(t + τ ), v(t + τ ), τ ∈ [0,∆−

n−
] are sub-

stituted by the predictions wp(τ ; t), vp(τ ; t). Using the method
of characteristics it is straightforward to verify that the solution
ε̃−(z, t) of the cascaded transport equations in (18a) and (18c)
vanishes pointwise in space for t ≥ t̃c with t̃c =

∑n−

i=1∆
−

i for
the piecewise continuous IC ε̃(z, 0) following from the ICs of (2)
and (4a), and the continuity of µ and π (see Lemmas 6 and 8).
Since (18d) is forward complete and input-to-state stable w.r.t.
ϖ = col(q̃(v), p(v)) by Assumption 1, the inequality ∥w(t)∥ ≤

β(∥w(t̃c)∥, t − t̃c) + ϑ(supt≥t̃c ∥ϖ (t)∥) holds for t ≥ t̃c , with a
class KL function β and a class K function ϑ (see, e.g., Huang
(2004, Def. 2.13)). As the equilibrium v = 0 of (4a) is stable in the
sense of Lyapunov (cf. Assumption 2), the contribution of ϑ to the
bound of ∥w(t)∥ is arbitrarily small for v(0) sufficiently small as
q̃(v) and p(v) are continuous. Then, the solution of the composite
system (4a) and (18d) remains in any arbitrarily small neighbor-
hood of the origin in Rnw × Rnv for t ≥ t0 and t0 sufficiently
large, because β is a class KL function. Since the equilibrium
w = 0 of ẇ = f (w, k(w), 0) is asymptotically stable in the linear
approximation and the Jacobian of the signal model (4a) at v = 0
has only eigenvalues on the imaginary axis (see Assumptions 1
and 2), there exists an exponentially attractive center manifold
{(w, v) ∈ Rnw × Rnv |w = γ (v)} for the composite system (4a)
and (18d) (see Huang (2004, Th. 2.28)), in which γ is the solution
of (21). In particular, this implies limt→∞(w(t) − wref(t)) = 0.
Consequently, (7) holds in view of (18e), the continuity of q̃ and
ε̃−(z, t) = 0 for t ≥ t̃c . Furthermore, (18a)–(18c) for t ≥ tc =

t̃c + ∆+

1 imply ε̃(z, t) = 0, by which x(z) = X [w, v](z) follows
from the chain of the bounded inverse transformations (cf. (8),
(12), (17)). By that, the asymptotic stability of the tracking error
x−xref results from the linearity of (8) and the smoothness of the
functions c and k in (15). □

4. State observer

Based on the measurement η in (2f), state observers are de-
signed for the different subsystems of (2) and (4). Essentially,
the design is considered independently for the ODE and the PDE
part of the system, with both observers combined only at the
very end. To better structure the multi-step design, first, the
observer for the PDE subsystem assumes knowledge of the ODE
state estimates. The PDE observer is derived using a classical
backstepping transformation. Then, similar to Section 3.2, another
transformation of the PDE state is chosen such that the PDE
observer error dynamics is decoupled from the ODE subsystem,
in order to simplify the system representation. Next, Section 4.3
presents a novel retarded observer for the nonlinear boundary
dynamics and the disturbance model. In the final design step, a
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(34) (37) (40)
backstepping

(36) with K̄ (39) with µ̄+

decoupling
predictor

ODE observerPDE observer

retarded
observer

Section 4.1 Section 4.2 Section 4.3 Section 4.4

Fig. 3. Overview of the state observer design, highlighting the transformations
and predictor.

prediction problem is solved to obtain estimates at time t based
on the retarded ones. These predictions provide the ODE state
estimates that are used in the PDE observer in Section 4.1, based
on which the overall stability of the observer error dynamics is
verified in Section 4.5. Fig. 3 illustrates the two transformation
steps from which the PDE observer is obtained as well as the main
components of the ODE observer.

4.1. Stabilization of the PDE observer error dynamics

In order to determine estimates for the states vd, x and w of
the disturbance model and the plant, first, the PDE observer

∂t x̂(z, t) = Λ(z)∂z x̂(z, t) + A(z)x̂(z, t) + L(z)eη(t) (32a)

x̂+(0, t) = Q0x̂−(0, t) + co(ŵo(t)) (32b)

x̂−(1, t) = Q1η(t) + u(t) (32c)

for (z, t) ∈ [0, 1]×R+

0 with the piecewise continuous IC x̂(z, 0) =

x̂0(z) ∈ Rn is designed for the PDE subsystem (2a)–(2c). In (32),

eη(t) = η(t) − x̂+(1, t) (33)

is the output estimation error and the notation co(wo) =

c(w, pd(vd)) with wo = col(vd, w) from Section 2 is used. The
estimate ŵo is determined in Section 4.4 and is assumed to be
known for the following considerations. By introducing ϵ = x− x̂,
the corresponding observer error dynamics reads

∂tϵ(z, t) = Λ(z)∂zϵ(z, t) + A(z)ϵ(z, t) − L(z)ϵ+(1, t) (34a)

ϵ+(0, t) = Q0ϵ−(0, t) + co(wo(t)) − co(ŵo(t)) (34b)

ϵ−(1, t) = 0 (34c)

in light of (2a)–(2c) and (32). Then, the observer gain

L(z) = K̄ (z, 1)Λ+(1) (35)

in (32a) can easily be determined by using the invertible back-
stepping transformation

ϵ(z, t) = ϵ̃(z, t) −

∫ 1

z
K̄ (z, ζ )ϵ̃(ζ , t) dζ (36)

to map (34) into

∂t ϵ̃(z, t) = Λ(z)∂z ϵ̃(z, t) (37a)
ϵ̃+(0, t) = Q0ϵ̃−(0, t) + co(wo(t)) − co(ŵo(t))

−

∫ 1

0
Ā0(ζ )ϵ̃(ζ , t) dζ (37b)

ϵ̃−(1, t) = 0. (37c)

In (36), K̄ (z, ζ ) ∈ Rn×n is the solution of the kernel equations
(stated in the simplified fashion as in (11))

Λ(z)∂z K̄ (z, ζ ) + ∂ζ (K̄ (z, ζ )Λ(ζ )) = −A(z)K̄ (z, ζ ) (38a)

+K̄ (0, ζ ) − Q0 −K̄ (0, ζ ) = −Ā0(ζ ) (38b)

K̄ (z, z)Λ(z) −Λ(z)K̄ (z, z) = A(z), (38c)

defined on the domain 0 ≤ z ≤ ζ ≤ 1. Furthermore, Ā0(ζ ) =

[Ā0,−(ζ ) Ā0,+(ζ )] holds with a matrix Ā0,−(ζ ) ∈ Rn+×n− and a

strictly lower triangular matrix Ā0,+(ζ ) = [ā+

ij (ζ )] ∈ Rn+×n+ . This
follows from similar calculations as in Deutscher et al. (2018).
In the latter reference it is also verified that (38) has a unique
piecewise C1-solution.

4.2. Decoupling of the PDE observer error dynamics

In order to obtain an observer dynamics (37) that does not
depend on the ODE states and its estimates, the decoupling
transformation

ϵ̄(z, t) = ϵ̃(z, t) − µ̄(z, t) = ϵ̃(z, t) − col(0, µ̄+(z, t)) (39)

with µ̄+(z, t) ∈ Rn+ is considered, i.e., only the state ϵ̃+(z, t)
is transformed. This transformation maps (37) into the target
system

∂t ϵ̄(z, t) = Λ(z)∂z ϵ̄(z, t) (40a)

ϵ̄+(0, t) = Q0ϵ̄−(0, t) −

∫ 1

0
Ā0(ζ )ϵ̄(ζ , t) dζ (40b)

ϵ̄−(1, t) = 0. (40c)

This system is finite-time stable, i.e., ϵ̄(z, t) = 0, z ∈ [0, 1],
t ≥ to = ∆−

n−
+

∑n+

i=1∆
+

i for any piecewise continuous ICs ϵ̄(z, 0),
which follows from the cascade of transport equations due to the
structure of Ā0(ζ ).

By differentiating (39) w.r.t. time as well as inserting (37) and
(40), it is readily shown that µ̄+(z, t) has to satisfy the decoupling
equations

∂t µ̄+(z, t) = +Λ+(z)∂zµ̄+(z, t) (41a)

µ̄+(0, t) = co(wo(t)) − co(ŵo(t)) −

∫ 1

0
Ā0,+(ζ )µ̄+(ζ , t) dζ (41b)

on the domain (z, t) ∈ [0, 1] × R+

0 .

Lemma 13 (Decoupling Equations). The decoupling Eqs. (41) have a
unique piecewise C-solution µ̄+(z, t) ∈ Rn+ on the domain (z, t) ∈

[0, 1] × R+

0 for any piecewise continuous IC µ̄+(z, 0) = µ̄+,0(z).

This result is obvious since (41) is a cascade of transport
equations, similar to the reasoning involving (40).

4.3. ODE observer design

Since only the current value of r(t) is available to the regulator,
the corresponding state vr of the reference model is estimated by
the reference observer (5) with the IC v̂r (0) = v̂r,0 ∈ Rnr (see
Assumption 3).

It remains to design an observer for the disturbance model (4a)
and the ODE subsystem (2d). Due to the delay character of the
hyperbolic PDE subsystem, only a delayed fictitious output can
be utilized for this. Therefore, the retarded ODE

ω̇o = fo(ωo, χ−(0)) (42)

with the states ωo(t) = col(νd(t), ω(t)) = wo(t − ∆+

1 ) and
χ (z, t) = x(z, t−∆+

1 ) is considered. In what follows, the retarded
ODE observer
˙̂ωo = f̄o(ω̂o, χ̂−(0) − C2[eη], C1[eη] + co(D1,1[ŵo])) (43)

(cf. Assumption 4) with the IC ω̂o(0) = ω̂o,0 ∈ Rnd+nw is designed,
where ·̂ indicates the corresponding estimates and D1,1[ŵo(t)] =

ŵo(t −∆+

1 ). The current estimate ŵo follows from a prediction of
the delayed estimate ω̂o in Section 4.4. Note that ŵo(t − ∆+

1 ) ̸=

ω̂o(t). The formal operators Ci, i = 1, 2 in (43) are determined in
the following and lead to lumped and distributed delays of eη .
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The computation of the output injection C1[eη] is based on the
decoupling Eqs. (41). By solving (41a) as well as using (33) and
(39), the result

µ̄+,i(0, t −∆+

i ) = µ̄+,i(1, t) = eη,i(t) − ϵ̄+,i(1, t) (44)

is obtained for i = 1, . . . , n+. Similarly, representing the solution
of (41a) in terms of the BC at z = 1 yields

µ̄+,i(z, t) = µ̄+,i(1, t − φ+

i (z) +∆+

i ), i = 1, . . . , n+. (45)

In order to simplify the notation, the delay operators

Dz[h(t)] = coln+

1 (hi(t − φ+

i (z))) (46a)

Dz,k[h(t)] = coln+

1 (hi(t − φ+

k (z))), k = 1, . . . , n+ (46b)

are introduced for h(t) = coln+

1 (hi(t)). They are commutative and
satisfy D−1

z Dz[h] = h, with the same properties for Dz,k. By that,
(44) and (45) can be written more compactly in the form

eη(t) − ϵ̄+(1, t) = µ̄+(1, t) = D1[µ̄+(0, t)] (47a)

µ̄+(z, t) = DzD−1
1 [µ̄+(1, t)]. (47b)

Applying D1 to (41b) and inserting (47) to eliminate all occur-
rences of µ̄+ gives

eη(t) +

∫ 1

0
D1

[
Ā0,+(ζ )DζD−1

1 [eη(t)]
]
dζ

= ϵ̄+(1, t) +

∫ 1

0
D1

[
Ā0,+(ζ )DζD−1

1 [ϵ̄+(1, t)]
]
dζ

+D1[co(wo(t)) − co(ŵo(t))], (48)

after a simple rearrangement. Note that the nested application of
the delay operators D1 and DζD−1

1 cannot be simplified due to
Ā0,+(ζ ), and that D1[co(wo)] ̸= co(D1[wo]) (see (46a)). To design
(43), apply D1,1D−1

1 to (48). Using D1,1Ā0,+(ζ )Dζ = Ā0,+(ζ )DζD1,1
and D1,1[co(wo)] = co(D1,1[wo]) = co(ωo), this yields

C1[eη] = co(ωo) − co(D1,1[ŵo]) + δ̄1, (49)

wherein δ̄1 = C1[ϵ̄+(1)] and

C1[h](t) = D1,1D−1
1 [h(t)] +

∫ 1

0
Ā0,+(ζ )DζD1,1D−1

1 [h(t)] dζ (50)

depends on the values of each component hi of h = coln+

1 (hi)
on the respective interval [t − ∆+

1 , t + ∆+

i − ∆+

1 ]. Recall that
∆+

i −∆+

1 ≤ 0 for i = 1, . . . , n+, and thus, C1[eη](t) is known.
The expression C1[ϵ̄+(1)] can be written in terms of ϵ̄− to show

that δ̄1(t) = 0 for t ≥ ∆−
n−

+∆+

1 . Since ϵ̄+(z, t) and µ̄+(z, t) share
the same type of transport equation (cf. (40a) and (41a)), note
that ϵ̄+(1, t) = D1[ϵ̄+(0, t)] and ϵ̄+(z, t) = DzD−1

1 [ϵ̄+(1, t)] (see
(47)). Inserting this into (50) produces

δ̄1(t) = D1,1

[
Q0ϵ̄−(0, t) −

∫ 1

0
Ā0,−(ζ )ϵ̄−(ζ , t) dζ

]
(51)

in view of (40b) and Ā0(ζ ) = [Ā0,−(ζ ) Ā0,+(ζ )]. Since ϵ̄−(z, t) = 0
for t ≥ ∆−

n−
pointwise in space (cf. (40)), (51) implies δ̄1(t) = 0

for t ≥ ∆−
n−

+∆+

1 .
In order to define the output injection C2[eη], recall that χ =

D1,1[x] as well as ϵ = x − x̂ and consider

χ−(0, t) = χ̂−(0, t) + D1,1[ϵ−(0, t)]

= χ̂−(0, t) + D1,1

[
−

∫ 1

0
−K̄ (0, ζ )ϵ̄(ζ , t) dζ

+ϵ̄−(0, t) −

∫ 1

0
−K̄+(0, ζ )µ̄+(ζ , t) dζ

]
= χ̂−(0, t) − C2[eη](t) + δ̄2(t). (52)

This follows from inserting (36), (39), and (47), and splitting the
right-hand side into χ̂−(0, t), the part

C2[eη](t) =

∫ 1

0
−K̄+(0, ζ )DζD1,1D−1

1 [eη(t)] dζ , (53)

that depends on values of the output estimation error compo-
nents eη,i on the respective intervals [t −∆+

1 , t +∆+

i −∆+

1 ], and
the part

δ̄2(t) = D1,1

[
ϵ̄−(0, t) −

∫ 1

0
−K̄−(0, ζ )ϵ̄−(ζ , t) dζ

]
, (54)

that vanishes for t ≥ ∆−
n−

+∆+

1 .
In view of the second and third argument of f̄o and based

on (52) and (49), the retarded ODE observer (43) is of the form
(6) (cf. Assumption 4 and recall that δ̄1(t) = δ̄2(t) = 0 for
t ≥ ∆−

n−
+ ∆+

1 ). As such, the estimate ω̂o globally converges to
the state ωo of the retarded ODE (42).

Since the observers (32) and (43) require an estimate ŵo of
the current ODE state, a prediction based on the retarded ODE
observer state ω̂o = col(ν̂d, ω̂) is necessary.

4.4. Prediction of the retarded ODE observer states

Similar to Section 3.4, a prediction of the retarded ODE ob-
server state ω̂o(t) yields the current estimate

ŵo(t) = col(v̂d(t), ŵ(t)) = ω̂o,p(∆+

1 ; t), (55)

where ω̂o,p = col(ν̂d,p, ω̂p) is the solution of

dτ ν̂d,p(τ ; t) = sd(ν̂d,p(τ ; t)) (56a)
dτ ω̂p(τ ; t) = f (ω̂p(τ ; t), So[ω̂o,p, ŵo, x̂−(0), eη](τ , t),

pd(ν̂d,p(τ ; t))) (56b)

for τ ∈ (0,∆+

1 ], with the ICs ν̂d,p(0; t) = ν̂d(t) and ω̂p(0; t) = ω̂(t)
stemming from the retarded ODE observer (43). In the prediction
problem (56), t is treated as a parameter and So is yet to be de-
fined. The nonlinear ODE (56a) can be solved directly to produce
ν̂d,p, which is thus considered to be known in the following.

In particular, one would want So[ω̂o,p, ŵo, x̂−(0), eη](τ , t) in
(56b) to be equal to χ−(0, t + τ ), but the latter is unknown, and
thus, not available for the online prediction. In view of (52),

χ−(0, t + τ ) = x̂−(0, t + τ −∆+

1 )− C2[eη](t + τ )+ δ̄2(t + τ ), (57)

τ ∈ (0,∆+

1 ], where x̂−(0) is known and δ̄2(t) can be neglected as it
vanishes for t ≥ ∆−

n−
+∆+

1 . The evaluation of C2[eη](t+τ ) requires
past and future values of each component eη,i on the interval
[t −∆+

1 , t +∆+

i ] (cf. (53)). However, the unknown future values
can be obtained from (49). For that, essentially, apply D1D−1

1,1 to
(49), neglect δ̄1 (by the same reasoning as for δ̄2) and replace
the unknown ODE state wo by its predicted estimate ω̂o,p. This
defines So as detailed in Appendix B. In fact, So involves only
(known) past and present values of ŵo, x̂−(0) and eη . Its integral
dependence on ω̂o,p is of Volterra type. Therefore, together with
(56b), this results in a GNVIDE for ω̂p(τ ; t), τ ∈ (0,∆+

1 ].
The prediction, similar to the one in Section 3.4, is clarified in

the next lemma. The proof and further details can be found in
Appendix B.

Lemma 14 (Prediction). There exists a unique solution ω̂p(τ ; t) for
τ ∈ (0,∆+

1 ] of the GNVIDE (56b) with So defined in (B.7) and the
IC ω̂p(0; t) = ω̂(t).
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Assumptions 3 & 4

Theorem 15
state observer

Lemma 13
decoupling equations

µ̄+ kernel equations
(38)

K̄

Lemma 14
prediction

Fig. 4. Dependencies of the state observer design.

4.5. Stability of the observer error dynamics

The state observer for the system (2) and the signal model (4)
follows from combining the results of Sections 4.1–4.4 (cf. Fig. 4).
The next theorem clarifies the stability of the resulting observer
error dynamics by taking the online prediction of the ODE states
into account.

Theorem 15 (State Observer). Let Assumptions 3 and 4 be satisfied
and consider the PDE observer (32) with (35), the reference observer
(5) and the retarded ODE observer (43) with the predictor (56)
and (55). For all piecewise continuous ICs x(z, 0), x̂(z, 0) ∈ Rn,
vr (0), v̂r (0) ∈ Rnr and ωo(0), ω̂o(0) ∈ Rnd+nw , the dynamics of
the observer errors ϵ(z, t) = x(z, t) − x̂(z, t), vr (t) − v̂r (t) and
ewo (t) = wo(t) − ŵo(t) are globally convergent pointwise in space.

Proof. The global convergence of the reference observer error
vr (t) − v̂r (t) is ensured by Assumption 3. Furthermore, inserting
(49) and (52) in (43) yields
˙̂ωo = f̄o(ω̂o, χ−(0) − δ̄2, co(ωo) + δ̄1). (58)

By Assumption 4, the error eωo = ωo − ω̂o is input-to-state stable
w.r.t. δ̄ = col(δ̄1, δ̄2). As (40) implies ϵ̄−(z, t) = 0 for t ≥ ∆−

n−

pointwise in space, δ̄ = 0 for t ≥ ∆−
n−

+ ∆+

1 (see (51) and (54)).
Thus, the error eωo = 0 is globally attractive (cf. Assumption 4).
Moreover, δ̄ = 0 means that the GNVIDE for ω̂p (cf. (56b) with
(B.7)) coincides with the one for ω, which follows from using
(57), (B.5) and (B.3) in (42). Additionally, νd and ν̂d,p satisfy the
same ODE (cf. (42) and (56a)). Then, the smoothness of fo implies
continuous dependence of these initial value problems on their
ICs, by which there exists a constant Ξ > 0 in the domain of
interest such that the prediction error eo,p(τ ; t) = ωo(t + τ ) −

ω̂o,p(τ ; t), τ ∈ [0,∆+

1 ] satisfies ∥eo,p(τ ; t)∥ ≤ Ξ∥eo,p(0; t)∥ for
t ≥ ∆−

n−
+ ∆+

1 . As eωo (t) = eo,p(0; t) is globally convergent, so
is ewo (t) = eo,p(∆+

1 ; t) (cf. (55)) and thus limt→∞ ∥ewo (t)∥ = 0.
This in turn implies that limt→∞ supz∈[0,1] ∥ϵ̃(z, t)∥ = 0 since
∥co(wo(t)) − co(ŵo(t))∥ ≤ Ξc∥ewo (t)∥ with the Lipschitz constant
Ξc of co in the domain of interest (cf. (37) and (39)). Finally,
the global convergence of ϵ(z, t) pointwise in space follows from
the same being true for ϵ̃(z, t) and ewo (t), and the bounded
invertibility of the transformation (36). □

5. Output feedback regulator

The output feedback regulator is sketched in Fig. 5 and consists
of the reference observer (5), the PDE observer (32), the retarded
ODE observer (43) and the associated predictor (56) with (55), as
well as the output feedback regulator

u(t) = U[ŵp, v̂p, x̂](t), (59)

in which ŵp, v̂p are the solution of the prediction problem

dτ v̂p(τ ; t) = s(v̂p(τ ; t)) (60a)

dτ ŵp(τ ; t) = f (ŵp(τ ; t), Sc[ŵp, v̂p, x̂](τ , t), p(v̂p(τ ; t))), (60b)

τ ∈ (0,∆−
n−

], with ICs v̂p(0; t) = v̂(t) = col(v̂r (t), v̂d(t)) and
ŵp(0; t) = ŵ(t). In contrast to the prediction problem (27) with

reference

predictor controller

r

v̂r

v̂p

ŵp
PDE-ODE
system (2)

PDE observer
(32), (33)

(59)

retarded
observer (43)(55), (56)

predictor

observer (5)

(60)

signal model
(4)

u

ω̂oŵo

d

η

x̂x̂−(0)

B
eηŵo eη ŵo

B

B

Fig. 5. Schematic overview of the output feedback regulator in the closed loop.
Buffers (B) store values on the interval [t−∆+

1 , t]. Thus their outputs, highlighted
in bold, are available on the same interval.

(28), which is based on the state of the plant (2) and the signal
model (4), only the corresponding observer states are available
for the solution of (60). By that, the output feedback regulator
(59) follows from the state feedback regulator (31) by substituting
the predictions wp(τ ; t), vp(τ ; t), τ ∈ [0,∆−

n−
] and x(z, t) with

their respective estimates ŵp(τ ; t), v̂p(τ ; t) and x̂(z, t). The next
theorem states the main result.

Theorem 16 (Output Feedback Regulator). Let Assumptions 1–
4 hold and consider the compensator consisting of the reference
observer (5), the PDE observer (32), the retarded ODE observer (43)
with the predictor (56) and (55), and the output feedback regulator
(59) with the predictor (60). Then, the dynamics of the tracking
errors x(z, t) − xref(z, t) and w(t) −wref(t) are asymptotically con-
vergent pointwise in space for all piecewise continuous ICs x(z, 0),
x̂(z, 0) ∈ Rn, vr (0), v̂r (0) ∈ Rnr and ωo(0), ω̂o(0) ∈ Rnd+nw in
open neighborhoods of the corresponding origins. This implies output
regulation (7) for the closed-loop system.

Proof. Define the prediction errors ewp (τ ; t) = w(t+τ )−ŵp(τ ; t)
and evp (τ ; t) = v(t +τ )− v̂p(τ ; t) for τ ∈ [0,∆−

n−
], and recall that

w(t + τ ) = wp(τ ; t) and v(t + τ ) = vp(τ ; t) by Corollary 11.
As the assumptions of Theorem 15 are satisfied, the dynamics of
the observer errors ϵ(z, t) = x(z, t) − x̂(z, t), vr (t) − v̂r (t) and
ewo (t) = wo(t)−ŵo(t) are globally convergent pointwise in space.
Furthermore, there exist constants Ξf ,i > 0, i = 1, 2, 3 and Ξs >
0 such that the continuous dependence of the solutions ŵp, v̂p, wp
and vp on their respective ICs implies ∥ewp (τ ; t)∥ ≤ Ξf ,1∥w(t) −

ŵ(t)∥ + Ξf ,2∥v(t) − v̂(t)∥ + Ξf ,3 supz∈[0,1] ∥x(z, t) − x̂(z, t)∥ and
∥evp (τ ; t)∥ ≤ Ξs∥v(t)−v̂(t)∥ (similar to the proof of Theorem 15).
Thereby, the prediction error is bounded by the observer error,
and, consequently, limt→∞ ewp (τ ; t) = 0 and limt→∞ evp (τ ; t) =

0 pointwise in τ . Then, by applying the transformations (8), (12)
and (17) to (2) and using the output feedback regulator (59), the
boundary condition (18c) in the error dynamics (18) is replaced
by

ε̃−(1) = Q1ϵ+(1) −

∫ 1

0
−K (1, ζ )ϵ(ζ ) dζ

+ M−[w − ewp , v − evp ](1) − M−[w, v](1)

+ P−[v − evp ](1) − P−[v](1). (61)

Following several steps of calculation, the Lipschitz continuity of
the functions k, c , p in M− and q̃, γ in P− (cf. (26)), as well as the
asymptotic convergence of ϵ, ewp , evp imply limt→∞ ε̃−(1, t) = 0.
From that and in view of (18a), (18b) and (61), similar to Theo-
rem 12, it is straightforward to verify that the solution ε̃(z, t) also
converges to zero asymptotically pointwise in space. In particular,
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ε̃−(0, t) in (18d) and (18e) vanishes for t → ∞, by which the
remaining proof directly follows from the one of Theorem 12. This
means that x(t) → xref(t), w(t) → wref(t), y(t) → r(t) for t → ∞,
and output regulation (7) is achieved. □

6. Example

The theoretical results presented in this paper are illustrated
for a numerical example in this section.

6.1. System equations

Consider the plant (2) with the transport velocities Λ(z) =

diag(3 +
z
2 ,

5
2 +

z
4 ,−

5
2 −

z
4 ,−3 −

z
2 ), in-domain and boundary

coupling

A(z) =

⎡⎢⎢⎣
0 3

10 ez/3 0 −
1
6 −

z
3

−
3
10 ez/3 0 −

1
4 −

z
2 0

0 1
4 +

z
2 0 2

10 e−z/2

1
6 +

z
3 0 −

2
10 e−z/2 0

⎤⎥⎥⎦ (62)

and Q0 = Q1 = −I2, respectively, as well as G = I2 and

c(w, d) =

[
ew1 − 1

2w2 + w3

]
, g(w, d) =

[
0
0

]
. (63)

The nonlinear boundary ODE (2d) is

ẇ = f (w, x−(0), d) =

⎡⎢⎣ 2x−,2(0) − w1

(1 + w2
1)x−,1(0) − w2 + d

(1 + w2
1)x−,1(0) − 2w3 + d

⎤⎥⎦ (64)

and the signal model (4) reads

v̇ = s(v) =

[ 0 5 0
−5 0 0
0 0 0

]
v (65)

with the states vr = q(v) = (v1, v2)⊤ and vd = p(v) = v3 that
model a harmonic reference and a (piecewise) constant distur-
bance, respectively. Therefore, Assumption 2 is met. Note that
the linear model (65) is chosen since solving (21) for general
nonlinear signal models (4) is not trivial and not the scope of this
work.

6.2. Output feedback design

The state feedback

k(w) =

[
(1 + w2

1)
−1 0

0 1

][
0 −6 2

−7 0 0

]
w (66)

is designed to compensate the nonlinearities in (64) and to sta-
bilize w = 0 for d = 0, by which Assumption 1 is satisfied. A
standard linear Luenberger observer is chosen for the reference
model observer (5) in Assumption 3, with eigenvalues −20,−20
for the linear error dynamics of vr − v̂r . The nonlinear observer
˙̂wo = f̄o(ŵo, x−(0), co(wo))

= fo(ŵo, x−(0)) +

⎡⎢⎣
0
0

(ln(1 + co,1(wo)))2 − ŵ2
o,2

(ln(1 + co,1(wo)))2 − ŵ2
o,2

⎤⎥⎦ x−,1(0)

+Lo

[
ŵo,2 − ln(1 + co,1(wo))
co,2(ŵo) − co,2(wo)

]
(67)

(cf. (6) in Assumption 4) results in a linear ODE for the esti-
mation error wo − ŵo, with wo = col(vd, w) and Lo such that
−

7
2 ,−4,− 9

2 ,−19 are the eigenvalues of the error dynamics.

Fig. 6. Norm of the ODE observer error ewo = wo−ŵo with dash-dotted vertical
line at t ≈ 0.76, after which δ̄1 = δ̄2 = 0.

6.3. Implementation

The overall implementation of the output feedback regulator
(59) is illustrated in Fig. 5. It not only highlights the various ele-
ments of the regulator and the most important signals, including
the predictor states and the different observer estimates, but it
also implies the sequence of implementation.

The kernel Eqs. (11) and (38) are solved (offline) using several
functions of the coni Matlab library (Fischer, Gabriel, & Ker-
schbaum, 2021), with all artificial BCs chosen constant (see Hu
et al. (2019) for those BCs). The explicit Euler method is used to
implement the reference observer (5), the retarded ODE observer
(42) with f̄o defined in (67) and the PDE observer (32), which
is also spatially discretized by characteristic projection. The in-
tegrals appearing in the predictors (56) and (60) as well as the
ones involved in M−,P−, C1 and C2 (cf. (26), (50) and (53)) are
discretized either by the explicit Euler or the trapezoidal method.
This discretization scheme allows the explicit numerical solution
of the GNVIDEs (cf. Lemmas 10 and 14).

6.4. Simulation results

The following results are obtained for a simulation on an
equidistant temporal grid with the step size 2·10−3 and the initial
conditions

x∓,i(z, 0) = ±
2
5 sin2(2π iz), i = 1, 2 (68a)

w(0) = (0, 1
10 ,−

1
5 )

⊤, v(0) = ( 25 , 0,
1
4 )

⊤ (68b)

for the plant. All observer states are initialized with zero. Further-
more, the retarded ODE observer and the predictor (56) are only
activated for t > ∆+

1 (see buffers in Fig. 5), resulting in ŵo(t) = 0
for t ≤ ∆+

1 . The convergence of the ODE and PDE observer errors
ewo and ϵ in Figs. 6 and 7 validates Theorem 15. For the retarded
ODE observer (58) to converge, δ̄1(t) = δ̄2(t) = 0 is required,
which is the case after the dash-dotted vertical line in Fig. 6 at
t = ∆−

n−
+ ∆+

1 ≈ 0.76. Furthermore, Figs. 8 and 9 confirm the
asymptotic stability of the ODE and PDE tracking errors w−wref
and x − xref (see Theorem 16), with the references inferred from
the state v of the signal model. The dash-dotted line in Fig. 8 at
t ≈ 1.45 corresponds to the one in Fig. 6 with an additional delay
of t̃c ≈ 0.69, i.e. the time after which ε̃−(z, t) = 0 (cf. (18)).
Fig. 8 also illustrates the behavior of the ODE tracking error using
the state feedback regulator (31), where the exponential decay
of the tracking error is clearly visible for t ≥ ∆−

n−
≈ 0.38,

which is smaller than the theoretical time instant t̃c (see proof of
Theorem 12). In the end, the control output y tracks the reference
r as shown in Fig. 10, i.e. output regulation is achieved for this
(zero-input) unstable plant in the presence of disturbances and
nonlinearities.
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Fig. 7. PDE observer error ϵ = x − x̂.

Fig. 8. Norm of the ODE tracking error w−wref for the output and state feedback
regulators (59) and (31), respectively, with dash-dotted vertical line at t ≈ 1.45,
after which ε̃− = 0.

7. Concluding remarks

The presented approach is modular and makes use of several
successive design steps to derive the regulator and the observer.
As such, a stabilizing state feedback directly follows as a special
case (see Remark 9). It also seems tangible to apply the ideas
of Auriol et al. (2018) in order to achieve delay robustness and to
improve the output regulation. The modularity of the design also
allows to substitute k by any other nonlinear ODE state feedback
(that satisfies Assumption 1) without affecting the remaining reg-
ulator. Similarly, the nonlinear ODE observers in Assumptions 3
and 4 are replaceable as well.

Future work will consider anticollocated measurements and
extend the design to ODE–PDE–ODE systems with potentially
nonlinear ODEs at both boundaries. It is also of interest to incor-
porate semilinear and quasilinear PDEs, for which the prediction
step becomes more challenging. This is apparent from Strecker,
Aamo, and Cantoni (2020, 2022), where results are presented for
some classes of nonlinear hyperbolic PDEs.

Appendix A. Proof of Lemma 10

Insert (29) in (27b) and replace v(t + τ ) and w(t + τ ), known
only for τ = 0, by their respective predicted values vp(τ ; t) and

wp(τ ; t) to obtain the form

dτwp(τ ; t) = f̃ (vp(τ ; t), wp(τ ; t), ε̃−(0, t + τ )). (A.1)

Similarly, (30a) with (26) yield

ε̃−,i(0, t + τ ) =

∫ τ

0

i−1∑
j=1

a−

ij (ψ
−

i (τ − σ ))ε̃−,j(0, t + σ ) dσ

+ bi(τ , t) − ki(wp(τ ; t))

+

∫ τ

0
α⊤

i (ψ−

i (τ − σ ))κ(wp(σ ; t), vp(σ ; t)) dσ , (A.2)

i = 1, . . . , n−, where α⊤

i = [e⊤

i A0, h⊤

i ], κ = col(k, c), and
bi(τ , t) = e⊤

i T [x(t)](ψ−

i (τ )) − q̃i(vp(τ ; t)) +
∫ τ
0 θ−,i(ψ

−

i (τ − σ ),
vp(σ ; t)) dσ comprises known terms. Solving the recursion in
(A.2), the components of ε̃−(0) are explicitly defined by

ε̃−,i(0, t + τ ) = b̃i(τ , t) − ki(wp(τ ; t))

+

∫ τ

0
α̃⊤

i (ψ−

i (τ − σ ))κ(wp(σ ; t), vp(σ ; t)) dσ (A.3)

for τ ∈ (0,∆−

i ], with α̃⊤

i (ψ−

i (τ )) = α⊤

i (ψ−

i (τ )) −

[e⊤

i A0(ψ−

i (τ )), 0⊤
] +

∫ τ
0

∑i−1
j=1 a

−

ij (ψ
−

i (τ − σ̄ ))α̃⊤

j (ψ−

j (σ̄ )) dσ̄ and
b̃i(τ , t) = bi(τ , t)+

∫ τ
0

∑i−1
j=1 a

−

ij (ψ
−

i (τ − σ ))b̃j(σ , t) dσ . Moreover,
(30b), defined for τ ∈ (∆−

i ,
∑i

k=1∆
−

k ), is rewritten in the form

ε̃−,i(0, t + τ ) =

i−1∑
j=1

∫
Iij,τ

a−

ij (ψ
−

i (τ − σ ))ε̃−,j(0, t + σ ) dσ

+

i−1∑
j=2

∫
Jj,τ

a−

ij (ψ
−

i (τ − σ ))ε̃−,j(0, t + σ ) dσ (A.4)

with the intervals Iij,τ = [min(τ − ∆−

i ,∆
−

j ),∆
−

j ] and Jj,τ =

[∆−

j ,min(τ ,
∑j

k=1∆
−

k )] to highlight that ε̃−,j(0, t + σ ) in the in-
tegral over Iij,τ is obtained by evaluating (A.3) and that ε̃−,j(0, t+
τ ) = 0 for τ ≥

∑j
k=1∆

−

k (cf. (30c)). The solution of the
recursion by means of the integral over Jj,τ is not necessary for
the determination of wp(τ ; t).

For τ ∈ (0,∆−

1 ], (A.1) with (A.3) constitutes a GNVIDE, the
solution of which yields wp(τ ; t). Based on that, induction allows
to show that wp(τ ; t) is the solution of a GNVIDE defined on
consecutive intervals (∆−

k−1,∆
−

k ], k = 1, . . . , n− with ∆−

0 = 0. To

11

5.1. Output regulation for general heterodirectional linear hyperbolic PDEs coupled
with nonlinear ODEs 63

© 2023 Elsevier. This article was published in Irscheid, A., Deutscher, J., Gehring, N., and Rudolph, J.

(2023). Output regulation for general heterodirectional linear hyperbolic PDEs coupled with nonlinear ODEs.

Automatica, 148:110748, DOI: https://doi.org/10.1016/j.automatica.2022.110748.

https://doi.org/10.1016/j.automatica.2022.110748


A. Irscheid, J. Deutscher, N. Gehring et al. Automatica 148 (2023) 110748

Fig. 9. PDE tracking error x − xref in closed loop using the output feedback regulator (59).

Fig. 10. The control output y tracks the reference r .

this end, assume that wp(τ ; t) is known for τ ∈ (0,∆−

k ], which
in turn provides ε̃−(0, t + τ ) on the same interval by means of
(A.3) and (A.4), and consider τ ∈ (∆−

k ,∆
−

k+1]. Then, recalling that
∆−

1 < · · · < ∆−
n−

, the components ε̃−,i(0, t + τ ), i = 1, . . . , k are
also known as they follow from the recursion in (A.4), where the
integral over Iij,τ depends only on ε̃−(0, t + τ ), τ ∈ (0,∆−

k ]. The
remaining components ε̃−,i(0, t+τ ), i = k+1, . . . , n− are given by
(A.3), which results in a GNVIDE for wp(τ ; t) for τ ∈ (∆−

k ,∆
−

k+1].
Solvability conditions for GNVIDEs can be found in Feldstein

and Sopka (1974). In particular, the smoothness of the functions
involved ensures a unique solution wp(τ ; t) for τ ∈ (0,∆−

n−
]

based on the IC wp(0; t) = w(t).

Appendix B. Proof of Lemma 14

Based on (53), substituting the integration variable and intro-
ducing αi(τ ) = λ+

i (ψ
+

i (τ − ∆̃+

1i))−K̄+(0, ψ+

i (τ − ∆̃+

1i))ei with the
notation ∆̃+

ij = ∆+

i −∆+

j ≥ 0, i = 1, . . . , n+, j ≥ i allow to rewrite
C2[eη] as

C2[eη](t + τ ) =

n+∑
i=1

∫ min(0,τ−∆̃+

1i)

τ−∆+

1

αi(τ − σ )eη,i(t + σ ) dσ

+

n+∑
i=1

∫ τ−∆̃+

1i

min(0,τ−∆̃+

1i)
αi(τ − σ )eη,i(t + σ ) dσ , (B.1)

where the integral is split into a part depending only on (known)
past values of the measurement error eη and one involving future
values. Although the latter are unknown, they can be obtained
from a careful inspection of (48). For that, observe that the ith
component eη,i(t + σ ), σ ∈ (0,∆+

i ], of eη can be expressed as

eη,i(t + σ ) = bi(σ , t)+
i−1∑
j=1

∫ σ+∆̃
+

ji

0
ᾱij(σ − σ̄ )eη,j(t + σ̄ ) dσ̄ , (B.2)

with ᾱij(τ ) = −λ+

j (ψ
+

j (τ + ∆̃+

ji ))ā
+

ij (ψ
+

j (τ + ∆̃+

ji )) and

bi(σ , t) = co,i(wo(t + σ −∆+

i )) − co,i(ŵo(t + σ −∆+

i ))

+

i−1∑
j=1

∫ 0

σ−∆
+

i

ᾱij(σ − σ̄ )eη,j(t + σ̄ ) dσ̄ + δ̄1,i(t + σ ). (B.3)

Note that the integral over eη is split into a known and an
unknown part. The explicit solution

eη,i(t + σ ) = bi(σ , t) +

i−1∑
j=1

∫ σ+∆̃
+

ji

0
ᾰij(σ , σ̄ )bj(σ̄ , t) dσ̄ (B.4)

with ᾰij(σ , σ̄ ) =
∑i−1

k=j+1

∫ σ+∆̃
+

ki
max(0,σ̄−∆̃

+

jk )
ᾱik(σ − σ̃ )ᾰkj(σ̃ , σ̄ ) dσ̃ +

ᾱij(σ − σ̄ ) of the recursion (B.2) can then be used to replace the
future values of eη in (B.1) by

C2[eη](t + τ ) =

n+∑
i=1

∫ min(0,τ−∆̃+

1i)

τ−∆+

1

αi(τ − σ )eη,i(t + σ ) dσ

+

n+∑
i=1

∫ τ−∆̃+

1i

min(0,τ−∆̃+

1i)
α̃i(τ , σ )bi(σ , t) dσ , (B.5)

α̃i(τ , σ ) =
∑n+

j=i+1

∫ max(τ−∆̃+

1j,max(0,σ−∆̃
+

ij ))

max(0,σ−∆̃
+

ij )
αj(τ − σ̄ )ᾰji(σ̄ , σ ) dσ̄ +

αi(τ−σ ). This explicit expression for C2[eη](t+τ ) is inserted into
(57).

As δ̄1 and δ̄2 vanish in finite time, they can be neglected.
Additionally, bi in (B.5) is replaced by

b̃i(σ , t) = co,i(ω̂o,p(σ + ∆̃+

1i; t)) − co,i(ŵo(t + σ −∆+

i ))

+

i−1∑
j=1

∫ 0

σ−∆
+

i

ᾱij(σ − σ̄ )eη,j(t + σ̄ ) dσ̄ (B.6)
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(see (B.3)), which depends on known quantities only, because
ω̂o,p(σ +∆+

1i; t) is used instead of wo(t +σ −∆+

i ). These previous
modifications of the explicit expression of χ−(0) in (57) yield the
operator

So[ω̂o,p, ŵo, x̂−(0), eη](τ , t) = x̂−(0, t + τ −∆+

1 )

+

n+∑
i=1

∫ min(0,τ−∆̃+

1i)

τ−∆+

1

αi(τ − σ )eη,i(t + σ ) dσ

+

n+∑
i=1

∫ τ−∆̃+

1i

min(0,τ−∆̃+

1i)
α̃i(τ , σ )b̃i(σ , t) dσ (B.7)

for τ ∈ (0,∆+

1 ], which is used in (56b). Consequently, (56b) with
(B.7) is a nonlinear integro-differential equation for ω̂p (as ν̂d,p
is known) due to the integral dependence on co,i(ω̂o,p(σ ; t)) for
σ ∈ [min(∆̃+

1i, τ ), τ ].
For τ ∈ (0, ∆̃+

12], (56b) with (B.7) constitute a GNVIDE, the
solution ω̂p(τ ; t) of which exists and is unique (see Feldstein and
Sopka (1974)). Based on that, for each k = 1, . . . , n+, assume
that ω̂p(τ ; t) is known for τ ∈ (0, ∆̃+

1k] and consider (B.7) for
τ ∈ (∆̃+

1k, ∆̃
+

1(k+1)], ∆
+

1+n+
= 0. Careful inspection of the integral

dependence on ω̂o,p over the interval [min(∆̃+

1i, τ ), τ ] and recall-
ing that ∆̃+

11 < · · · < ∆̃+

1n+
reveals that ω̂p satisfies a GNVIDE

for each successive interval τ ∈ (∆̃+

1k, ∆̃
+

1(k+1)]. Thus, by induction
and the smoothness of the functions involved, the existence of a
unique solution ω̂p(τ ; t) for τ ∈ (0,∆+

1 ] is ensured based on the
IC ω̂p(0; t) = ω̂(t).
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Stabilizing nonlinear ODEs with diffusive
actuator dynamics

Abdurrahman Irscheid, Nicole Gehring, Joachim Deutscher, Member, IEEE , and Joachim Rudolph

Abstract— This paper presents a design of stabilizing
controllers for a cascaded system consisting of a bound-
ary actuated parabolic PDE and nonlinear dynamics at
the unactuated boundary. Although the considered PDE is
linear, the nonlinearity of the ODE constitutes a significant
challenge. In order to solve this problem, it is shown that
the classical backstepping transformation of Volterra type
directly results from the solution of a Cauchy problem. This
new perspective enables the derivation of a controller for
the nonlinear setup, where a Volterra integral representa-
tion does not exist. Specifically, the solution of an appropri-
ate linear Cauchy problem yields a novel state transforma-
tion facilitating the design of a stabilizing state feedback.
This control law is shown to ensure asymptotic closed-loop
stability of the origin. An efficient implementation of the
controller is proposed and demonstrated for an example.

Index Terms— parabolic systems, nonlinear PDE-ODE
systems, state feedback, backstepping, Cauchy problem

I. INTRODUCTION

THE stabilization of linear ODEs with infinite-dimensional
actuator dynamics has been successfully addressed in

recent years [1], [10], [13]. Typically, they describe time delays
or diffusion phenomena in the actuation channel, which are
modeled by linear hyperbolic or parabolic PDEs, respectively.
Such settings lead to problems of boundary control for dis-
tributed parameter systems that are coupled with ODEs at
the unactuated boundary, i.e., so-called PDE-ODE systems.
In the linear case, the backstepping method [13] solves this
task systematically (see [3], [4] for hyperbolic systems and [2],
[20] for parabolic systems). This paper is concerned with the
stabilization of nonlinear ODEs with linear parabolic actuator
dynamics. While nonlinear ODEs are regularly addressed in
the hyperbolic setting, e.g., where input delays occur (see [1]),
to the best knowledge of the authors, a combination with
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diffusive actuator dynamics has not been considered in the
literature before.

This paper offers a new perspective for stabilizing parabolic
PDE-ODE cascades on the basis of previous works on hy-
perbolic systems (see, e.g., [7], [8]). To overcome the chal-
lenges associated with nonlinearities, [7] uses predictions
in the control and observer designs that follow from the
solution of associated Cauchy problems, which are closely
linked to a flatness-based parameterization of solutions. For
parabolic systems, such parameterizations are well-known in
the context of flatness-based open-loop control (see, e.g., [5],
[14], [16]). Inspired by that and by classical backstepping
controllers for linear parabolic PDE-ODE cascades (see, e.g.,
[10]), a novel nonlinear state transformation is derived. This
generalizes classical backstepping transformations in the sense
that their equivalence can be shown in the linear case. The
transformation is determined from the solution of a suitable
(linear) Cauchy problem that depends on the system state. The
structure of the transformed system significantly facilitates the
solution of the related stabilization problem. The latter only
requires the existence of a (globally) stabilizing feedback for
the ODE subsystem. Ultimately, applying the proposed con-
troller to the nonlinear PDE-ODE cascade ensures asymptotic
stability of the origin in closed loop.

The paper is organized as follows. Section II introduces the
nonlinear PDE-ODE cascade as well as the control objective.
As the main result, in Section III, a controller is derived on
the basis of a novel nonlinear state transformation. It follows
from the solution of a Cauchy problem, which is shown
to admit a unique solution, analytic in the spatial variable
and of Gevrey class two in time. In the special case of a
linear system, the proposed approach coincides with classical
backstepping, as clarified in Section IV. Finally, Section V
illustrates the immense potential of the design and the overall
control performance for a non-trivial example. For that, an
efficient implementation of the controller is presented.

Notation: The k-th derivative dkh
dtk

(t) = d
dt

kh(t), k ∈ N0,
of a smooth function h is written in terms of the operator d

dt .
Introduce the class Cω of analytic functions. A function h is
called Gevrey of order α > 0, in short h ∈ Gα, if ∃M,R > 0
such that supt≥0

∣∣ d
dt

kh(t)
∣∣ ≤ M (k!)α

Rk for all k ∈ N0 (see,
e.g., [18, Def. 1.4.1]). Note that Cω = G1, and that h ∈ Gα1

implies h ∈ Gα2
for all α1 ≤ α2. For any distributed variable

x(z, t) ∈ R, (z, t) ∈ [0, 1] × R+
0 , denote by ∥x(t)∥∞ the

supremum norm supz∈[0,1] |x(z, t)|. If x is analytic in z and
of Gevrey class two w.r.t. t, then x ∈ CωG2.
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II. PROBLEM FORMULATION

The boundary-actuated PDE-ODE system

ẇ(t) = f(w(t), ∂zx(0, t)) (1a)
x(0, t) = 0 (1b)

∂tx(z, t) = ∂2
zx(z, t) + rx(z, t) (1c)

x(1, t) = u(t) (1d)

consists of the nonlinear ODE subsystem (1a) with the lumped
state w(t) ∈ Rn and the parabolic PDE subsystem (1b)–(1d)
with the distributed state x(z, t) ∈ R defined for (z, t) ∈
[0, 1]×R+

0 . The PDE (1c) is a linear reaction-diffusion equa-
tion with constant reaction coefficient r ∈ R. The boundary
conditions (1b) and (1d) at z = 0 and z = 1 are of Dirichlet
type1. Since the input u(t) ∈ R acts at z = 1, the boundary
at z = 0 is referred to as the unactuated boundary. System
(1) is completed with initial conditions w(0) = w0 ∈ Rn

and x(z, 0) = x0(z) ∈ R. Note that (1) is a cascade since
the boundary value ∂zx(0, t) of the PDE subsystem (1b)–(1d)
acts on the ODE subsystem (1a) through the vector field f .
Remark 1. Any constant diffusion coefficient in (1c) could
always be normalized by scaling the spatial variable. More-
over, advection terms of the form a∂zx(z, t), a ∈ R, could
be eliminated by a scaling transformation of the distributed
variable. See, e.g., [17] for details. The case of coefficients
depending on space and time is left out here for simplicity.

The objective is to design a state feedback that asymptot-
ically stabilizes the origin of the PDE-ODE cascade (1). A
novel approach is presented to overcome the challenge that
arises from the nonlinearity of the ODE subsystem (1a). It
is inspired by the solution-based design proposed in [7] for
hyperbolic systems. The design is modular in the sense that
the controller for the PDE-ODE system (1) is based on the
existence of a stabilizing controller for the ODE subsystem
(1a), wherein ∂zx(0, t) plays the role of an input. This is
guaranteed by the following assumption.
Assumption 1. There exists an analytic function κ(w(t)) such
that

ẇ(t) = f(w(t), κ(w(t)) +ϖ(t)) (2)

implies input-to-state stability of the origin w.r.t. ϖ(t) ∈ R.
Input-to-state stability is a typical prerequisite for various

system classes of both finite and infinite dimension that involve
nonlinear ODEs [7], [12]. Since designing a specific controller
κ(w(t)) is not the focus here, any well-known method for
stabilizing nonlinear ODEs could be used. Note that input-to-
state stability implies that the state feedback κ(w(t)) globally
asymptotically stabilizes the origin for ϖ(t) = 0.

Furthermore, the control design requires the solution of (1)
to exhibit properties that are sufficient for the well-posedness
of the Cauchy problem in Section III. For that, the following
technical assumption is imposed.
Assumption 2. The ODE subsystem (1a) is forward complete,
the nonlinear function f is analytic, and the initial condition
x0 is analytic on [0, 1].

1The design approach presented in this work is easily modified to account
for Neumann or Robin boundary conditions.

Forward completeness (see, e.g., [11]) means that the solu-
tion of (1a) exists for all initial conditions w(0) and locally
bounded input signals ∂zx(0, t) for t ∈ R+

0 . This implies that
the nonlinear ODE subsystem (1a) does not exhibit a finite
escape time. Additionally, solutions of parabolic PDEs need
not be analytic functions of time. This is particularly true for
the excitation of (1a) through the boundary value ∂zx(0, t).
Therefore, it does not suffice to restrict solutions w(t) of (1a)
to be analytic in time. The following lemma addresses these
properties.
Lemma 1. Let Assumption 2 hold and u ∈ G2. Then, the
solution of (1) is analytic in z and of Gevrey class two in t,
i.e., w ∈ G2 and x ∈ CωG2 for (z, t) ∈ [0, 1]× R+

0 .
As a detailed proof is very extensive, only a sketch is

provided here. It follows the lines of [9], where it is shown
that x ∈ CωG2 if the boundary values in (1b) and (1d) are of
Gevrey class two in t. This is true for u ∈ G2. Furthermore,
w ∈ G2 follows from x ∈ CωG2 and f being analytic since
the compositions in (1a) of analytic functions and elements of
G2 are also in G2 (see, e.g., [18, Prop. 1.4.6]). Notice that the
forward completeness of the ODE subsystem (1a) guarantees
global existence of the solution w(t).

III. CONTROL DESIGN

In this section it is shown that the origin of the PDE-ODE
system (1) can be stabilized with the controller

u(t) = χ(1, t) +

1∫
0

k(1, ζ)x(ζ, t) dζ, (3)

where the kernel k(z, ζ) ∈ R satisfies the kernel equations

∂2
zk(z, ζ)− ∂2

ζk(z, ζ) = rk(z, ζ) (4a)

2k(z, z) = −rz (4b)
k(z, 0) = 0 (4c)

for 0 ≤ ζ ≤ z ≤ 1 and χ(z, t) ∈ R is the unique solution of
the Cauchy problem2

∂2
zχ(z, t) = ∂tχ(z, t) (5a)
χ(0, t) = 0 (5b)

∂zχ(0, t) = κ(w(t)) (5c)

w.r.t. z for (z, t) ∈ [0, 1]×R+
0 . The kernel equations (4) admit

an explicit solution [13, Ch. 4.4]. The solvability of the Cauchy
problem (5) is discussed in what follows.

In order to better highlight the main idea of the paper,
the design is split into multiple elementary steps. First, a
preliminary backstepping transformation is used to simplify
the representation of the PDE subsystem by compensating the
reaction term in (1c). Then, based on the solution χ(z, t) of
the Cauchy problem (5), a novel nonlinear transformation of
the infinite-dimensional state is derived. As a result, the non-
linear ODE (1a) is input-to-state stable w.r.t. the transformed
coordinates and, thus, the choice of a stabilizing state feedback
for the PDE-ODE system is straightforward. By applying the
controller (3), the origin of the PDE-ODE system (1) is shown
to be asymptotically stable.

2Recall that κ(w(t)) is the stabilizing controller from Assumption 1.
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A. Preliminary Backstepping Transformation

The possibly destabilizing reaction term rx(z, t) in the
linear PDE (1c) is eliminated by utilizing PDE backstepping
(cf. [13]). For that, and in light of the kernel equations (4),
the invertible backstepping transformation

x̄(z, t) = x(z, t)−
z∫

0

k(z, ζ)x(ζ, t) dζ (6)

maps the PDE-ODE system (1) into the intermediate system

ẇ(t) = f(w(t), ∂zx̄(0, t)) (7a)
x̄(0, t) = 0 (7b)

∂tx̄(z, t) = ∂2
z x̄(z, t) (7c)

x̄(1, t) = ū(t) (7d)

after introducing the new input

ū(t) = u(t)−
1∫

0

k(1, ζ)x(ζ, t) dζ. (8)

An alternative method to derive (6) is to use the general
coordinate transformation

x̄(z, t) = x(z, t)− β(z, t), (9)

where β(z, t) ∈ R uniquely solves the Cauchy problem

∂2
zβ(z, t) = ∂tβ(z, t)− rx(z, t) (10a)
β(0, t) = 0 (10b)

∂zβ(0, t) = 0 (10c)

for (z, t) ∈ [0, 1]× R+
0 . It is easy to verify that

β(z, t) =

z∫
0

k(z, ζ)x(ζ, t) dζ (11)

solves the Cauchy problem (10) after a simple calculation
in light of the kernel equations (4). Hence, (6) and (9) are
equivalent, which also implies that

ū(t) = u(t)− β(1, t) (12)

is equivalent to (8).
It is worth emphasizing that the Volterra integral trans-

formation (6) can be directly deduced from the solution of
the Cauchy problem (10). In this sense, the latter can be
seen as the underlying transformation equations. In what
follows, this observation enables a more general, nonlinear
state transformation without an a priori defined form.

B. A Novel Nonlinear State Transformation

For the considered setup, a backstepping controller no
longer exists in form of a simple Volterra integral. In what
follows, the latter is replaced by a general expression χ(z, t)
(cf. β(z, t) in (9)). This leads to the change of coordinates

x̃(z, t) = x̄(z, t)− χ(z, t) (13)

that maps the intermediate PDE-ODE system (7) into the final
target system

ẇ(t) = f(w(t), κ(w(t)) + ∂zx̃(0, t)) (14a)
x̃(0, t) = 0 (14b)

∂tx̃(z, t) = ∂2
z x̃(z, t) (14c)

x̃(1, t) = ū(t)− χ(1, t) (14d)

if the auxiliary transformation variable χ(z, t) satisfies the
Cauchy problem (5). The following lemma clarifies its solv-
ability.

Lemma 2. Let Assumption 1 hold and w ∈ G2. The Cauchy
problem (5) admits a unique CωG2-solution χ(z, t) for (z, t) ∈
[0, 1]× R+

0 .

Proof. It follows from [6, Par. 52] (or [18, Prop. 1.4.6]) that
the function κ(w(t)) is of Gevrey class two w.r.t. t, since it
is a composition of the analytic function κ (see Assumption
1) and w ∈ G2. In light of this, it is shown in [6, Par. 55]
that the (linear) Cauchy problem (5) admits a unique solution
χ ∈ CωG2. In particular, the series

χ(z, t) =
∞∑
k=0

z2k+1

(2k + 1)!
d
dt

kκ(w(t)) (15)

can be easily verified to solve (5). The convergence of the
series is guaranteed by the Gevrey property of κ(w(t)).

Remark 2. Note that (5) is a Cauchy problem w.r.t. z, whereas
t plays the role of a parameter. Hence, it does not require an
initial condition χ(z, 0) w.r.t. t.

Using (7) to replace the time derivatives in (15), it can
be shown that the auxiliary transformation variable χ(z, t)
depends nonlinearly on w(t) and x̄(z, t), which implies that
(13) is a nonlinear state transformation. For that, an alternative
representation of the intermediate system (7) is considered. It
makes use of the fact that y0(t) = ∂zx̄(0, t) is a flat output of
the PDE subsystem (7b)–(7d) (see, e.g., [5], [14]). Introducing
the flat coordinates yk(t) = d

dt
k∂zx̄(0, t), k ∈ N0 and inserting

the power series

x̄(z, t) =
∞∑
k=0

z2k+1

(2k + 1)!
yk(t) (16)

into the intermediate system (7) yields

d
dt


w(t)
y0(t)
y1(t)

...


︸ ︷︷ ︸

w̄(t)

=


f(w(t), y0(t))

y1(t)
y2(t)

...


︸ ︷︷ ︸

g(w̄(t))

(17a)

∞∑
k=0

1

(2k + 1)!
yk(t) = ū(t) (17b)

with the (infinite-dimensional) state w̄(t). The system repre-
sentation (17) is equivalent to (7) for x̄ ∈ CωG2. In fact, since
the set of monomials of odd degree is linearly independent and
dense in L2([0, 1]), (16) can be viewed as a transformation
between the PDE state x̄(z, t) of (7) and the flat coordinates
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yk(t) in (17). Defining y[k] = (y0, . . . , yk) for k ∈ N0, the
k-th derivative of κ(w(t)) in (15) can be written in terms of
the state w̄(t) as

d
dt

kκ(w(t)) = ϕk(w(t),y[k−1](t)), (18)

where ϕk = Lk
gη denotes the k-th Lie-derivative of η(w̄) :=

κ(w) along g and y[−1] is empty. With that, the auxiliary
transformation variable in (15) takes the form

χ(z, t) =
∞∑
k=0

z2k+1

(2k + 1)!
ϕk(w(t),y[k−1](t)) (19)

and, in view of (16), the coordinate change (13) reads

x̃(z, t) =

∞∑
k=0

z2k+1

(2k + 1)!

(
yk(t)− ϕk(w(t),y[k−1](t))

)
. (20)

Due to the equivalence between the flat coordinates yk(t)
and the PDE state x̄(z, t) (recall the state transformation
(16)), x̃(z, t) can be expressed in terms of the ODE state
w(t) and the PDE state x̄(z, t) of the intermediate system
(7). As a consequence, the coordinate change in (13) (and
(20)) is a nonlinear state transformation of the PDE state
x̄(z, t), mapping (7) into (14). It is worth noting that this
nonlinear state transformation results from the solution of
the linear Cauchy problem (5). This new perspective allows
a generalization of the classical backstepping transformation
of Volterra type to nonlinear settings. In fact, it is shown
in Section IV that this general result also yields the well-
known backstepping transformation in the special case of
linear systems.
Remark 3. For the (nonlinear) inverse transformation
x̄(z, t) = x̃(z, t) + χ(z, t), in order to express the auxiliary
transformation variable χ(z, t) in terms of w(t) and x̃(z, t),
the time derivatives in (15) are replaced using (14). By
introducing flat coordinates ỹk(t) = d

dt
k∂zx̃(0, t), k ∈ N0,

such an expression for χ(z, t) is obtained in analogy to (19).
The nonlinear state transformation (13) represents the main

result of the control design. It maps (7) into a convenient
form where the ODE subsystem (14a) is input-to-state stable
w.r.t. ∂zx̃(0, t) by Assumption 1. Therefore, next, the PDE
subsystem (14b)–(14d) is stabilized by choice of ū(t).

C. State Feedback Controller and Closed-Loop Stability
Inserting the control law

ū(t) = χ(1, t) (21)

into the input transformation (8) yields the proposed controller
(3). The latter is a (static) state feedback of the ODE state w(t)
and the PDE state x(z, t), in view of (19) evaluated at z = 1,
(16) relating x̄(z, t) and w̄(t) as well as the backstepping
transformation (6).

As a consequence of (14) and (21), the closed loop reads

ẇ(t) = f(w(t), κ(w(t)) + ∂zx̃(0, t)) (22a)
x̃(0, t) = 0 (22b)

∂tx̃(z, t) = ∂2
z x̃(z, t) (22c)

x̃(1, t) = 0. (22d)

The origin of (22) can be shown to be stable (in an appropriate
sense). However, it is necessary to verify that this infers the
same for the closed-loop system that results from applying
the controller (3) to the PDE-ODE system (1). The following
theorem addresses this issue.

Theorem 1. Let Assumptions 1 and 2 hold. Apply the con-
troller (3), wherein k(z, ζ) solves the kernel equations (4) and
χ(z, t) solves the Cauchy problem (5), to the PDE-ODE cas-
cade (1). Then, limt→∞ ∥x(t)∥∞ = 0 and limt→∞ ∥w(t)∥ =
0 for all initial conditions w(0) = w0 ∈ Rn and x(z, 0) =
x0(z) ∈ R satisfying (1b).

Proof. Similar to [15], set u(t) = 0, t ∈ [0, ε] with ε > 0
infinitesimally small. The forward completeness of the ODE
subsystem (1a) prevents finite-time blow up on [0, ε]. Thus, at
least for t > ε, the Cauchy problem (5) is solvable in closed
loop with x, χ ∈ CωG2 and w, u ∈ G2 by Lemmas 1 and
2. Applying the state transformations (6) and (13) together
with the controller (3) to the plant (1) yields the closed-
loop system (22), where the PDE subsystem (22b)–(22d) is
exponentially stable in L2([0, 1]) (see, e.g., [17, Lem. 6]). In
fact, [17, Lem. 7] allows to verify that both the H1-norm
and the supremum norm of x̃ decay exponentially. By that,
the transformed PDE state x̃(z, t) of the closed-loop system
(22) converges to zero exponentially and pointwise in space
(see, e.g., [13, Ch. 2.3]). This also implies ∂zx̃(0, t) → 0
as t → ∞. Consequently, in view of Assumption 1, the
asymptotic stabilization of the origin of the ODE subsystem
(22a) is achieved. By the invertibility of (13) (see Remark
3), (22) infers that the origin of (7) with ū(t) = χ(1, t) is
asymptotically stable pointwise in space. Consequently, the
bounded invertibility of the backstepping transformation (6)
(see, e.g., [13, Ch. 4.5]) ensures the same in the original
coordinates.

IV. THE LINEAR CASE

In order to give insight into the structure of the state
transformation (13) (or equivalently (20)) and to compare it
to the results in [10] for linear systems, consider

ẇ(t) = Fw(t) + b∂zx̄(0, t) (23a)
x̄(0, t) = 0 (23b)

∂tx̄(z, t) = ∂2
z x̄(z, t) (23c)

x̄(1, t) = ū(t) (23d)

as a special case of (7). Verifying Assumptions 1 and 2 is
straightforward if the pair (F, b) is stabilizable, i.e., there
exists a feedback κ(w(t)) = kTw(t) such that F + bkT is
Hurwitz. In this linear case, the analytic solution of the Cauchy
problem (5) can be expressed explicitly in terms of w(t) and
x̄(z, t). This follows from the Lie-derivatives in (18), which
can be written in the form

d
dt

kkTw(t) = kTF kw(t) + kT
k−1∑
i=0

F k−1−ibyi(t). (24)

Inserting (24) in (15) yields the series (19) for χ(z, t) that is
linear in the ODE state w(t) and the flat coordinates yk(t), k ∈
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N0. After lengthy calculations (see Remark 4), it is possible
to write the auxiliary transformation variable

χ(z, t) = nT(z)w(t) +

z∫
0

nT(z − ζ)bx̄(ζ, t) dζ (25)

explicitly in terms of the state w(t) and x̄(z, t) of (23), where
nT(z) is the unique solution of the initial value problem

d2zn
T(z) = nT(z)F, z ∈ (0, 1] (26a)

nT(0) = 0T (26b)

dzn
T(0) = kT. (26c)

This can easily be verified by inserting (25) into (5). Substitut-
ing the explicit expression (25) of the auxiliary transformation
variable χ(z, t) into (13) yields the linear state transformation

x̃(z, t) = x̄(z, t)− nT(z)w(t)−
z∫

0

nT(z − ζ)bx̄(ζ, t) dζ.

(27)
Note that the same transformation is obtained by applying the
backstepping design in [10] to the linear PDE-ODE system3

(23). Consequently, the backstepping controller and the one in
(21) are identical in the linear case.

Remark 4. In order to obtain (25), first, insert (24) in (15).
Then, for the double sum therein, shift the summation index
of the outer sum and use the relation

z2k+3

(2k + 3)!
=

z∫
0

(z − ζ)2(k−i)+1

(2(k − i) + 1)!

ζ2i+1

(2i+ 1)!
dζ, (28)

which can be shown to hold for k ∈ N0 and i ∈ {0, 1, . . . , k}
using integration by parts. Afterwards, interchange the order
of summation and integration and apply the Cauchy prod-
uct formula to recover (16). In the end, define nT(z) =

kT
∑∞

k=0
z2k+1

(2k+1)!F
k, which solves (26).

V. EXAMPLE

The theoretical results presented in this paper are illustrated
for the nonlinear PDE-ODE system (1) with

f(w, ∂zx(0)) =

[
w1 sin(2w1) + w2

∂zx(0)− ln(1 + w2
1) + 2 sin(3w2)

]
(29)

where w = [w1, w2]
T, a reaction coefficient r = 20 and initial

conditions

w(0) = [2,−2]T, x(z, 0) = sin3(2πz) (30)

for z ∈ [0, 1]. It can be verified that Assumption 2 holds.
The zero equilibrium of the plant is unstable for u(t) = 0
since there exist positive eigenvalues of the PDE subsystem for
r > π2 (see, e.g., [13, Ch. 3]) and, additionally, the eigenvalues
of the linearization of the ODE subsystem about the origin are
0 and 6.

3The system in [10] involves a Neumann boundary condition (instead of
(23b)), with x(0, t) (instead of ∂zx(0, t)) driving the ODE (23a).

A. Control Design
Using the exactly and globally linearizing controller

κ(w) = ln(1 + w2
1)− 2 sin(3w2)− k0w1 (31)

− (sin(2w1) + 2w1 cos(2w1) + k1) (w1 sin(2w1) + w2)

with k0, k1 > 0, (2) can equivalently be written as4

ẅ1(t) + k1ẇ1(t) + k0w1(t) = ϖ(t). (32)

With that, Assumption 1 is fulfilled. Hence, all assumptions
of Theorem 1 hold. For the assignment of the eigenvalues −2
and −3 in (32), the control parameters k0 = 6 and k1 = 5
are chosen. The following numerical scheme allows for an
efficient implementation of the controller (3).

B. Numerical Implementation
The Volterra integral in (3) is implemented with the trape-

zoidal rule. Therein, the explicit solution k(z, ζ) of the kernel
equations (4) is taken from [13, Ch. 4.4]. To obtain χ(1, t),
the following scheme can be used.

On an equidistant spatial grid with N+1 distinct grid points
zj = j/N , j ∈ {0, . . . , N}, the convergence of (19) allows
for its approximation by

χ(z, t) ≈
N∑

k=0

z2k+1

(2k + 1)!
ϕk(w(t),y[k−1](t)) (33)

to any desired level of accuracy. This truncation depends on
both the ODE state w(t) and the state components yk(t) for
k ∈ {0, . . . , N − 1}. The latter is determined from the PDE
state x̄(z, t) by approximating the convergent series (16) on
the same spatial grid with the approximation order N−1, i.e.,

x̄(z, t) ≈
N−1∑
k=0

z2k+1

(2k + 1)!
yk(t). (34)

Evaluating the latter on N grid points zj , j ∈ {1, . . . , N},
yields the system of equations

x̄(z1, t)
x̄(z2, t)

...
x̄(zN , t)

 = VN


y0(t)
1
3!y1(t)

...
1

(2N−1)!yN−1(t)

 , (35)

where

VN =


z1 z31 . . . z2N−1

1

z2 z32 . . . z2N−1
2

...
...

. . .
...

zN z3N . . . z2N−1
N

 ∈ RN×N (36)

denotes an invertible (Vandermonde-like) matrix. Although
VN can be ill-conditioned for large N , there exist several
numerical methods to obtain its inverse accurately (see, e.g.,
[21]). Moreover, closed-form expressions are well known for
the entries of V −1

N . For a fixed grid, V −1
N is computed offline.

Thus, (35) can be inverted to obtain the flat coordinates in
y[N−1]. Finally, the latter is inserted into the truncated series
(33), where the Lie-derivatives ϕk can be obtained through
symbolic computation or evaluated numerically.

4Note that w1(t) is a flat output of the ODE subsystem (1a) (see [19]).

This article has been accepted for publication in IEEE Control Systems Letters. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/LCSYS.2024.3406924

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

72 Chapter 5. Scientific publications

© 2024 IEEE. Reprinted, with permission, from Irscheid, A., Gehring, N., Deutscher, J., and Rudolph, J.

(2024). Stabilizing nonlinear ODEs with diffusive actuator dynamics. IEEE Control Syst. Lett., 8:1259–1264,

DOI: https://doi.org/10.1109/LCSYS.2024.3406924.

https://doi.org/10.1109/LCSYS.2024.3406924


Fig. 1. Evolution of the PDE state x(z, t), where the input u(t) is highlighted in red, and the ODE state w(t) in closed loop.

C. Simulation Results
The following results are obtained for a finite-differences

simulation of the plant with initial conditions (30) on an
equidistant spatial grid zj = j/N , j ∈ {0, . . . , N} with
N = 30 and an equidistant temporal grid resulting from a CFL
condition number of 1/6. The simulation results in Figure 1
illustrate the control input u(t) and demonstrate that the ODE
state w(t) and the PDE state x(z, t) vanish asymptotically and
pointwise in space. Specifically, as ϖ(t) = ∂zx̃(0, t) ≈ 0 for
t > 1 (see Figure 2), the controlled ODE (32) is essentially
undisturbed by the PDE.

VI. CONCLUDING REMARKS

The new control strategy introduced in this paper has huge
potential for the boundary control of a large class of nonlinear
PDE-ODE systems, both of parabolic and hyperbolic type (see,
e.g., [7] for the latter). The approach can be interpreted as an
extension of the well-known backstepping design for PDEs in
the sense that the nonlinear state transformation in Section III-
B generalizes the Volterra integral transformation and that the
Cauchy problem (5) yields the kernel equations in the linear
case. Based on this new perspective, it is essentially straight-
forward to generalize the results of this paper to stabilize a
reference trajectory as well as to account for bidirectional
coupling between the ODE and PDE in (1). Future research
is also concerned with an observer design for nonlinear ODEs
with diffusive sensor dynamics using boundary measurement.
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Appendix A

Detailed calculations

A.1 Solving the Cauchy problem for a linear reac-

tion-diffusion equation

This section is devoted to the solution of the Cauchy problem (3.7) to obtain an an-

alytical expression with functional dependence on the PDE state x(z, t) of a linear

reaction-diffusion equation. More specifically, in Section A.1.1, x(z, t) satisfies (3.1)

with unactuated Neumann boundary, whereas the case of unactuated Dirichlet bound-

ary is considered in Section A.1.2 for the sake of completeness.

A.1.1 Unactuated Neumann boundary

The formal solution (3.10) of (3.7) (with yr(t) = 0) contains infinitely many applications

of the operator d
dt
− r on y(t), as in the parameterization of x(z, t) in (3.3), but also

infinitely many applications of the operator d
dt
. Since the latter operator does not

appear in the solution (3.3) of the original problem (3.1), express
(

d
dt

)k
as

(
d
dt

)k
= ( d

dt
− r + r)k =

k∑
l=0

(
k

l

)
rk−l

(
d
dt
− r

)l
(A.1)

using the binomial formula. Substituting this into (3.10) yields

χ(z, t) =
∞∑
k=0

k∑
l=0

−z2k+2 (k + 1)! rk+1−l

(2k + 2)! l! (k + 1− l)!

(
d
dt
− r

)l
y(t) (A.2)

after a shift of the summation index, with d
dt
− r being the only operator applied to

y(t). The following lemma provides the necessary tools to further simplify (A.2).
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Lemma A.1. The equation

z2k+1(k + 1)!

(2k + 2)! l!
=

1

(2l)! 2k+1−l

z∫
0

(
z2−ζ2

2

)k−l

(k − l)!
ζ2l dζ (A.3)

holds for k ∈ N0, l ∈ {0, 1, 2, . . . , k} and z ∈ [0, 1].

Proof. For any natural number q ∈ N0, it is easy to verify that

(2q)! = q! 2q
q−1∏
m=0

(2m+ 1). (A.4)

Use that for q = l and q = k + 1 to verify

(2k + 2)! l!

(k + 1)!

k∏
m=l

(2m+ 1)−1 = (2l)! 2k+1−l (A.5)

in light of l ≤ k. Furthermore, integration by parts yields

z2k+1

k∏
m=l

(2m+ 1)−1 =

z∫
0

(
z2−ζ2

2

)k−l

(k − l)!
ζ2l dζ. (A.6)

By division, (A.3) results from (A.6) and (A.5).

After inserting (A.3) into (A.2), the formal solution of (3.7) can be expressed as

χ(z, t) =

z∫
0

∞∑
k=0

k∑
l=0

ak−l(z, ζ)bl(ζ, t) dζ (A.7)

with

ak(z, ζ) = − rz

22k+1

(r(z2 − ζ2))k

k! (k + 1)!
(A.8a)

bk(ζ, t) =
ζ2k

(2k)!

(
d
dt
− r

)k
y(t), (A.8b)

after interchanging the order of summation and integration. Rearranging the Cauchy

product in (A.7) yields (3.11), wherein the integral kernel (3.11b) follows from

k(z, ζ) =
∞∑
k=0

ak(z, ζ) (A.9)

in light of (A.8a) and the series representation of the modified Bessel function I1 of

first kind and first order (cf. Abramowitz and Stegun (1964)). The herewith obtained

formal solution (3.11) is easily verified to satisfy (3.7).
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Remark A.1. Interchanging the order of summation and integration to obtain (A.7)

requires uniform convergence of the involved series. Similarly, rearranging the Cauchy

product requires absolute convergence. As the final result (3.11) of these formal manip-

ulations solves the Cauchy problem (3.7), such convergence requirements are justified

here and in the remainder of this chapter.

A.1.2 Unactuated Dirichlet boundary

In order to demonstrate the solution-based controller for other types of boundary con-

ditions, consider the exemplary case of a reaction-diffusion equation with Dirichlet

boundaries, i.e.,

x̄(0, t) = 0 (A.10a)

∂tx̄(z, t) = ∂2z x̄(z, t) + rx̄(z, t) (A.10b)

x̄(1, t) = u(t) (A.10c)

(cf. (3.1)). With the flat output ȳ(t) = ∂zx̄(0, t), the flatness-based parameterization

of the PDE state x̄(z, t) reads

x̄(z, t) =
∞∑
k=0

z2k+1

(2k + 1)!

(
d
dt
− r

)k
ȳ(t). (A.11)

Compared to (3.3) with even powers of z, it comprises the odd powers only. Analogously

to Section 3.1.1, (A.10) is asymptotically stabilized by the solution-based controller

u(t) = χ̄(1, t), where χ̄(z, t) satisfies the Cauchy problem

∂2z χ̄(z, t) = ∂tχ̄(z, t)− rx̄(z, t) (A.12a)

χ̄(0, t) = 0 (A.12b)

∂zχ̄(0, t) = 0 (A.12c)

(cf. (3.7) with yr(t) = 0). Taking into account (A.11), it is straightforward to obtain

the formal power-series

χ̄(z, t) =
∞∑
k=0

z2k+1

(2k + 1)!

((
d
dt
− r

)k − (
d
dt

)k)
ȳ(t). (A.13)

Similar to the calculations in Section A.1.1, the formal solution (A.13) can be manip-

ulated in such a way that it is expressed in terms of the operator d
dt
− r only. For that,

insert the binomial formula (A.1) into (A.13) to obtain

χ̄(z, t) =
∞∑
k=0

k∑
l=0

−z2k+3 (k + 1)! rk+1−l

(2k + 3)! l! (k + 1− l)!

(
d
dt
− r

)l
ȳ(t) (A.14)

after a shift of the summation index. Note that its structure differs from (A.2) in the

sense that terms with 2k+2 are replaced by 2k+3. Therefore, for further simplification,

Lemma A.1 cannot be used and is, thus, replaced with the following one.
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Lemma A.2. The equation

z2k+3(k + 1)!

(2k + 3)! l!
=

1

(2l + 1)! 2k+1−l

z∫
0

ζ

(
z2−ζ2

2

)k−l

(k − l)!
ζ2l+1 dζ (A.15)

holds for k ∈ N0, l ∈ {0, 1, 2, . . . , k} and z ∈ [0, 1].

Proof. Multiplying the left-hand side of (A.5) by the trivial expression (2k+3)/(2k+3)

gives

(2k + 3)! l!

(k + 1)!

k+1∏
m=l

(2m+ 1)−1 = (2l)! 2k+1−l. (A.16)

Furthermore, substituting k in (A.6) with k + 1 results in

z2k+3

k+1∏
m=l

(2m+ 1)−1 =

z∫
0

(
z2−ζ2

2

)k+1−l

(k + 1− l)!
ζ2l dζ, (A.17)

which yields

z2k+3

k+1∏
m=l

(2m+ 1)−1 =

z∫
0

ζ

(
z2−ζ2

2

)k−l

(k − l)!

ζ2l+1

2l + 1
dζ (A.18)

after integration by parts. By division, (A.15) results from (A.18) and (A.16).

After inserting (A.15) into (A.14), one obtains an expression of the form

χ̄(z, t) =

z∫
0

∞∑
k=0

k∑
l=0

āk−l(z, ζ)b̄l(ζ, t) dζ (A.19)

with

āk(z, ζ) = − rζ

22k+1

(r(z2 − ζ2))k

k! (k + 1)!
(A.20a)

b̄k(ζ, t) =
ζ2k+1

(2k + 1)!

(
d
dt
− r

)k
ȳ(t), (A.20b)

after interchanging the order of summation and integration. Rearranging the Cauchy

product in (A.19) yields

χ̄(z, t) =

z∫
0

k̄(z, ζ)x̄(ζ, t) dζ (A.21a)

with the integral kernel

k̄(z, ζ) = −rζ
I1(

√
r (z2 − ζ2))√
r (z2 − ζ2)

(A.21b)
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that follows from

k̄(z, ζ) =
∞∑
k=0

āk(z, ζ) (A.22)

in light of (A.20a) and the series representation of the modified Bessel function I1 of

first kind and first order (cf. Abramowitz and Stegun (1964)). Note that the difference

between (A.20a) and (A.8a) infers that the kernels in (A.21b) and (3.11b) only differ

by the factor in front of the modified Bessel function I1. Finally, it is easy to verify

that the solution (A.21) satisfies (A.12).

Remark A.2. In analogy to Remark 3.1, by inserting the Volterra integral (A.21a)

with an unknown kernel k̄(z, ζ) into (A.12) and taking into account the plant (A.10),

it can be shown that the kernel has to satisfy

∂2z k̄(z, ζ)− ∂2ζ k̄(z, ζ) = rk̄(z, ζ) (A.23a)

2k̄(z, z) = −rz (A.23b)

k̄(z, 0) = 0 (A.23c)

for 0 ≤ ζ ≤ z ≤ 1. These are in fact the kernel equations that arise in Krstic and

Smyshlyaev (2008, Ch. 4) in order to derive the corresponding backstepping controller

for (A.10). Note that they coincide with the kernel equations (3.13) except for the

boundary condition at ζ = 0.

A.2 Solving the Cauchy problem for a linear para-

bolic PDE-ODE system

Section A.2.1 is devoted to the solution of the Cauchy problem (3.17) to obtain an

analytical expression with functional dependence on the state of the linear parabolic

PDE-ODE system (3.16) with unactuated Neumann boundary at z = 0. For the sake

of completeness, Section A.2.2 considers the case of an unactuated Dirichlet boundary

instead of (3.16b).

A.2.1 Unactuated Neumann boundary

First, insert (3.23) into (3.22) to get rid of the time derivatives of the ODE state w(t).

This gives

χ(z, t) = χ1(z, t) + χ2(z, t) (A.24)

with

χ1(z, t) = kT

∞∑
k=0

z2k

(2k)!
F kw(t) (A.25a)

χ2(z, t) = kT

∞∑
k=0

k∑
l=0

z2k+2

(2k + 2)!
F k−lby(l)(t) (A.25b)
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after shifting the summation index. Note that χ1(z, t) in (A.25a) can also be written

as

χ1(z, t) = nT(z)w(t), (A.26)

where

nT(z) = kT

∞∑
k=0

z2k

(2k)!
F k (A.27)

is the (unique) solution of the initial value problem (3.25). To simplify χ2(z, t) in

(A.25b), use the relation

z2k+2

(2k + 2)!
=

z∫
0

(z − ζ)2(k−l)+1

(2(k − l) + 1)!

ζ2l

(2l)!
dζ, (A.28)

which can be shown to hold for k ∈ N0 and l ∈ {0, 1, 2, . . . , k} after integration by

parts. By substituting the latter in (A.25b), χ2(z, t) can be expressed as

χ2(z, t) =

z∫
0

∞∑
k=0

k∑
l=0

ak−l(z, ζ)bl(ζ, t) dζ (A.29)

with

ak(z, ζ) = kT (z − ζ)2k+1

(2k + 1)!
F kb (A.30a)

bk(ζ, t) =
ζ2k

(2k)!

(
d
dt

)k
y(t), (A.30b)

after interchanging the order of summation and integration. Rearranging the Cauchy

product in (A.29) yields

χ2(z, t) =

z∫
0

mT(z − ζ)bx(ζ, t) dζ (A.31)

in light of (3.26), (A.27) and (3.21). The herewith obtained formal solution (3.24),

resulting from inserting (A.26) and (A.31) into (A.24), is easily verified to satisfy

(3.17).

A.2.2 Unactuated Dirichlet boundary

As done for the reaction-diffusion equation in Section A.1.2, the solution-based con-

troller for the PDE-ODE system (3.16) can easily be adapted to the case of Dirichlet

boundaries. To demonstrate that, consider the linear parabolic PDE-ODE system

ẇ(t) = Fw(t) + b∂zx̄(0, t) (A.32a)

x̄(0, t) = 0 (A.32b)

∂tx̄(z, t) = ∂2z x̄(z, t) (A.32c)

x̄(1, t) = u(t) (A.32d)
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instead of (3.16). Note that ȳ(t) = ∂zx̄(0, t) is the flat output of the PDE subsystem

(A.32b)–(A.32d). The latter subsystem coincides with the system (A.10) for r = 0

and, thus, one recovers the flatness-based parameterization

x̄(z, t) =
∞∑
k=0

z2k+1

(2k + 1)!

(
d
dt

)k
ȳ(t) (A.33)

of the PDE state x̄(z, t) as a special case of (A.11). Furthermore, in analogy to Section

3.2.1, it is easy to verify that u(t) = χ̄(1, t) is an asymptotically stabilizing control law,

where χ̄(z, t) satisfies the Cauchy problem

∂2z χ̄(z, t) = ∂tχ̄(z, t) (A.34a)

χ̄(0, t) = 0 (A.34b)

∂zχ̄(0, t) = kTw(t) (A.34c)

(cf. (3.17)). A power-series ansatz for the solution χ̄(z, t) of the inverse problem (A.34)

yields

χ̄(z, t) = kT

∞∑
k=0

z2k+1

(2k + 1)!

(
d
dt

)k
w(t), (A.35)

which is similar to the result in (3.22) for the case of an unactuated Neumann boundary.

Analogously to (3.23), the k-th derivative of kTw(t) in (A.35) can be expressed as

(
d
dt

)k
kTw(t) = kTF kw(t) + kT

k−1∑
l=0

F k−1−lbȳ(l)(t) (A.36)

by successively inserting the ODE (A.32a) and recalling ȳ(t) = ∂zx̄(0, t). Analogously

to Section A.2.1, insert (A.36) into (A.35) to get rid of the time derivatives of the ODE

state w(t). This results in

χ̄(z, t) = χ̄1(z, t) + χ̄2(z, t) (A.37)

with

χ̄1(z, t) = kT

∞∑
k=0

z2k+1

(2k + 1)!
F kw(t) (A.38a)

χ̄2(z, t) = kT

∞∑
k=0

k∑
l=0

z2k+3

(2k + 3)!
F k−lbȳ(l)(t) (A.38b)

after shifting the summation index. Note that χ̄1(z, t) in (A.38a) can also be written

as

χ̄1(z, t) = n̄T(z)w(t), (A.39)

where

n̄T(z) = kT

∞∑
k=0

z2k+1

(2k + 1)!
F k (A.40)
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is the (unique) solution of the initial value problem

d2n̄T

dz2
(z) = n̄T(z)F (A.41a)

n̄T(0) = 0T (A.41b)

dn̄T

dz
(0) = kT (A.41c)

on z ∈ [0, 1]. To simplify χ̄2(z, t) in (A.38b), use the relation

z2k+3

(2k + 3)!
=

z∫
0

(z − ζ)2(k−l)+1

(2(k − l) + 1)!

ζ2l+1

(2l + 1)!
dζ, (A.42)

which can be shown to hold for k ∈ N0 and l ∈ {0, 1, 2, . . . , k} after integration by

parts. By inserting the latter in (A.38b), χ̄2(z, t) can be expressed as

χ̄2(z, t) =

z∫
0

∞∑
k=0

k∑
l=0

āk−l(z, ζ)b̄l(ζ, t) dζ (A.43)

with

āk(z, ζ) = kT (z − ζ)2k+1

(2k + 1)!
F kb (A.44a)

b̄k(ζ, t) =
ζ2k+1

(2k + 1)!

(
d
dt

)k
ȳ(t), (A.44b)

after interchanging the order of summation and integration. Rearranging the Cauchy

product in (A.43) yields

χ̄2(z, t) =

z∫
0

n̄T(z − ζ)bx̄(ζ, t) dζ (A.45)

in light of (A.40) and (A.33). The herewith obtained formal solution

χ̄(z, t) = n̄T(z)w(t) +

z∫
0

n̄T(z − ζ)bx̄(ζ, t) dζ, (A.46)

resulting from inserting (A.39) and (A.45) in (A.37), is easily verified to satisfy (A.34).

This confirms the results in Irscheid et al. (2024). Similar to the case of the Neumann

boundary condition at z = 0 in Section 3.2, the control law u(t) = χ̄(1, t) is indeed a

feedback of the ODE state w(t) and the PDE state x̄(z, t) of (A.32).
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