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ABSTRACT

Chromatin accessibility maps are important for the
functional interpretation of the genome. Here, we
systematically analysed assay specific differences
between DNase I-seq, ATAC-seq and NOMe-seq
in a side by side experimental and bioinformatic
setup. We observe that most prominent nucleo-
some depleted regions (NDRs, e.g. in promoters) are
roboustly called by all three or at least two assays.
However, we also find a high proportion of assay spe-
cific NDRs that are often ‘called’ by only one of the
assays. We show evidence that these assay specific
NDRs are indeed genuine open chromatin sites and
contribute important information for accurate gene
expression prediction. While technically ATAC-seq
and DNase I-seq provide a superb high NDR call-
ing rate for relatively low sequencing costs in com-
parison to NOMe-seq, NOMe-seq singles out for its
genome-wide coverage allowing to not only detect
NDRs but also endogenous DNA methylation and as
we show here genome wide segmentation into hete-
rochromatic B domains and local phasing of nucle-
osomes outside of NDRs. In summary, our compar-
isons strongly suggest to consider assay specific

differences for the experimental design and for gen-
eralized and comparative functional interpretations.

INTRODUCTION

The eukaryotic genome is largely organized in nucleosomes
- the basic unit of chromatin. The precise mapping of nu-
cleosome occupancy and the accessible DNA provides a
widely used molecular approach to monitor chromatin or-
ganization in cells and the specific and local impact on gene
expression. Three main experimental approaches , DNase
I-seq, ATAC-seq and NOMe-seq, are mainly used to com-
prehensively analyze chromatin accessibility on a genome
wide level. All these approaches have in the meantime been
scaled down to single cell analyses making them the prime
assays for functional studies (1–5). In some cases, these as-
says have even be applied to simultaneously measure gene
expression (RNA-seq) and chromatin accessibility (NOMe-
seq, ATAC-seq) from the same cell (5–7).

Several independent studies demonstrated that each of
these methods come with advantages and disadvantages but
so far very few systematic comparative analyses have been
performed using standardized procedures. Our study fills
this gap aiming to evaluate the comparability and comple-
mentarity of the three methods and at the same time show-
ing their individual advantages or limitations to identify
and interpret epigenetic and chromatin data.
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The oldest and still widely used method to analyze nu-
cleosome occupancy and positioning is DNase I-seq (8)
(see Figure 1). DNase I cuts at freely accessible DNA
to release small DNA fragments, which when coupled to
next-generation sequencing (NGS) can be traced back to
the genome to identify open chromatin regions. Extensive
DNase I studies by ENCODE show that this approach
boosts the identification of regulatory elements in different
cells and showed that numerous genetic variants identified
in genome-wide association studies (GWAS) locate to such
DNase I hypersensitive regions (9). Still, the general use of
DNase I-seq for open chromatin mapping can be quite dif-
ficult. First of all, DNase I experiments usually require a
fair amount of pre-testing to identify the right incubation
conditions, because, among other factors, under- or over-
digestion of the chromatin will greatly influence the detec-
tion rate of open chromatin sites (10). For this the abun-
dance of primary cell material can often be a problem. Usu-
ally, several experiments with different amounts of DNase I
have to be performed to determine the optimum conditions.
Once conditions are established the method can be scaled
down to even single cells as showed by (2). Using paired end
sequencing the prediction of nucleosome depleted regions
(NDRs) from aligned DNase I-seq reads can be performed
with conventional peak callers developed for ChIP-seq such
as MACS2 (11).

A second method with growing popularity is ATAC-seq
(12) (see Figure 1), which stands for assay for transposase-
accessible chromatin. ATAC-seq uses hyperactive Tn5
transposase-mediated cutting of genomic DNA combined
with ligation-mediated insertion of DNA oligonucleotides
which are pre-loaded (in vitro) to the enzyme. Following
DNA isolation and PCR-amplification, libraries can di-
rectly be used for NGS. Because of its relative technical sim-
plicity and high sensitivity this method is increasingly used
(13–17). ATAC-seq requires very low amount (down to sin-
gle cells) of (even frozen) input material to generate compre-
hensive maps (1000–50 000 cells). Since the ATAC reaction
is an ‘end-point’ reaction it reduces the risk of chromatin
over-digestion. Additionally, due to the relative simplic-
ity of the protocol, ATAC-seq allows for high-throughput
application to hundreds of bulk samples at relatively low
cost making it applicable to larger clinical cohorts (18). A
drawback of ATAC-seq is a frequently observed enrich-
ment of mitochondrial (MT) sequence reads due to the un-
protected nature of MT DNA which appears to be a pre-
ferred target for the Tn5 transposase in the cell. This can be
avoided by depleting unwanted reads with a CRISPR/Cas9
based strategy (19,20). This addition however makes the
method more laborious. ATAC-seq data can be processed
using standard peak callers developed for ChIP-seq such as
MACS2 (11).

The third method with growing popularity is a nucle-
ase free method called NOMe-seq which stands for “nu-
cleosome occupancy and methylation”. NOMe-seq utilizes
the enzyme M.CviPI that specifically methylates cytosine
dyads in a GpC sequence context originally used to iden-
tify local open chromatin regions (21) . Following the in-
cubation of permeabilized cells or nuclei with M.CviPI, the
extracted DNA is subjected to conventional bisulfite con-
version followed by either regional (targeted) or genome-

wide sequencing (WGBS). With this approach the DNA-
methylation levels at GpC sites (NOMe reaction) and at
endogenous CpG sites are determined simultaneously. The
GpC methylation can be used to map DNA accessibility
and determine nucleosome free regions. NOMe also has
some interesting (partially unique) technical features: (i)
NOMe-seq only requires low amounts of input material
(down to single cells) and is applicable for many cell types.
(ii) The in vitro methylation step is an endpoint reaction re-
ducing the risk of over-exposure. (iii) NOMe-seq data pro-
vide a direct and single molecule quantitative readout, mea-
suring the accessibility for each GpC in a single chromo-
some. (iv) NOMe can be seamlessly adopted for region-
specific or whole genome-wide analysis of open chromatin.
(v) NOMe-seq delivers the endogenous CpG methylation
as a second readout enabling the simultaneous analysis
of chromatin accessibility and DNA methylation on the
same molecule in one experiment. The NOMe-Seq ‘read-
out’ of open chromatin sites is limited to GpC containing
sequences and requires a high sequencing depth.

A recent NOMe-based assay, scNMT-seq, allows the
combined sequencing of nucleosome occupancy together
with transcriptome of the same cell (5). The current meth-
ods for NOMe-seq data interpretation leave room for im-
provement. (22) recently developed the findNDR tool,
which computes enrichment scores of methylated reads for
fixed size windows against a genome-wide average methy-
lation rate. Here, we present a new algorithm for detect-
ing NDRs in NOMe-seq data that allows for variable size
length, performs a proper FDR correction, corrects for
local, regional methylation backgrounds and corrects for
abundance artifacts due to amplifications as commonly
found in cancer genomes.

To perform a direct comparison of DNase I-, NOMe- and
ATAC-seq data we decided to produce all data from a stan-
dard model cell line HepG2. We performed all experiments
in our lab using the same stock of cells and the same culti-
vation conditions to minimize technical confounding vari-
ables. We deliberately used bulk cells to obtain deep and
comprehensive genome wide overviews for each method.
We observe that all three methods have a considerable over-
lap in detecting (strong) major open chromatin regions but
also deviate to a large extend in other regions. We find that
none of the methods calls the entire spectrum of open chro-
matin sites. This becomes most apparent when using these
data for functional prediction of gene expression. We be-
lieve that our detailed comparison will contribute to better
understand the technical and experimental limits of each of
the three methods and at the same time allow to rationalize
which approach should be used to address particular ques-
tions.

MATERIALS AND METHODS

Library preparation

Growing cells. HepG2 cell line was obtained from ATCC
and cultured in Dulbecco’s modified eagle medium supple-
mented with 10% fetal calf serum and 1% Pen/Strep mix
under standard conditions (37◦C, 5% CO2).
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Figure 1. Chromatin accessibility assays. (A) NOMe-seq (left): Isolated nuclei are treated with M.CviPI, which methylates cytosines in GpC-dinucleotides.
The DNA is purified, subjected to library preparation including bisulfite-conversion and sequenced. The resulting data give quantitative measures of GpC-
and endogenous CpG-methylation at base-pair resolution across the whole genome. DNase I-seq (middle): After isolation of nuclei, chromatin is digested
with DNase I. The DNA is purified and short double hit fragments are selected, which are used for library preparation and sequencing. The obtained data
represent a relative enrichment of double-hit fragments in accessible regions. ATAC-seq (right): Isolated nuclei are treated with Tn5 transposase, which is
loaded with sequencing adapters. After the tagmentation of chromatin (fragmentation and tagging by the transposome), the DNA is purified, barcoded
by PCR and sequenced. The data give a relative read-out of tagmented fragments across accessible regions. (B) Snapshot of chromatin accessibility data
relative to genomic coordinates for section of chr12. NOMe-seq (blue): Quantitative measure of GCH-methylation and NDRs called with gNOMeHMM
are shown. The GCH coverage track indicates if number of reads is 5 (downward bars) or higher (upward bars). DNase I- (red) and ATAC-seq (orange):
Read coverage and NDRs called with MACS2 are shown.
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NOMe-seq. Optimal conditions for NOMe were first es-
tablished by testing effects of several important technical
parameters, such as nuclei extraction procedure, nuclei fix-
ation, amount of M.CviPI enzyme and incubation time. As
a read-out we used ultra-deep bisulfite amplicon sequenc-
ing for genomic regions with known chromatin accessibil-
ity states (as communicated with T. Kelly and/or published
by (23)). The obtained results indicated that (i) after 3h ac-
cessible region is already fully methylated and ii) fixation
of nuclei does not impact M.CviPI efficiency or nuclei in-
tegrity (Supplementary Figure S1). Another accessible re-
gion at the RPL27 gene with a known nuclei position (mid-
dle section of the amplicon) was used to evaluate the effect
of different amounts of M.CviPI for 3 h in vitro methyla-
tion of 1 × 106 native HepG2 nuclei. From these tests, we
concluded that incubation of HepG2 nuclei with 60 U of
M.CviPI for 3 h results in a complete in vitro methylation
of GpCs at accessible regions. For genome wide NOMe-
seq, 1 million HepG2 nuclei were extracted using nuclei
extraction buffer (60 mM KCl; 15 mM Tris–HCl, pH 8.0;
15 mM NaCl; 1 mM EDTA, pH 8.0; 0.5 mM EGTA, pH
8.0; 0.5 mM spermidine free base) supplemented with com-
plete protease inhibitor cocktail (Roche, Basel, Switzerland)
and 0.1% NP40 (Sigma-Aldrich, St. Louis, USA), and incu-
bated on ice for 10 min. Nuclei were centrifuged (500 g, 4◦C,
8 min), and the pellet was washed with nuclei extraction
buffer. After another centrifugation step, the pellet was gen-
tly resuspended in 90 �l of 1× GpC buffer (NEB, Ipswich,
USA) followed by addition of 70 �l of NOMe reaction mix
7 �l 10× GpC buffer (NEB), 1.5 �l of 32 mM SAM (NEB),
45 �l of 1 M sucrose and 60 U of M. CviPI (NEB). The re-
action was incubated for 3 h at 37◦C, and 0.5 �l of SAM was
added after one and two hours. The reaction was stopped
by adding 160 �l NOMe stop buffer (20 mM Tris–HCl, pH
8.0; 600 mM NaCl; 1% SDS, 10 mM EDTA) and 10 �l pro-
teinase K (20 mg/ml, Sigma-Aldrich) and genomic DNA
was extracted. Next, 100 ng was bisulfite-converted with
the EZ DNA Methylation-Gold kit (Zymo, Irvine, USA)
and then subjected to NGS library preparation using the
TruSeq DNA Methylation Kit (Illumina, San Diego, USA)
according to the manufacturer’s protocol. All libraries were
checked for adapter dimers and fragment distribution on a
Bioanalyzer HS chip (Agilent Technologies, USA). All sam-
ples were sequenced on an Illumina HiSeq2500 using V3
flowcells.

DNase I-seq. 1 × 107 cells HepG2 cells have been sub-
jected to nuclei isolation same as for NOMe and DNase
I-seq was done as described previously (24).

ATAC-seq. ATAC-seq was performed on 50 000 HepG2
nuclei according to the protocol outlined by Buenrostro
et al. (12).

Sequencing, pre-processing

Fastq files were trimmed for adapter sequence and low qual-
ity tails (Q < 20) with trim galore (25), after which they
were mapped to the human (hs37,1000G) genome (26). For
WGBS and NOMe data, this was done with GSNAP (27)
and for DNase I and ATAC data, GEM (28) was utilized
(See Supplementary Table S1).

WGBS and NOMe

Unmapped reads were removed with samtools (29), be-
fore further processing with the Bis-SNP pipeline (30). Ini-
tially, reads were remapped in regions close to known in-
sertions or deletions as supplied by Database of Single
Nucleotide Polymorphisms (dbSNP); Bethesda (MD): Na-
tional Center for Biotechnology Information, National Li-
brary of Medicine (dbSNP Build ID: 138); available from:
http://www.ncbi.nlm.nih.gov/SNP/. Duplicated reads were
marked with Picard tools (http://broadinstitute.github.io/
picard) and potentially overlapping sections between two
paired reads were clipped with bamUtils (31). The quality
was recalibrated in the context of dbSNP. Finally, methyla-
tion levels were called for all cytosines, and extracted with
a modified version of the Bis-SNP vcf2bed.pl helper-script.
For the NOMe samples, bed files were generated for cy-
tosines in GCH and HCG context, where H is the IUPAC
code for A, C or T. This corresponds to artificial and nat-
ural methylation, respectively. For WGBS samples, files for
CG context were generated.

DNase I and ATAC

Duplicated reads were annotated with Picard tools. MACS2
(v2.1.0) (32) was used to call NDRs. In comparison to
ChIP-seq, the cutting with DNase I and inclusion of
adapters with the transposase in ATAC puts the focus on
the start and end of a fragment, therefore MACS was ex-
ecuted with the following parameters: --shift -100,
--extsize 200, --nomodel and --keep-dup all.
Evaluation of other considered parameters can be found
in Supplementary Text, section ‘On MACS2 peak calling
for DNase I-seq and ATAC-seq’ and Supplementary Fig-
ure S20. All duplications were kept as MACS only takes
one end of the fragment into account when designating du-
plicated reads compared to Picard tools that makes use of
both.

External data

External data sources are listed in data file 1

Finding open chromatin regions with NOMe data

Given methylation values Mi, i = 1, . . . , m, for m cytosines
in GCH context in the human genome, we use a Hidden
Markov Model (HMM) to segment all cytosines in GCH
context into two states (i) NDR and (ii) occupied region. As
the methylation values are in range [0, 1] we use a binomial
distribution in each HMM state. We use the Baum–Welch
algorithm to fit the 2-state HMM using the HiddenMarkov
R package (33). We stop the parameter optimization after
either 1000 iterations or if the likelihood between two con-
secutive rounds drops <10−3. We fit an HMM for each chro-
mosome and use parallelization with the SNOW package
for fast computation. Each GC nucleotide is predicted to
be open or closed based on posterior decoding using the fit-
ted binomial HMM. Stretches of predicted NDRs, so called
peaks, are further ranked by significance.

Initially, P-values were calculated with a one-sided
Fisher’s exact test, contrasting the number of observations
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of methylated and unmethylated cytosines in GCH context
within the region to a that of a background region. The
background was selected as the closest 4 kb of closed chro-
matin up- and down-stream of the tested region.

To assign significance to the potential open chromatin
regions found by the HMM, we computed empirical false
discovery rates (FDRs) as well as the corresponding q-
values. (34) The false discovery rate at significance thresh-
old t(FDR(t)) is the expected value of the proportion of false
discoveries significant at threshold t(f(t)) divided by the to-
tal number of discoveries that are significant at threshold
t(s(t)):

F DR(t) = E[ f (t)/s(t)] (1)

This can be approximated by E[f(t)]/E[s(t)]. Using the
HMM on our data set, we could directly get an estimate for
E[f(t)] by counting regions with a P-value smaller than or
equal to t. To estimate E[s(t)], we generated null data from
the real data by shuffling methylation levels of the input
data, leaving all other parts of the data intact. We then com-
puted the segmentation for this data. This was performed
to get the P-value distribution of regions falsely labeled as
open.

Due to the coverage dependence of the chosen test, we
implemented an automatic stratification step based on non-
parametric mixture model clustering with the Mclust R-
package (35). Assuming that regions with deviating copy
numbers is the exception, we let the median represent the
common coverage, and optimize the shrinkage parameter to
minimize the number of clusters with mean coverage below
the median. After each loci are assigned to a cluster, FDR
values are estimated within each cluster. The gNOMeHMM
package can be retrieved from https://github.com/karl616/
gNOMePeaks.

Processing of RNA-seq data

TopHat 2.0.11 (36) and Bowtie 2.2.1 (37) were used to gen-
erate BAM files of RNA-seq reads, for NCBI build 37.1 in -
-library-type fr-firststrand and --b2-very-
sensitive setting. Gene expression was quantified us-
ing Cufflinks 2.0.2 (38), the hg19 reference genome us-
ing the options frag-bias-correct, multi-read-
correct, and compatible-hits-norm.

Determine characteristics of DNase I, ATAC and NOMe
NDRs

To better understand the characteristics of the DNase I
endonuclease, the Tn5 transposase, and the GpC methyl-
transferase M.CviPI, we generated sequence motifs, DNA
shape predictions, as well as investigated DNA methyla-
tion at DNase I-seq and ATAC-seq cut-sites and at GpC
sites for NOMe, respectively. We obtained the considered se-
quences using the bedtools getfasta (39) command on the 5′-
cut-sites/GpC sites retrieved from the aligned reads. Note
that all ATAC-seq sequences are shifted by 4 bp upstream,
to consider the center of the Tn5 transposase (12). Per GpC
sites, we sampled reads according to the methylation state
of the respective GpC.

Generation of sequence motifs. Using 59 850 858 DNase
I-sequences, 30 108 148 ATAC-seq sequences, and 126 202
679 NOMe-sequences, we generated sequence logos using
the ggseqlogo R-package (40). The sequence motifs reported
in literature are 6 bp for DNase I (41) and 20 bp for ATAC
(12). To our knowledge, no bias motif has been reported in
literature for NOMe-seq. To ensure these are captured and
to harmonize with other figures, we used 31 bp centered on
the enzyme activity sites of each assay.

Shape prediction. We use the DNAshapeR R-package (42)
predictions for the minor groove width (MGW), Roll, pro-
peller twist (ProT) and helix twist (HelT). Due to memory
limitations, we randomly selected 2 million sequences per
assay, constructed as described above, to be used for the
shape computations. All spatial features are computed for
each assay in a 31 bp window centered at the enzyme activ-
ity site.

DNA methylation. For each assay and sample, CpG
methylation was extracted in 40bp windows centered on
an enzyme event (bedtools (39)). Average methylation,
weighted to coverage, was calculated for each relative po-
sition.

Logistic regression classifier for assay-specific NDRs

To identify characteristics of NDRs identified with only one
distinct assay, we learn a multi-class logistic regression clas-
sifier using a variety of sequence based features, explained
in the next section.

Feature definition. Within each assay specific NDR, we
computed

• A, T, C and G content,
• CG content,
• CpG and GpC count,
• average CpG methylation,
• NOMe-seq coverage,
• and counts for all 5-mers.

We excluded GpC methylation as it would be an ob-
viously strong feature for NOMe-seq NDRs, potentially
overshadowing the remaining features. Additionally, we ex-
cluded NDR length as a feature, as this would mainly re-
semble peak caller specificities, as shown before for different
peak callers on DNase I-seq data (11). The aforementioned
features are computed for 12 415 DNase I NDRs, 19 323
ATAC-seq NDRs and 19 453 NOMe NDRs (excluding the
Y-chromosome).

Logistic regression. We learn a multiclass logistic regres-
sion classifier using elastic net regularization, as imple-
mented in the glmnet R-package (43). Elastic net regular-
ization is producing sparse models and at the same times
distributes the regression coefficients among correlated, yet
predictive features, a property known as the grouping ef-
fect. This is achieved by combining two penalty terms, the
lasso(L1) and the ridge(L2) penalty:

β̂ = arg min
β

||y − Xβ||2 + λ[α||β||2 + (1 − α)||β||]. (2)

D
ow

nloaded from
 https://academ

ic.oup.com
/nar/article/47/20/10580/5580902 by Europa-Institut U

niversität des Saarlandes user on 11 February 2025

https://github.com/karl616/gNOMePeaks


Nucleic Acids Research, 2019, Vol. 47, No. 20 10585

Here, β̂ denotes the estimated model coefficients, β are
the model coefficients, X is the feature matrix, which is
scaled and centered, y is the response vector containing
class assignments and α is a parameter regulating the trade-
off between L1 and L2 penalty. We optimize the � parame-
ter in a grid search from 0.0 to 1.0 with a step-size of 0.01.
This is performed in scope of a 10-fold Monte-Carlo cross-
validation procedure, in which the data is randomly split
into 80% training and 20% test data, assuring that both
sets are balanced (see Supplementary Figure S3). Within
each fold, we perform a nested-six fold inner cross valida-
tion to fit regression coefficients and determine the � pa-
rameter controlling the total amount of regularization. We
choose � over the inner folds according to the minimum
miss-classification error (�min). Final model coefficients are
determined using �min on the entire training data set. Model
performance is computed in terms of accuracy (ACC) on
balanced hold-out test data using a 3 × 3 confusion matrix
C:

ACC = C1,1 + C2,2 + C3,3∑
i, j Ci, j

(3)

Note that, since we perform a three-class classification,
randomness is reflected by ACC ≤ 0.33.

Computation of nucleosome distances

We predicted nucleosome positions based on ChIP-seq data
by running Nuchunter (44) with default parameters. The dis-
tance between neighboring predicted nucleosomes was cal-
culated, the 220 315 gaps between 0 and 500 bp were se-
lected and stratified into bins of 50 bp. Overlapping these
gaps with NDRs and transcription factors allowed us to cal-
culate enrichments in different size regimes. The enrichment
was calculated as the difference between the observed and
estimated number of overlapping features. For each feature
and size bin, the estimated number of overlaps was calcu-
lated by distributing the observed overlaps over the bins in
proportion to the number of expected overlaps. For plot-
ting, the absolute values were log transformed, while keep-
ing the sign of the original value

NDR clustering

For each set of NDRs, we calculated the average NOMe sig-
nal intensity in tiled 10 bp bins spanning 1kb up- and down-
stream relative to the NDR summit. Subsequently, we iden-
tified all combinations of overlapping regions between the
three NDR sets and the signal from these were combined.
In the absence of a NDR the loci were defined by another
assay, prioritized as NOMe, DNase I or ATAC. That is, a
lacking NOMe NDR was approximated by DNase I and
only if both NOMe and DNase I lacked NDR, the ATAC
NDR was used as substitute. The resulting matrix consisted
of rows with 200 bins from each assay. It was clustered into
fifteen clusters with the k-means algorithm.

The resulting clusters were characterized with respect to
the fraction of NDRs overlapping a ChromHMM segmen-
tation of the DEEP HepG2 histone data and transcription
factors with LOLA and an extended version of its core data
base (45). The ChromHMM states are labeled in agreement

to the 15-state core segmentation provided by Roadmap
(46).

Linear regression predicting gene expression

To learn about the relationship between chromatin accessi-
bility and gene expression, we fitted linear regression mod-
els predicting gene expression from predicted TFBSs.

Feature definition. We compute TFBS features using
TEPIC (24,47) in all ATAC A, DNase I D and NOMe N
NDR sets. Additionally, we consider the intersection I of
the three sets, as well as their union U :

I = A ∩ D ∩ N , U = A ∪ D ∪ N . (4)

Furthermore, we consider three NDR sets extending A,
D and N to match |U | by randomly sampled regions that
do not overlap with any of the already included open chro-
matin NDRs. We refer to these NDR sets with AR, DR and
NR respectively. Thus, we consider in total eight different
NDR sets P j for j = 1, . . . , 8.

For each NDR p ∈ P j , we compute TF affinities ap, t
for TF t using TRAP (48), normalized according to the
length of the respective NDR |p|, for a set of 726 TFs. Posi-
tion weight matrices are taken from the TEPIC 2.0 reposi-
tory (47).

TF affinities ap, t are combined to TF-gene scores for gene
g as suggested in (24),

ag,t =
∑

p∈Pg,w

ap,te
− dp,g

d0 , (5)

using a window size w = 50 kb. In addition to TFBS fea-
tures, we consider NDR length lg and NDR count cg as ad-
ditional features per gene (as introduced in (49)):

cg =
∑

p∈Pg,50kb

e− dp,g
d0 , lg =

∑

p∈Pg,50kb

|p|e− dp,g
d0 . (6)

Values for ag, t, cg and lg, are computed for all protein-
coding genes that are associated to at least one DHS site.
Where Pg,50kb denotes all peaks in a 50 kb window around
gene g.

Linear regression. As for the logistic regression, we use
elastic net regularization to learn a linear model of gene ex-
pression. Here, a row of the feature matrix X is composed
of the TF gene scores ag, t as well as the values of cg and lg
for a distinct gene g. The actual gene expression is denoted
by the response vector y.

The learning strategy is identical to the one explained
above, with the difference that the cross-validation er-
ror is measured as mean-squared error instead of miss-
classification error. Final model performance is assessed
using Spearman correlation computed between the actual
gene expression y, and the predicted gene expression ŷ.
Models are learned independently for each NDR set.

Hi-C data

Hi-C data of HepG2 from (50) was used (GSE113405). The
interaction matrix and TADs were generated as described
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before (50). A/B compartment predictions were generated
using HOMER tools (51) with the runHiCpca.pl command
with the following parameters: -res 25000 -window
50 000. Positive values of pca1 correspond to A compart-
ments while the negative values correspond to the B com-
partments. The compaction score Distal-to-Local [log2]
Ratio (DLR) was calculated using analyzeHiC command
with the following parameters: -res 5000 -window
15 000 -compactionStats auto. Figure 2A was
generated using pyGenomicTracks (52).

Large scale NOMe segmentation

GCH methylation values were first merged from both
strands to calculate weighted average methylation per GpC
and then smoothed using BSmooth (53) with h = 50 000
as a smoothing window. A set of genomic regions, after vi-
sual inspection, was manually selected and labeled accord-
ingly as S1 (not valley) or S2 (valley). These regions were
used to train a random forest classifier using the average
GpC methylation in 30 kb tiles as variable vector and the
aforementioned labels as response vector. Then the fitted
model was used to predict the status of 30 kb tiles across
the whole genome. All predicted consecutive S2 with gap
length <30 kb were merged into one region. The final set
of S2 regions were visualized in Figure 2A as valleys track.
The training and prediction process were carried out using
R caret package (54).

RESULTS

Genome wide comparison of open chromatin assay data

To monitor the comparability of the currently most widely
used open chromatin assays we performed a direct data
comparison between NOMe-seq, DNase I-seq and ATAC-
seq, outlined in Figure 1, using data generated from the
same batch of HepG2 cells grown in our lab. This approach
reduces experimental confounding effects such as differ-
ences in cell batches and culture condition (growth, den-
sity). Data sets were generated following existing IHEC and
BLUEPRINT protocols. The HepG2 cell line was selected
as it is a major cell line used in ROADMAP and ENCODE
analyses further allowing us to include external datasets for
subsequent analyses.

A visual inspection of all three sequencing tracks indi-
cated a fairly good agreement of local enrichment profiles at
open chromatin sites (see Figure 1B) between ATAC- and
DNase I peaks and NOMe signal enrichments. However,
the NOMe-seq coverage is much more widespread as com-
pared to the strong local enrichments of the two nuclease-
based assays. To better compare the NOMe signal distribu-
tion with ATAC/DNase I ‘peak calling’ we calculated the
genome wide GCH methylation levels of NOMe-seq data
and related it to the FPKM values for DNase I-seq and
ATAC-seq as numbers of 5′ read ends across the genome.
We correlated these genome wide raw signal distributions
aggregated in 500 bp bins (see Supplementary Figure S4).
Following this approach we observe a moderate level of
genome wide correlation between ATAC-seq and DNase I-

seq read distributions (Spearman cor.: 0.41) while the cor-
relation to NOMe-seq is far less only reaching 0.21 and 0.25
to ATAC and DNase I, respectively. To better understand
the assay specific differences in the genome wide read distri-
bution we started by investigating the sequence preferences
of all three assays in more detail.

Sequence, structure and DNA-methylation influence DNase
I, ATAC and NOMe

In line with (12) and (41) we observed that both endonucle-
ases DNase I and the modified Tn5 (ATAC) show a slightly
biased and distinct sequence preference at their cutting sites
(see Figure 3A). This preference is found across multiple
samples of different cell types (see Supplementary Figures
S5 and S6). Also the ‘NOMe enzyme’ M.CviPI, which rec-
ognizes and methylates at the dinucleotide 5′GC3′ showed
some minor sequence preferences at the flanking −2 and +2
position. However, this is only due to the (bioinformatic) ex-
clusion of ambiguous GCG sites, which overlap with sites
of endogenous CpG methylation and are therefore incon-
clusive. Despite the GCG effect, no other sequence biases
were observed (see Supplementary Figure S7).

In an earlier line of work it was shown that CpG methyla-
tion in DNase I cut sites increases cleavage efficiency by al-
tering the DNA structure (55) , which can also be predicted
by looking at DNA shapes (56). To systematically compare
the enzyme specific sequence preferences within each assay
we predicted structural DNA shape features (see Methods)
around the GpC methylation sites (NOMe) and the enzyme
cutting sites (ATAC, DNase I) (Figure 3B and Supplemen-
tary Figure S8) across a number of available samples and
datasets (see Supplementary Figure S8).

First, we investigated the structural features and observed
that the sequences around the M.CviPI enzyme (NOMe)
recognition site 5′GpC3′ show a pronounced signal for an
increased Helix Twist (HelT) and Propeller Twist (ProT).
Additionally, we find an increased Minor Groove Width
(MGW) flanking the GC site. For DNase I, we observed
an enlarged predicted MGW around the cut site, as re-
ported before (55), and a slightly increased base roll. Both,
M.CviPI and DNase I, act as monomers and show clear one
sided effects around the recognition/cut site. The modified
Tn5, on the other hand, acts as a dimer showing bidirec-
tional oscillating changes in MGW, ProT, and Roll around
the cut site. Together this analysis shows that the enzymes
used in the three assays have sequence and structural pref-
erences influencing their genome wide signal distribution.

Next, we examined if and how endogenous CpG methy-
lation affects the three enzyme activities (see Figure 3B, bot-
tom panel). DNase I indeed showed a slight but focused
increase of CpG methylation around cutting sites––an ob-
servation confirming findings made by (55), while both
M.CviPI and the modified Tn5 showed no position-specific
effect of CpG methylation along the cutting site. However,
we noticed that the average level of 5mC around DNase I
and modified Tn5 (ATAC) cutting sites is strikingly lower
as compared to M.CviPI (NOMe). This is a reflection of a
much broader almost uniform (see Figure 1B) genome-wide
coverage of NOMe reads.
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Figure 2. Genome wide chromatin landscape is reflected by NOMe signal. (A) zoomed out view (chr2:48,000,000-85,000,000) of open chromatin assay
(NOMe-seq) with different epigenomic data tracks: from top to bottom; Hi-C contact matrix of HepG2 with called TADs (triangles), A/B compartments,
ChromHMM segmentation using six histone marks (see Materials and Methods), two overlapping heterochromatic marks H3K9me3 and H3K27me3,
GCH methylation signal filtered for NDRs, large-scale segmentation of NOMe signal (the horizontal line represents the value chosen by the classification
model to define valleys) and UCSC genes. Valleys are identified from NOMe (see Methods) coincide with B-compartments, PMDs from (50), repressed
polycomb (gray) and heterochromatic domains (Turquoise) and mostly pronounced at ZNF/repeats regions (Medium Aquamarine). (B) GCH methylation
levels are low at heterochromatic and ZNF/repeats regions, while they are high in the repressive polycomb regions. (C) Compactness score derived from
Hi-C data (DLR, see Methods) is higher in the heterochromatin and ZNF/Repeats regions in comparison to the repressive polycomb regions.

Shared and specific features of nucleosome depleted regions
recognized by NOMe, DNase I and ATAC assays

Next we focused our attention on comparing the perfor-
mance of all three methods in open chromatin sites or
Nucleosome Depleted Regions (NDRs). Such regions are
widely used for functional genome annotations and inter-
pretations. For NOMe we calculated NDRs with our own
HMM based approach called gNOMeHMM (see Materials
and Methods, (57)) which provides a robust genome wide
NDR annotation (see Supplementary Figure S18 and Sup-
plementary text, section ‘NOMe NDR prediction based on
hidden Markov models’).

NDR detection for DNase I-seq and ATAC-seq data
was performed with MACS2 (see Materials and Methods).
Overall, we detected very similar numbers of NDRs for
NOMe-seq (65 683), DNase I-seq (62 365) and ATAC-seq
(67 675). Note that for all three assays libraries were se-
quenced at a depth to obtain sufficient coverage (NOMe =
10 × genome wide coverage of GpCs), DNase I 88 million
reads, ATAC 84 million reads, see Materials and Methods
and Supplementary Table S1). The total number of NDRs

recognized by at least one of the three assays sums up to
105,081 of which most were found in intergenic (∼ 55%)
or intronic (∼ 25%) regions. In total, 24% of NDRs were
shared by all methods and additional 27% were supported
by two methods (see Figure 4A).

19 480 unique NDRs were predicted for NOMe, 12,854
for DNase I and 19,452 for ATAC. Most shared NDRs were
found between ATAC and DNase I data, underpinning the
commonalities in the enzymatic (cutting) reaction of DNase
I and ATAC and also probably the commonalities in data
processing and peak calling.

Common NDRs, i.e. NDRs shared by all three as-
says, tend to be longer, largely overlapping with previously
known NDRs (see Figure 4B and Supplementary Figure
S9B). They, in general, exhibit a strong above-average sig-
nal in all assays. NOMe-alone NDRs are an exception to
this rule with slightly stronger signal as compared to com-
mon NDRs. Common NDRs are most strongly enriched
for TSS, followed by CpG islands (CGIs) and LaminB1
sites and are heavily enriched for ENCODE mapped tran-
scription factor binding sites (TFBSs) (see Supplementary
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Figure 3. Structural and sequence preferences for NOMe (left), DNase I (middle) and ATAC (right) are shown in columns. Cutsites (ATAC,DNase I) and
sites of GC methylation (NOMe) are shown as position 0 (x-axis) with a window of 31 bp around it. For ATAC, a shift of 4 bp upstream is introduced
to conserve symmetry. (A) Sequence logo for all assays, the larger a character is shown in a column the more often it occurs. (B) Analysis of structural
and DNA methylation features. The top four panels contain structural features; in order, helix turn (HelT), minor groove width (MGW), propeller twist
(ProT) and roll. These are displayed as median with a confidence band of median absolute deviation (MAD). The bottom panel contains the average CpG
methylation with a MAD confidence band.

Figure S9B). Assay-unique NDRs (ATAC-alone, DNase
I-alone, NOMe-alone) have a relatively strong signal in
only one of the data sets and the signal intensity drops
or disappears in the other two assays (See Figure 4C–E).
LOLA annotation of such assay-unique NDRs shows a
specific enrichment of NOMe and ATAC unique NDRs
for CTCF, Rad21 and SMC3 binding sites. This enrich-
ment is even more pronounced in NOMe-unique NDRs.
Rad21 and SMC3 are parts of the cohesin protein com-
plex interacting with CTCF (58). Their co-localization sug-
gests a widespread distribution of dynamic topological sub-
structures (59) preferentially detected as NOMe and ATAC
NDRs, respectively. Unique DNase I NDRs on the other

hand are enriched for binding sites of the hepatocyte nu-
clear factors like FOXA1, FOXA2 and HNF4G indicating
a higher sensitivity of DNase I to recognize networks of
liver-specific NDRs. To resolve whether this is either a tissue
driven or an assay driven effect, we analyzed 147 additional
paired ATAC- and DNase I-seq samples from ENCODE
(see Supplementary Figures S21–S23 and Supplementary
Text, section ‘ENCODE ATAC-seq and DNase I-seq sam-
ples’). Although we commonly observed assay enrichment
for unique ATAC and DNase I NDRs, there was no con-
sistency among the enriched TFBS suggesting that the ob-
served enrichments are at least partially depending on the
analyzed tissue.
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Figure 4. Comparison of accessibility measured with DNase I, ATAC and NOMe. (A) Comparison of NDR calls by all three methods, see text. (B) length
distribution of NDRs. (C) NOMe signal at NDRs. (D) DNase I signal at NDRs. (E) ATAC signal at NDRs. (F) Results of classification of assay-unique
NDRs. The confusion matrix shows actual (column) against predicted (row) class labels. (G–J) box plots of sequence characteristics selected by the classifier
to have power in separation.

Sequence features and methylation enrichment around NDRs

To better characterize features separating the three sets of
unique NDRs we applied a logistic regression classifier. The
feature set included DNA methylation and sequence associ-
ated measures (see Methods). The accuracy of the classifier
was 0.55 on a hold out test data set. Note that, as this is a
three-class classification problem, a random classifier would
achieve an accuracy of 0.33. When we additionally included
the counts of 5-mers in the regions, the accuracy increased
to 0.63. The most important features were A-content, C-
content, GC count, and CG methylation (see Figure 4G-J).
The former three separate NOMe from the enrichment as-
says, while CG methylation helps distinguish ATAC from
NOMe and DNase I (list of top features shown in Sup-
plementary Table S2). Additionally, some 5-mers were use-
ful in separating the classes. For example, for classifying
NOMe unique NDRs the 5-mer CGCGC was depleted, rep-
resenting the GCG effect, while 5-mers enriched in DNase
I unique NDRs resembled the observed DNase I sequence
bias. Overall, the classifier was better at separating NOMe
from ATAC and DNase I, and the most miss-classifications
occurred between the ATAC and DNase I classes (see Fig-

ure 4F). The link between CG methylation and DNA ac-
cessibility is known (60). While only 10% of the Intersec-
tion NDRs have a CG methylation above 30%, there are
20% unique ATAC NDRs and about 30% unique NOMe
and DNase I NDRs that fulfill this criteria (see Supplemen-
tary Figure S10A).

In addition, we looked to sequencing coverage and copy
numbers (e.g. low complexity repeats) on NDR calling.
Most NDRs are gathered around the median 16× read cov-
erage, but there is a long tail toward high coverage. About
2-3% of unique NOMe NDRs had a coverage in the top
5%, while NDRs only detected with ATAC and/or DNase I
had 8-9% (see Supplementary Figure S10B). This is concor-
dant with a higher fraction of NDRs with at least 50% over-
lap to repeat masked regions among unique ATAC (38%)
and DNase I (34%) NDRs as compared to unique NOMe
NDRs (26%) and the intersection (15%) (see Supplemen-
tary Figure S10C). A feature singling out unique NOMe
NDRs is the distance to the next NDR in the union set;
14% of unique NOMe NDRs are within 200 bp, while the
next highest value is about 8% for other subsets contain-
ing NOMe NDRs in Figure 4A (see Supplementary Figure
S10D).
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Nucleosome phasing around NDRs

We analyzed the extent of nucleosome phasing around
NDRs (see Supplementary Text, section ‘Considerations
when observing phased nucleosomes’). While DNase I
strongly uncovers the first nucleosomes 5′ and 3′ around the
NDR, NOMe shows a nice ‘oscillating’ pattern of up to five
nucleosomes around many NDRs (see Supplementary Fig-
ure S11). Also ATAC-seq has been shown to allow the de-
tection of phased nucleosomes provided sufficient sequenc-
ing depth (12). In our setting ATAC-seq with 60 million
reads nucleosome phasing around NDRs was only visible
when fixing the summit of NDRs called by ATAC or at bor-
ders of NDRs called by NOMe (see Supplementary Figure
S11). Considering that the actual sequencing coverage of
NOMe-, DNase I- and ATAC-seq around NDRs is compa-
rable, the detection of phased nucleosome patterns is much
more pronounced for NOMe-seq. Reasons for this might
be read information density and the genome wide coverage
of NOMe-seq (see Supplementary text, section ‘Considera-
tions when observing phased nucleosomes’).

NDRs can be grouped based on assays, size and nucleosome
phasing

Next we performed K-means clustering of all NDRs in a
2 kb window centered around the NDR peak (see Figure
5A). We included all regions providing a NDR signal in
at least one of the assays. The compilation of all NDRs
illustrates that NDR size, signal strength and nucleosome
phasing are prominent characteristics of both assay specific
and assay independent patterns contributing to the forma-
tion of 15 NDR clusters. NDR clusters 3, 12, 13 and 15
are strongly enriched for TSS associated regions. They are
marked by strong NDR signals mostly shared across all as-
says. These NDRs are characterized by an enrichment for
general TFBS such as GABP, TAF1 and TBP (see Figure
5B). Clusters 10 and, to a lesser degree, 11 show a similar
enrichment for TFBS but lack the strong TSS enrichment.
Clusters 3 and 10 show an enrichment for TBP and bidi-
rectional promoter activity. Cluster 1 and 6 have a moder-
ate enrichment for active enhancers of class 1, also show-
ing an enrichment for FOXA1, FOXA2 and to some de-
gree HNF4G, i.e. a set of liver-specific transcription fac-
tors. NDR clusters 4 and 7 are most prominently called by
NOMe-seq data. They were mildly (4) or strongly (7) en-
riched for CTCF TFBSs. Both clusters showed a regular
distribution of open and closed chromatin signals indicat-
ing strong and extended nucleosome phasing around CTCF
sites as reported by (22).

NDR clusters 4 and 7 also hold among the most narrow
NDRs, which is in agreement with observations that nucle-
osome distance around NDRs with CTCF binding sites is
smaller compared to, for instance, FOXA1 sites (see Fig-
ure 6A). Cluster 14 aggregates low signal NDRs, character-
ized by a lack of TFBS enrichment but an increased frac-
tion of highly methylated and repeat masked loci. Together
the clustering shows that parameters such as size, signal
strength and nucleosome phasing are linked to functionally
distinct NDR classes across the genome as also reported by
(61). Particularly NOMe-seq and ATAC-seq show an en-

hanced sensitivity for detecting distinct groups of NDRs
outside of annotated enhancers and TSS.

NDRs can be used to predict expression level of nearby genes

We recently developed TEPIC as an open chromatin based
prediction model for gene expression using predicted TF-
BSs (24). With this approach we compared the predic-
tion performance for NDRs individually called by ATAC,
DNase I and NOMe, as well as the intersection and the
union of those (see Figure 6B and Supplementary Figure
S12). For each NDR subset, we computed TF binding pre-
dictions for 726 TFs and used these predictions in a gene-
centric way as features to predict gene expression (see Ma-
terials and Methods). The worst performance was obtained
with the NDRs obtained commonly by all three assays (in-
tersection including 28 513 NDRs), which led to smaller
performance Spearman correlation values although many
of these NDRs share a strong signal in all assays. Note
that these shared NDRs mostly cover TSS and active en-
hancers. For NDRs specific (not unique) to each assay, we
observed that the results are comparable between assays
with a slightly better performance of ATAC over NOMe
and DNase I.

The best model performance was achieved by combin-
ing all three NDR sets (union). The union of NOMe and
ATAC NDRs cannot be significantly distinguished from the
full union although the trend is strongly in favor of the full
union (see Supplementary Figure S12). To assure that this
is not simply due to the increased number of NDRs, we ex-
tended each assay specific NDR set with randomly gener-
ated peaks to match the size of the union set. These models
performed constantly worse than the actual assay specific
sets and thus also worse than the union set. Put together
this suggests that each assay fails to describe a certain part
of the accessible chromatin landscape and thus, while the
combination of assay specific NDRs allows to more com-
prehensively model the regulatory influence on gene expres-
sion.

Confirmation of assay specific NDRs

To verify the assignment of common and unique NOMe,
DNase I and ATAC NDRs by an independent assay we
selected 17 NDR regions showing distinct recognition pat-
terns across the three assays (Supplementary Figure S13A).
We analyzed these regions by targeted deep amplicon bisul-
fite sequencing following a NOMe treatment in HepG2-
cells (see Supplementary Figure S13B for the experimental
data of four examples). For NOMe-unqiue NDRs we ob-
served a median GCH-methylation level of 35-70% (with
the exception of the Fam35DP amplicon), while regions not
called from NOMe-seq data (no NDR in any of the three
methods or NDRs unique to DNase I and/or ATAC) show
a reduced median GCH methylation of 9-26% (Supplemen-
tary Figure S13). Overall this confirms that NDRs are re-
liably called by gNOMeHMM showing a clear and spe-
cific GCH enrichment profile above background (except for
FAM35DP with median GCH-methylation of 17%). Still,
we also detect intriguing patterns of GCH-methylation in
regions not called by gNOMeHMM, but only by the other

D
ow

nloaded from
 https://academ

ic.oup.com
/nar/article/47/20/10580/5580902 by Europa-Institut U

niversität des Saarlandes user on 11 February 2025



Nucleic Acids Research, 2019, Vol. 47, No. 20 10591

Figure 5. Annotated clusters of NDRs with similar signal profiles. (A) NDRs signal profiles clustered into 15 clusters with K-means clustering. The left-
most column shows the presence (yellow) of a called NDR for each method, respectively. For each assay, 2 kb centered on the NDR was split into 10 bp
windows over which the signal was aggregated. With NOMe the raw methylation is displayed, while the DNase I and ATAC are represented by normalized
log2-scaled read counts. (B) Annotation by LOLA of each cluster. The coloration of each tile corresponds to the log odds ratio of the enrichment test.
These tests were only conducted against HepG2 tracks.

methods. One such example is the DNase I- and ATAC-
unique NDR NCK2 (Supplementary Figure S13B) and the
other a non-NDR region within the UGGT1 (data not
shown). Both show a clear GCH-methylation pattern in a
subset of sequences indicating that a proportion of cells ful-
fill the criteria of a NOMe-specific NDR. This finding illus-
trates that some (partially) open chromatin regions might
be missed by gNOMeHMM calling either due to low GCH-
density or by low GCH-methylation levels indistinguishable
from the neighboring ‘background signals’.

Genome wide information called by NOMe

In comparison to ATAC and DNase I, NOMe-seq data
show an almost complete coverage across the genome. Out-
side of NDR peak regions this has mostly been treated as
background noise. Here we had a deeper look into chro-
matin associated features linked to this genome wide ‘back-
ground’.

Nucleosome phasing around Intron-exon junctions. We first
analyzed the nucleosome phasing in a 2 kb window around
intron-exon junctions for all genes. In short we merged
all NOMe data around intron-exon boundaries, excluding
the first and the last two exons. To our surprise we de-
tected a very pronounced phasing of up to 1 kb around the

exon/intron junctions in genes with low expression when
we applied K-means clustering (n = 5). This could not be
observed for neither the unexpressed genes nor the mod-
erate to highly expressed genes (see Supplementary Figure
S14). Since expression is known to be related to histone
elongation marks (62), we therefore analyzed the distribu-
tion of histone marks in the clusters in relation to phasing.
Analogous to (63), we observe some reciprocal distribution
of histone modifications at introns and exons (e.g. higher
H3K36me3 in moderate to highly expressed exons) but no
obvious direct link to the clusters showing phased or non-
phased nucleosomes.

Genome wide distribution of NOMe signals in relation to
chromatin states. While NOMe-seq has originally been
used to assess chromatin accessibility, additional informa-
tion content in the genome wide GpC methylation has
largely been ignored. Visual inspection of GpC methylation
in HepG2 cells indicated a minor variation of ‘background’
GpC signal across large domains (see Figure 2A and B),
here called valleys. We therefore systematically analyzed the
GpC methylation across 18 chromatin states for a series of
cell types (HepG2, monocyte, machrophage, CD4 T central
memory, CD4 T effector memory and CD4 T naive). We
noticed that while the general level of genome wide GpC
methylation changes with samples, the relative distribution
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Figure 6. Functional analysis of shared and assay-unique NDRs. (A) Analysis of nucleosome distances overlapping NDRs unqiue to any of the three assays
as well as ChIP-seq peaks for the TF CTCF, RAD21, HNF4A, FOXA1 (rows). Intensity in the heatmap encodes enrichment compared to the background
distribution in regions of the same length (column). (B) Comparison of gene expression prediction using TEPIC together with different NDR sets as basis
for feature calculation (x-axis). The assay-specific NDR sets for ATAC, NOMe and DNase I are compared to the union or intersection NDR sets using all
assays. In addition, each assay-specific NDR set was increased by adding random regions of the same size, as compared to the union set, denoted as ATAC
R, NOMe R and DNase I R, respectively, to assess the effect on prediction performance with increased set sizes. Gene expression prediction performance
is shown as a boxplot of Spearman correlation values (y-axis) between true and predicted expression values as part of 10-fold cross validation on genes not
used for learning. *** t-test P < 0.01.

over chromatin states remains constant (see Supplementary
Figure S15). In fact, the lowest GpC signal was always in
the Heterochromatin and ZNF genes & repeats states of the
Roadmap 18-state ChromHMM segmentation.

In HepG2, we identified valleys using a classification
model (see Materials and Methods). Surprisingly, the val-
leys are largely concurrent with partially methylated do-
mains (PMDs), as defined by (50), and B-compartments
retrieved from the Hi-C data of HepG2 (see Supplemen-
tary Figure S16). Moreover, the strongest segmental de-
crease of GpC methylation is co-localized with the most
compacted heterochromatic domains, as measured by DLR
score (distal-to-local ratio) based on Hi-C data (see Mate-
rials and Methods) (see Figure 2B and C).

Accurate genome wide CpG methylation calling. NOMe-
seq has the great advantage to not only determine the
genome wide distribution of closed and open chromatin but
to also provide detailed information of the genome wide
‘endogenous’ CpG methylation status. To monitor this in

detail we performed a direct comparison between NOMe-
seq data and an independent WGBS-dataset generated from
the same HepG2 cell batch. NOMe-seq called ‘endogenous’
CG methylation correlated excellent with the conventional
WGBS data (Pearson correlation 0.95). This excellent cor-
relation was observed on the level of single-CpG methy-
lation as well as aggregated methylation levels at promot-
ers, CpG islands and genome-wide tiled regions (see Sup-
plementary Figure S17B and C). We noticed, however, that
when confining our analysis to aggregated methylation lev-
els in the regions identified as open chromatin by NOMe-
seq (NDRs see below), correlation values slightly decreased
as compared to genome-wide analysis, potentially due to
the general depletion of CpG methylation in open chro-
matin (see Supplementary Figure S17B and D). We also
observed a tendency of a decreased NOMe-seq read cov-
erage at regions exhibiting the highest degree of differen-
tial methylation (see Supplementary Figure S17E). Interest-
ingly, the highest ranking differentially methylated regions
appear to have a higher CpG dinucleotide content whereas
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the GpC dinucleotide content is more uniformly distributed
across all open chromatin regions (see Supplementary Fig-
ure S17E). We conclude that NOMe-seq data provide an
overall excellent resource to determine endogenous CpG
methylation largely independent from the GpC measured
chromatin accessibility (see Supplementary Figure S17).

In summary, NOMe-seq provides not only
openness/closeness information at NDRs such as TSS,
enhancers or other ‘short’ regulatory regions, but also
includes additional information about the genome wide
chromatin compaction. Such additional features detectable
in NOMe ‘bulk’ sequencing data sets may be useful for the
interpretation of genome wide single cell NOMe-seq data.

DISCUSSION

There are many distinct technical approaches to map open
chromatin such as MNase-seq (64,65), FAIRE-seq (66) and
SONO-seq (67), but also using ChIP-seq data as reference
(e.g. NucHunter (44)). Here, we focused on the three most
commonly used methods ATAC, DNase I and NOMe, and
thoroughly compared them in respect to their commonali-
ties and differences as well as individual strengths and weak-
nesses.

Experimental differences and open chromatin calling

While all three methods require proper isolation of nu-
clei, the experimental challenges for the three assays dif-
fers. ATAC has the fewest working steps and nicely links
labeling of accessible regions and NGS library preparation
by the transposase-assisted incorporation of NGS adap-
tors into open chromatin. For DNase I it is important
to avoid/minimize loss during the isolation of the small
double-cut DNA fragments and the NGS library prepara-
tion. The experimental challenges for NOMe are compa-
rable to DNase I although it is not an enrichment assay,
but rather an extension of the commonly used bisulfite se-
quencing. This makes it possible to read out native CpG-
methylation in addition to the chromosome accessibility
and in scenarios where information from both epigenetic
layers is desired, NOMe kills two birds with one stone. Since
each NOMe sequencing read potentially reports on several
linked events from a single cell, it provides an excellent op-
portunity to detect sub-population effects. With DNase I
and ATAC, these events are commonly used to detect TFBS
by genomic footprinting (68,69). Although, the coverage is
relatively limited for genome-wide NOMe, such a procedure
can be bolstered by multiple measurements from single cells
as seen for CTCF (22). Our analysis also shows that irre-
spective of how NDRs are called NOMe allows (for most)
a straight forward and very sensitive and quantitative way
to deeply analysis the local chromatin accessibility via ultra
deep sequencing of bisulfite amplicons.

Assay specific variation in NDR detection

A qualitative and quantitative interpretation of nucleosome
depleted regions (NDRs) also called ‘open chromatin sites’
is the most valuable information deduced from chromatin
accessibility data. Not surprisingly NDRs detected by all

methods tested display strong signals. They are strongly en-
riched for TFBS and mainly cover active TSSs, common en-
hancers and other shared accessible/open loci (see Figure 5
and Supplementary Figure S9).

However, this core of strong and well-characterized
NDRs is apparently less informative to predict gene expres-
sion, hinting towards the importance of weaker and more
difficult to detect cell type specific NDRs outside of the in-
tersection (see Figure 6B and Supplementary Figure S12).
NDRs singularly or dually detected by the individual assays
outperformed the intersection in expression prediction. In-
deed the best predictions were made with the union of all
or just ATAC and NOMe NDRs indicating that each set
of unique NDRs carries important extra information not
covered by the other assays.

To understand the differences in detection between the
assays we investigated unique NDRs, i.e. NDRs called by
one assay only, in more detail. To reach this point, we tested
various NDR calling settings (see Supplementary Figures
S19, S2 and Supplementary Text, section ‘On MACS2 peak
calling for DNase I-seq and ATAC-seq’) and the results dis-
cussed here are representative throughout, but we would
like to stress the importance in selecting optimal conditions
when doing a more locus specific analysis. Although these
NDRs were not called by one of the other two assays (note
that we applied conventional sequencing depth for all as-
says), a deep NOMe-seq analysis suggests that seemingly
unique NDRs can in principle also be detected by other as-
says (at least in one direction). Moreover, enrichment anal-
ysis of known NDRs (see Supplementary Figure S9), sug-
gests that most of these (unique) NDRs are trustworthy.
However, in HepG2, the unique sets of NDRs fall into two
groups: DNase I NDRs are higher enriched for cell type (i.e.
liver specific) enhancers overlapping with FOXA1, FOXA2
and HNF4G binding sites, while NOMe and ATAC NDRs
often demarcate insulator regions associated with CTCF,
Rad21 and SMC3 binding sites. Although the enrichment
were different in other cell types (see Supplementary Fig-
ure S23), it remains clear that different assays detect differ-
ent sub-populations of NDRs. Together these findings ar-
gue for a more careful assay specific and context dependent
interpretation of open chromatin maps generated by only
one assay and their limited use for trans-assay comparative
analyses.

A potential reason for a preferential calling of insulator
regions by ATAC and NOMe (see Figure 5) in our setting
appears to be the variation in fragment length distribution
between assays (see Figure 6A). DNase I-seq libraries are
known to be dependent on enzyme concentration and in-
sert size selection for library construction (10). NOMe and
ATAC assays are used as ‘endpoint’ reactions and libraries
are generated without size preselection. In our comparison
they indeed cover a relatively smaller size range (see Figure
6A) such that the enrichment of relatively short insulator
NRDs may be simply due to preparative differences.

Moreover, each assay comes with a set of inherent limita-
tions affecting NDR detection. NOMe for example is only
able to measure open chromatin in regions containing a suf-
ficient 5′GpC3′ sequence context. Simultaneously, as shown
by (12), (41) and confirmed here (see Figure 3, Supplemen-
tary Figures S5 and S6), the enzymes used for DNase I and
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ATAC assays come with a slight sequence preference. This
could be handled by applying bias-correction approaches
that adjust for sequence preferences, e.g. (69–71). We also
show that the tertiary structure of the DNA has an appar-
ent influence on enzyme activity (see Figure 3). Moreover
there is an influence of endogenous 5′CpG3′ methylation
surrounding the enzyme activity site. The increased methy-
lation level at DNase I cut sites could be a sign of how at
least one of these reside outside the NDR. In both NOMe
and, especially, ATAC we observe a weak periodic pattern
in the methylation bias that coincides with the minor groove
width (see Supplementary Figure S8). It could be speculated
whether this is due to how DNA is wrapped around the nu-
cleosome as described by (60). In light of biases detected
in previous and this study, we think that further research is
needed to investigate effects on downstream bioinformatic
analyses and biological interpretation.

With NOMe, we observed more NDRs close to other
stronger NDRs (see Figure 5, cluster 5 and 8). These NDRs
are probably not unique NDRs, but rather a result of phased
nucleosomes and hence a sign of the strength and homo-
geneity of the stronger NDR. Our suggestion is to handle
flanking NDRs with care and assign extra weight to the fo-
cal NDR at such a loci. For the enrichment assays––DNase
I and ATAC––a potential sign of false positives would be
high-ploidy or repeated regions artificially amplifying cov-
erage and hence generating peaks. A common strategy to
avoid this and other biases is the sequencing of a non-
enriched library (cf. input sequencing for ChIP-seq). The
most important factors, when applying machine learning to
the classification problem of whether a NDR was unique to
either assay, was A-, C-content, GC count and native CpG
methylation.

Unique epigenomic information provided by NOMe

DNase I and ATAC-seq data are the most cost efficient and
widely used techniques almost exclusively used for the local
detection of open chromatin sites. In comparison to NOMe
they only require a moderate level of sequencing depth and
ongoing improvements in protocols are reducing that depth
even further. However, what is often neglected is that the
higher sequencing expenses for NOMe come with much
deeper information content. First and most importantly in
comparison to all other enrichment technologies (including
MNase, FAIRE-seq and others), NOMe-Seq provides a sin-
gle chromosome readout of multiple linked measurements
allowing a direct localization and quantification of epige-
netic changes. Recent developments in NOMe-Seq by (72)
strongly argue for the use of NOMe for single molecule foot-
printing. Secondly, NOMe not only provides information of
open chromatin sites (NDRs), it also allows to call endoge-
nous DNA-methylation at the same time. These features
have been appreciated by several authors making NOMe-
seq a prime method for deep single cell epigenomics (4,5).
However, so far most analyses concentrated on NDR detec-
tion and endogenous methylation calling, neglecting other
genome wide informations we started to decipher in our
analyses. Our extended study shows that GpC methylation
profiles provide a measure for the extend and distribution
of heterochromatin compartments and also the local nucle-

osome phasing outside of NDRs, e.g. around exon/intron
junctions of genes across the genome. Surprisingly, this lo-
cal phasing had some relation to gene expression strength.
Additional work will be needed to understand the func-
tional link between regular nucleosome spacing and low
gene expression. We believe that such additional features are
important add-ons that currently can comprehensively only
be achieved by NOMe-seq.

In conclusion, our controlled side by side compara-
tive approach of open chromatin assays revealed that all
three most commonly used assays allow to call the most
prominent NDRs covering a large fraction of the (mostly
functionally annotated) highly accessible regions. How-
ever, we also find that many NDRs are less likely to be
detected/called by individual assays and that these addi-
tional assay unique NDRs are extremely important to pre-
dict (and hence explain) the expression of genes. Our find-
ings suggest that single assay approaches to detect open
chromatin are less comprehensive than anticipated and in-
complete for the calling of regulatory open chromatin infor-
mation (at least under standard settings). Finally, we show
that assays such as NOMe-seq that are more sequence con-
suming, but cover the genome in a comprehensive manner
provide information on a series of useful additional epige-
nomic features important for functional interpretation.
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