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ABSTRACT
The lack of a sufficient number of validated miRNA targets severely hampers the understanding of their 
biological function. Even for the well-studied miR-155-5p, there are only 239 experimentally validated 
targets out of 42,554 predicted targets. For a more complete assessment of the immune-related miR-155 
targetome, we used an inverse correlation of time-resolved mRNA profiles and miR-155-5p expression of 
early CD4+ T cell activation to predict immune-related target genes. Using a high-throughput miRNA 
interaction reporter (HiTmIR) assay we examined 90 target genes and confirmed 80 genes as direct 
targets of miR-155-5p. Our study increases the current number of verified miR-155-5p targets approxi
mately threefold and exemplifies a method for verifying miRNA targetomes as a prerequisite for the 
analysis of miRNA-regulated cellular networks.
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Introduction

Since the discovery of microRNAs (miRNAs, miRs) in 1993 
by Lee, Feinbaum and Ambros [1], the post-transcriptional 
regulation of target mRNAs (messenger RNA) by miRNAs 
has been extensively studied. Towards a better understand
ing of these regulatory processes, the identification and vali
dation of a targetome for a single miRNA remains a major 
challenge [2]. Potential microRNA target interactions 
(MTIs) can be predicted using a growing number of in silico 
tools [3]. Experimental validation of MTIs can be achieved 
by reporter assays or high-throughput methods such as 
CLIP-seq or CLASH [4]. The combination of immunopreci
pitation of argonaute (AGO) family members with next- 
generation sequencing (AGO-HITS-CLIP) allows to identify 
an enormous number of MTIs [5]. However, the data 
derived from Ago-bound miR-mRNA-complexes do not 
necessarily allow the identification of functional MTIs [2,6].

There is a large number of different features contributing to the 
functionality of MTIs, including the secondary structures of 
3’UTRs, thermodynamic binding stabilities and other context- 
specific factors such as miRNA:target ratios [2,7]. This complex 
situation contributes to relatively low target prediction accuracies 
(10–50%) of functional MTIs assays [8]. An example of this 
unsatisfactory situation is the targetome of miR-155-5p, which is 
one of the well-studied miRNAs in terms of inflammatory 

responses, cancer and other immune-related diseases [9–11]. 
Since its deposition in the miRbase in 2004, only 239 high con
fidence MTIs were deposited in the miRTarBase representing an 
average number of 11.95 MTIs per year [12–14].

Towards a more comprehensive characterization of the 
immune-related targetome of miR-155-5p, we analysed 
a total of 90 potential miR-155-5p targets for functional 
MITs. Potential targets were selected based on their inverse 
correlation with the expression of miR-155-5p during the 
activation of human CD4+ T cells [15] in combination with 
an in-silico target prediction [16].

Results

Combination of miR-155-5p target gene prediction and 
inverse correlation with time-resolved transcriptome data 
of early CD4+ T cell activation

In our former study on early human CD4+ T cell activation 
signalling, we identified a very strong increase of the miR-155-5p 
expression reaching from 40 to 1,600 molecules/cell during the 
first 24 h upon T cell activation [15]. Out of 535 potential target 
genes that were in silico predicted and additionally showed inverse 
correlating mRNA time-course patterns as compared to the miR- 
155-5p expression, we previously validated 17 as direct tar
gets [15].
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For a comprehensive assessment of the immune-related 
miR-155-5p targetome, we extended our analysis to 90 addi
tional target genes. According to our reported T cell expres
sion data [15], the time-course fold changes of the 
corresponding mRNA targets ranged from 1.209 (NECAB1; 
N-terminal EF-hand calcium-binding protein 1) and 62.479 
(MS4A7; membrane spanning 4-domains A7). For experimen
tal target examination, a semi-automated, dual luciferase 
assay-based approach was applied that follows the recently 
introduced HiTmIR protocol [6]. Due to length restrictions 
of the utilized reporter plasmid (pMIR-RNL-TK), some 
3’UTRs of the 90 target genes bearing multiple binding sites 
were split into several sections, so a total of 103 reporter 

constructs were included in the analysis (Supplementary 
Table S1) (Figure 1).

Analysis of the predicted inverse-correlated miR-155-5p 
target genes by HiTmIR

The 103 3’UTR sequences were synthesized and cloned into the 
pMIR-RNL-TK reporter vector. These reporter constructs were 
analysed by HiTmIR. A reporter plasmid, containing the FOS 3′ 
UTR (pMIR-FOS), served as a positive control. A co- 
transfection of miR-155-5p together with this positive control 
in HEK-293T cells resulted in a highly significant reduction of 
the relative light units (RLU) to 55.7% (p < 0.001) (Figure S1A). 

Figure 1. Implementation of time-resolved, inverse-correlated miRNA and mRNA expression data in prediction and validation by HiTmIR. Diener et al. investigated 
the time resolved mRNA and miRNA expression profiles of early CD4+ T cell activation [15]. We predicted the miR-155-5p target genes using miRwalk2.0 and used 
inverse correlation of the predicted target genes and the time resolved mRNA data for target prediction. For further validation by HiTmIR, we randomly chose 103 
potential target gene 3’UTR sequences.
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The 103 analysed reporter constructs have exhibited RLUs 
ranging from 34.9% to 124.8% upon miR-155-5p co- 
transfection (Figure 2a,b). The most pronounced significant 
RLU reduction to 34.9% was detected for MPEG1 (macrophage 
expressed 1). For the stringent detection of positive MTIs we 
applied two criteria: i) RLU reduction of to less than 85% and 
ii) significant reduction of the RLU below a p-value of 0.05. 
This threshold was selected to determine positive target genes 
in a high confidential manner as described in our previous 
study [6]. Figure 2a displays all target gene 3’UTR constructs 
with RLUs less than 70% and Figure 2b all target gene 3’UTR 
constructs with RLUs more than 70%. Applying our criteria, we 
detected 87 target gene 3’UTR constructs with a significant 
reduction in the RLU of less than 85% (Figure 2d) resulting 
in a validation rate of 84.5% (Figure 2e). Only 2.9% of the 
reporter vectors displayed an RLU of less than 40% 
(Figure 2c). With 68.9% the majority of the reporter constructs 
showed a reduction in the RLU between 50% and 80%. For 
10.7% of the reporter constructs, we detected an RLU ranging 
from 70% to 80%. and 7.8% revealed an RLU more than 90%. 
The mean RLUs of all initially tested reporter constructs are 
given in Supplementary Table S3. In comparison to the above- 
mentioned 239 target genes of miR-155-5p which are deposited 
in the miRTarBase, our analysis identified 80 direct target genes 
resulting in an overall increase of ~30% (Figure 2f). This 
prompted us to verify the results of the initial HiTmIR assays 
by mutagenesis of the respective miR-155-5p binding sites for 
selected reporter constructs.

Validation of miR-155-5p target genes by mutagenesis 
HiTmIR

For exemplary validation of the direct binding of miR-155-5p 
to its identified targets, we mutated the respective binding 
sites in the 3’UTRs of MPEG1, ULK2, BORCS7, ARRDC2, 
DELE1 and RCHY1 and tested these mutated reporter vectors 
with our Mutagenesis HiTmIR Assay. As aforementioned, the 
pMIR-FOS reporter vector served as a positive control. The 
co-transfection of miR-155-5p and the positive control in 
HEK-293T cells resulted in a highly significant reduction of 
the relative light units (RLU) to 59.6% (p < 0.001) (Figure 1b). 
As for the results of the initial testing series, all wild-type 
constructs showed a significant reduction of the RLU. The 
mutation of the binding sites of the reporter vectors reversed 
this effect, which verified the direct binding of miR-155-5p to 
its binding sites (Figure 3a).

Impact of the binding site type on the reduction of the 
RLU

To analyse the impact of the type of binding site on the RLU 
large datasets on a standardized platform are required. In this 
analysis, we implemented only canonical miR-155-5p binding 
sites (6-mer, 7mer-A1, 7mer-m8, 8-mer) from target 3’UTRs 
that harboured only a single binding site (Figure 3b). 
Consistent with published literature, we expected an RLU 
reduction in the following gradations from high to low reduc
tion indices: 8-mer, 7mer-m8, 7mer-A1, 6-mer. For 6-mer 
binding sites, we detected the weakest effect with RLUs 

between 51.2% to 116.5% and 45.5% were negative target 
genes. RLUs of 7mer-A1 binding sites ranged between 38.8% 
to 101.4% and 13% of the target genes were negatively tested. 
7mer-m8 binding sites displayed RLUs between 46.1% to 
106.5% and 13% negative-tested reporter vectors. 8-mer bind
ing sites exhibited the most pronounced decrease in the RLU 
with a mean reduction of 60% ranging from 42.8% to 101.3% 
with 8% negative target genes. Our results for miR-155-5p 
confirmed the prevailing scientific opinion.

Protein–protein interaction network analysis of miR-155- 
5p target genes mirrors pathways of early T cell 
activation

For the identification of miR-155-5p regulated pathways of 
the early CD4+ T cell activation we conducted a protein– 
protein association analysis using the STRING database with 
all inversely correlated mRNAs. With a validation rate of 
84.5% of the tested target genes is legitimate to enclose all 
inversely correlated mRNAs in this analysis. We identified 
three distinct interaction networks with a false discovery 
rate ≥0.05 (Figure 4). In the Gene Ontology category 
‘Molecular Function’, we identified the subcategory ‘SMAD 
binding’, in KEGG Pathways the subcategory ‘FoxO signaling 
pathway’ and in WikiPathways the ‘IL-4 signaling pathway’.

Discussion

The posttranscriptional regulation of mRNA target genes by 
miRNAs is extensively studied with 40,759 publications in 
PubMed since 2001. In the last two decades ~1,772 studies 
per year were published dealing with this topic, corresponding 
to ~4.9 per day. Despite these exceeding efforts, the identifica
tion and validation of a targetome of a single miRNA is still 
pending. The efficient identification of MTIs starts with an in- 
silico target prediction to identify potential target genes of 
a miRNA. For example, our target prediction for miR-155- 
5p initially provided 42,553 potential target genes. The func
tional analysis of such an enormous number of targets is still 
not applicable. So, the development of more precise predic
tion tools is pivotal. The five key principles which are used for 
target prediction are sequence or seed complementary, struc
tural and energetic properties, site accessibility, species con
servation and expression analysis. For the latter principle, the 
expression analysis, tools like MMIA, CoMeTa and Cupid 
implemented miRNA and mRNA expression data searching 
for inverse correlations [17–19]. However, the updated ver
sion of MMIA from 2015, CoMeTa, which is not updated 
since its release in 2012 and Cupid, also not updated since its 
release in 2015, are limited in use by working partially with 
discontinued target prediction tools like miRecords [20].

Towards an improved prediction of MTIs, we combined an 
in-silico target prediction using miRWalk2.0 with time- 
resolved mRNA and miRNA expression data of activated 
CD4+ T cells. We hypothesized that implementing inverse 
correlation of longitudinal mRNA and miRNA expression 
data gained from time course experiments of activated cells 
in miRNA target prediction could reduce the number of false 
positive targets. We combined in-silico prediction of miR-155- 
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Figure 2. Analysis of the predicted inverse correlated miR-155-5p target genes by HiTmIR. (A): target genes with an RLU ≤ 70% and (B) target genes with an RLU ≥  
70%: HEK 293T cells were transfected with 50 ng/well of either reporter plasmid pMIR-RNL-TK, with or without insert, and 200 ng/well of miRNA expression plasmid 
containing either the respective miRNA or no insert. The RLU of the miR1555p transfected samples were normalized to the RLU measured with empty reporter vector. 
Four independent experiments were conducted in duplicates. Columns coloured in magenta show a significant reduction of the luciferase activity with a p-value ≤ 
0.001. Columns coloured in green show a significant reduction of the luciferase activity with a p-value ≤ 0.01 and ≥0.001. Columns coloured in violet show 
a significant reduction of the luciferase activity with a p-value ≤0.05. Columns coloured in light blue show a non-significant reduction of the luciferase activity with 
a p-value ≥0.05. Data are shown as mean±sem. (C): distribution of the miR-155-5p effect on reporter plasmids. The analysed reporter plasmids were categorized by 
the detected RLU. (D): distribution of all positive target genes by RLU and p-value. Turquoise: highly significant reduction of RLU ≤ 85% with a p-value ≤ 0.001, 
magenta: significant reduction of RLU ≤ 85% with a p-value ≤ 0.01 and ≥0.001, Black: negative target genes. (E) Validation rate miR-155-5p. A positive target gene is 
defined by an RLU ≤ 85% with a p-value ≤ 0.01 (turquois). (F) Comparison of MTIs of miR-155-5p deposited in miRtarbase with positive MTIs from this study. 
Turquois: number of MTIs deposited in miRtarbase, Beige: number of positive MTIs from this study.
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5p target genes with two filter criteria: i) inverse correlation of 
the respective mRNA in the time resolved mRNA dataset with 
Pearson’s (PCC) and/or Spearman's correlation coefficient 
(SCC) of at least −0.8, ii) fold change of at least 1.2 compared 
to the non-activated CD4+ T cells. Implementing inverse 
correlation of time resolved RNA expression data in target 
prediction tremendously increases the validation rate up to 
88.8%. In comparison to other prediction methods without 
inverse correlation of time resolved RNA data, the number of 
false positive predicted targets is reduced from ~50%–70% to 
12.2%. Former studies report an estimated false positive rate 
of up to 70% for predictors like miRanda, TargetScan 
DianamicroT and PicTar (reviewed in [21]). Using time- 

resolved RNA patterns for prediction overcomes the short
comings of a static approach, such as target prediction with 
inverse correlation of RNA data from a single time point. 
Furthermore, the use of time-resolved data analysing multiple 
time points offers the possibility to consider the dynamic 
changes of miRNA–target interactions for target prediction. 
However, like all predictions based on mRNA expression 
data, our method can only detect target genes that are regu
lated by mRNA decay, but excludes target genes whose 
mRNAs are not expressed in the analysed cell type and target 
genes, which are regulated on protein level. In our previous 
study on early human CD4+ T cell activation, miR-155-5p 
exhibited the most substantial induction. Thus, we emphasize 

Figure 3. (A) validation of miR-155-5p target genes by mutagenesis HiTmIR. HEK 293T cells were co-transfected with miR-155-5p expression plasmids and wild-type 
reporter vectors of the respective target genes (light grey) or mutated reporter vectors (−mut) of the respective target genes (blue) as shown in the diagram. Three 
independent experiments were conducted in duplicates. Three asterisks represent a significant reduction of the RLU with a p-value ≤0.001. Two asterisks represent 
a significant reduction of the RLU with a p-value ≤0.01 and ≥ 0.001. One asterisk represents a significant reduction of the RLU with a p-value ≤0.05. (B) Association 
between binding site type and RLU reduction. The box coloured in brown represents 6-mer binding sites. The box coloured in magenta represents 7-mer-A1 binding 
sites. The box coloured in green represents 7-mer-m8 binding sites. The box coloured in turquoise represents 8-mer binding sites.
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that the effectiveness of our approach in integrating time- 
resolved, inverse-correlated miRNA and mRNA expression 
data into miRNA target prediction likely depends on the 
expression levels of the analysed miRNAs upon induction of 
their transcription. For miRNAs with rather small expression 
changes after transcriptional induction, longitudinal inverse 
correlations between miRNA and mRNA expression may 
have a reduced impact on target prediction accuracy.

To evaluate the performance of our prediction method, 
we compared the miR-155-5p target genes that tested posi
tive in this study and the predicted miR-155-5p target 

genes that showed an inverse correlation in the time- 
resolved mRNA dataset of Diener et al. [15] with the 
results of a study by Loeb et al. that identified miR-155- 
5p target genes using HITS-CLIP [22] on activated murine 
WT and mir-155 knockout CD4+ T cells. We found no 
significant overlap between the data sets of this study and 
the study by Diener et al. with the AGO2-bound miR-155- 
5p target genes of the study by Loeb et al. (Figure 2; 
Supplementary Table S4). This may be due to differences 
in the model organisms. Loeb et al. used murine CD4+ 
T cells, while Diener et al. studied early activation in 

Figure 4. Protein–protein interaction networks of 535 inverse-correlated miR-155-5p targets using the STRING database version 11.5. The miR-155-5p targets genes 
which are associated with the displayed pathways are coloured as indicated in the diagram.
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human CD4+ T cells. In addition, miRNA–target interac
tions are highly dynamic and HITS-CLIP data seem to 
represent only a snapshot of this complex process.

Regarding the accumulating evidence that miRNAs 
modulate complex networks of target genes in an orche
strated manner, our prediction method offers the possibi
lity to accurately determine these networks downstream to 
the induction of specific pathways. Given the high accuracy 
of our prediction method in combination with our high- 
throughput assay for validation, a pathway analysis of the 
mRNAs inversely correlated with miR-155-5p identified 
IL4, FoxO and SMAD signalling as miR-155-5p modulated 
pathways upon early T cell activation. IL-4 represents 
a crucial cytokine for the determination of T cell fates 
[23]. Produced by naïve CD4+ T cells, IL-4 regulates the 
differentiation of T cells into IL-4–producing effector Th2 
cells [23,24]. Thereby autocrine IL-4 promotes cell prolif
eration and survival accounting for preferential expansion 
of IL-4-producing Th2 cells [24]. The regulation of IL-4 
signalling by miR-155-5p could attenuate this feedback 
loop. Foxo transcription factors are known regulators of 
T cell biology comprising T cell trafficking, naive T cell 
homoeostasis, effector and memory responses, as well as 
differentiation and function of Tregs [25]. FOXO1 and 
FOXO3 are known target genes of miR1555p [26,27]. The 
miR-155-5p mediated down-regulation of FOXO1 upon 
T cell activation could contribute to enhance differentiation 
and proliferation of the activated T cells. Following T cell 
activation SMAD4 is essential for T cell proliferation and 
promotes T cell function by integrating multiple pathways 
independent of TGF-β [28]. The SMAD pathway regulates 
the balanced differentiation of CD4+ T cells into inflam
matory Th17 cells and suppressive FOXP3+ T regs [29]. 
MiR-155 gene expression is induced by binding of Smad4 
to the promoter region [30]. These findings point out to 
a miR1555p mediated feedback mechanism in early T cell 
activation orchestrating precise T cell differentiation and 
proliferation.

By incorporating time-resolved, inverse-correlated 
miRNA and mRNA expression data into miRNA target 
prediction, we enhanced the efficacy of target prediction 
tools and significantly improved validation rates. Our 
approach enabled the identification of complex miR-155- 
5p target gene networks on the road to a miR-155-5p 
targetome of early CD4+ T cell activation. This deeper 
insight into how miRNAs modulate molecular signalling 
networks in immune cells provides a basis for the use of 
miRNAs or pathway inhibitors in precisely targeted mole
cular therapies of immune-related diseases like cancer and 
neurodegenerative disorders.

Materials and methods

Cell line

The human cell line HEK-293T (ACC 635) was purchased 
from the German collection of microorganisms and cell cul
tures (DSMZ). The HEK-293T cells were authenticated by 
STR typing by DSMZ. The cells were cultured in DMEM 

(Life Technologies, Darmstadt, Germany) with Penicillin 
(100 U/ml), Streptomycin (100 µg/ml) and 10% [v/v] FCS 
and sub-cultured twice a week for less than 3 months after 
receipt.

miRNA expression plasmid and reporter vectors

The pSG5-mir-155 expression plasmid was described by 
Graesser et al. [31]. The 103 3’UTR sequences of 90 miR- 
155-5p target genes were synthesized and cloned by GeneArt 
Gene Synthesis Services (Thermo Fisher, Waltham, USA) via 
SpeI, SacI restriction sites into the pMIR-RNL-TK vector, 
which was described in Beitzinger et al. [32]. For target 
genes with long 3’UTRs (>1500 nt) and more than one pre
dicted miR-155-5p binding site the 3’UTR sequences were 
split into two fragments. The identifiers of all cloned 
3’UTRs (NM accession numbers) and their sequences are 
given in Supplementary Table S1. For validation of the posi
tively tested target genes, respective binding sites were 
mutated. The mutated sequences were synthesized and cloned 
by GeneArt Gene Synthesis Services (Thermo Fisher, 
Waltham, USA) via SpeI, SacI restriction sites into the pMIR- 
RNL-TK vector. The 3’UTR sequences of the mutated repor
ter constructs are given in Supplementary Table S2.

High-throughput miRNA interaction reporter assay 
(HiTmIR)

The HiTmIR assay was conducted as described previously 
[6]. In brief, 3.2 × 104 HEK-293T cells were seeded out in 
a 96-well plate using the liquid handling system epMotion® 
5075 (Eppendorf, Hamburg, Germany). One day later, the 
cells were transfected with 50 ng/well of reporter plasmid 
pMIR-RNL-TK, either with or without 3’UTR insert, and 
200 ng/well of miRNA expression plasmid containing either 
the respective miRNA or no insert. Forty-eight hours after 
transfection, the cells were lysed and measured on a GloMax 
Navigator microplate luminometer (Promega, Madison, WI, 
USA) with the Dual-Luciferase® Reporter Assay System 
(Promega, Madison, WI, USA). For the analysis of the 
relative light units (RLUs), the firefly luciferase activity of 
each wild type 3’UTR reporter plasmid was standardized by 
the activity of a constitutively expressed renilla luciferase 
(Ratio Firefly/Renilla). The standardized luciferase activity 
of each wild type 3’UTR reporter construct co-transfected 
with miR-155 was normalized/compared to the luciferase 
activity of the empty reporter vector co-transfected with 
miR-155. The luciferase assays were performed four times 
in technical duplicates. For the mutagenesis high- 
throughput miRNA interaction reporter assay (Mutagenesis 
HiTmIR) 24 h after seeding of the cells they were transfected 
with 50 ng/well of either reporter plasmid pMIR-RNL-TK, 
with or without or mutated insert and 200 ng/well of 
miRNA expression plasmid containing either the respective 
miRNA or no insert. The cells were lysed and measured as 
described above. The Mutagenesis HiTmIR Assays were 
performed in three independent experiments in technical 
duplicates. For statistical analysis of the reporter assays, we 
used GraphPad Prism 9 using the Welch's t-test. The pMIR- 
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FOS reporter vector serves as a positive control. FOS (Fos 
proto-oncogene, AP-1 transcription factor subunit) was vali
dated as a direct target gene of miR-155-5p by Dunand- 
Sauthier et al. [33].

Web tools and data analysis

For statistical analysis, we used GraphPad Prism 9 (GraphPad 
Software, Inc.). The asterisks in the figures represent the 
statistical significance as calculated by Welch's t-test: *= 0.01 
< p ≤ 0.05; ** = 0.001 < p ≤ 0.01; ***= p ≤ 0.001. The protein– 
protein interaction network analysis was conducted with the 
STRING database version 11.5 (https://string-db.org/) [34] for 
all inverse-correlated mRNAs. The default settings were chan
ged for the minimum required interaction score to ‘high 
confidence (0.700)’, active interaction sources were limited 
to ‘experiments’, and disconnected nodes in the network 
were hidden.

For the comparisons between the results of the studies by 
Loeb et al. [22], Diener et al. [15] with the results of this 
study (Hart et al.) we used Venny 2.1 (https://bioinfogp.cnb. 
csic.es/tools/venny/index.html). The study by Loeb et al. 
analysed the AGO2 bound miR-155 target mRNAs in wild- 
type mouse activated CD4+ T cells in relation to mir-155 
knockout mouse activated CD4+ T cells. The study by 
Diener et al. investigated the time-resolved inverse correla
tion of miR-155 and its target mRNAs after activation of 
human CD4+ T cells. The results of these studies were 
compared to the positively tested miR-155-5p target 
mRNAs in this study.

Predictions of potential miRNA targets

The predictions of potential miR-155-5p targets and the 
evaluations of time-course RNA expression data, as 
described below, refer to our former study that integrated 
miRnome and transcriptome analyses during the early 24 h 
of the human CD4+ T cell activation process [15]. In brief, 
in silico prediction of endogenous 3′UTRs binding sites was 
performed using miRWalk 2.0 [16]. Choosing a minimum 
seed binding length of 6 nt, potential targets were filtered 
for a prediction by at least five of the overall 13 included 
target prediction algorithms (miRWalk, DIANAmT3.0, 
miRanda (2010), miRDB (2009), miRWalk, RNAhybrid 
(version 2.1), PICTAR4 (2006), PICTAR5 (2007), PITA 
(2008), RNA22 (2008), MicroT4, miRBridge and 
TargetScan5.1). As a decisive criterion for further consid
eration, inverse correlations (Pearson’s (PCC) and/or 
Spearman′s correlation coefficients (SCC) ≤−0.8) were 
assumed between the time-course mRNA expression of 
the predicted targets and the expression levels of miR- 
155-5p [15].

Disclosure statement
No potential conflict of interest was reported by the authors.

Funding

The work was supported by the Medical Faculty of Saarland University 
[HOMFOR2021] to Martin Hart.

Authors’ contributions
M.H.: design of the work, acquisition, analysis, interpretation of data, 
drafted the work, C.D.: acquisition, analysis; S.R.: acquisition, analysis; T. 
K.: interpretation of data; A.K.: interpretation of data; HP.L.: interpreta
tion of data; E.M.: design of the work, interpretation of data, drafted the 
work

Data availability statement
All data generated or analysed during this study are included in this 
published article and its supplementary information files.

References

[1] Lee RC, Feinbaum RL, Ambros V. The C. elegans heterochronic 
gene lin-4 encodes small RNAs with antisense complementarity to 
lin-14. Cell. 1993;75(5):843–854. doi: 10.1016/0092-8674(93) 
90529-Y

[2] Diener C, Keller A, Meese E. The miRNA–target interactions: an 
underestimated intricacy. Nucleic Acids Res. 2023;52 
(4):1544–1557. doi: 10.1093/nar/gkad1142

[3] Kern F, Backes C, Hirsch P, et al. What’s the target: understand
ing two decades of in silico microRNA-target prediction. Brief 
Bioinform. 2020;21(6):1999–2010. doi: 10.1093/bib/bbz111

[4] Thomson DW, Bracken CP, Goodall GJ. Experimental strategies 
for microRNA target identification. Nucleic Acids Res. 2011;39 
(16):6845–6853. doi: 10.1093/nar/gkr330

[5] Kuhn DE, Martin MM, Feldman DS, et al. Experimental valida
tion of miRNA targets. Methods. 2008;44(1):47–54. doi: 10.1016/j. 
ymeth.2007.09.005

[6] Kern F, Krammes L, Danz K, et al. Validation of human 
microRNA target pathways enables evaluation of target prediction 
tools. Nucleic Acids Res. 2021;49(1):127–144. doi: 10.1093/nar/ 
gkaa1161

[7] Schaefer M, Nabih A, Spies D, et al. Global and precise identifica
tion of functional miRNA targets in mESCs by integrative 
analysis. EMBO Rep. 2022;23(9):e54762. doi: 10.15252/embr. 
202254762

[8] Sethupathy P, Megraw M, Hatzigeorgiou AG. A guide through 
present computational approaches for the identification of mam
malian microRNA targets. Nat Methods. 2006;3(11):881–886. doi:  
10.1038/nmeth954

[9] Hu J, Huang S, Liu X, et al. miR-155: an important role in 
inflammation response. J Immunol Res. 2022;2022:1–13. doi: 10. 
1155/2022/7437281

[10] Mahesh G, Biswas R. MicroRNA-155: a master regulator of 
inflammation. J Interferon Cytokine Res. 2019;39(6):321–330. 
doi: 10.1089/jir.2018.0155

[11] Mashima R. Physiological roles of miR-155. Immunology. 
2015;145(3):323–333. doi: 10.1111/imm.12468

[12] Kozomara A, Birgaoanu M, Griffiths-Jones S. miRbase: from 
microRNA sequences to function. Nucleic Acids Res. 2019;47 
(D1):D155–D62. doi: 10.1093/nar/gky1141

[13] Kasashima K, Nakamura Y, Kozu T. Altered expression profiles of 
microRNAs during tpa-induced differentiation of HL-60 cells. 
Biochem Biophys Res Commun. 2004;322(2):403–410. doi: 10. 
1016/j.bbrc.2004.07.130

[14] Chou CH, Shrestha S, Yang CD, et al. miRtarbase update 2018: 
a resource for experimentally validated microRNA-target 
interactions. Nucleic Acids Res. 2018;46(D1):D296–D302. doi:  
10.1093/nar/gkx1067

8 M. HART ET AL.

https://string-db.org/
https://bioinfogp.cnb.csic.es/tools/venny/index.html
https://bioinfogp.cnb.csic.es/tools/venny/index.html
https://doi.org/10.1016/0092-8674(93)90529-Y
https://doi.org/10.1016/0092-8674(93)90529-Y
https://doi.org/10.1093/nar/gkad1142
https://doi.org/10.1093/bib/bbz111
https://doi.org/10.1093/nar/gkr330
https://doi.org/10.1016/j.ymeth.2007.09.005
https://doi.org/10.1016/j.ymeth.2007.09.005
https://doi.org/10.1093/nar/gkaa1161
https://doi.org/10.1093/nar/gkaa1161
https://doi.org/10.15252/embr.202254762
https://doi.org/10.15252/embr.202254762
https://doi.org/10.1038/nmeth954
https://doi.org/10.1038/nmeth954
https://doi.org/10.1155/2022/7437281
https://doi.org/10.1155/2022/7437281
https://doi.org/10.1089/jir.2018.0155
https://doi.org/10.1111/imm.12468
https://doi.org/10.1093/nar/gky1141
https://doi.org/10.1016/j.bbrc.2004.07.130
https://doi.org/10.1016/j.bbrc.2004.07.130
https://doi.org/10.1093/nar/gkx1067
https://doi.org/10.1093/nar/gkx1067


[15] Diener C, Hart M, Kehl T, et al. Quantitative and time-resolved 
miRNA pattern of early human T cell activation. Nucleic Acids 
Res. 2020;48(18):10164–10183. doi: 10.1093/nar/gkaa788

[16] Dweep H, Gretz N. miRwalk2.0: a comprehensive atlas of 
microRNA-target interactions. Nat Methods. 2015;12(8):697. doi:  
10.1038/nmeth.3485

[17] Nam S, Li M, Choi K, et al. MicroRNA and mRNA integrated 
analysis (MMIA): a web tool for examining biological functions of 
microRNA expression. Nucleic Acids Res. 2009;37(suppl_2): 
W356–62. doi: 10.1093/nar/gkp294

[18] Gennarino VA, D’Angelo G, Dharmalingam G, et al. 
Identification of microRNA-regulated gene networks by expres
sion analysis of target genes. Genome Res. 2012;22(6):1163–1172. 
doi: 10.1101/gr.130435.111

[19] Chiu HS, Llobet-Navas D, Yang X, et al. Cupid: simultaneous 
reconstruction of microRNA-target and ceRNA networks. 
Genome Res. 2015;25(2):257–267. doi: 10.1101/gr.178194.114

[20] Xiao F, Zuo Z, Cai G, et al. miRecords: an integrated resource for 
microRNA-target interactions. Nucleic Acids Res. 2009;37 
(Database):D105–10. doi: 10.1093/nar/gkn851

[21] Muniategui A, Pey J, Planes FJ, et al. Joint analysis of miRNA and 
mRNA expression data. Brief Bioinform. 2013;14(3):263–278. doi:  
10.1093/bib/bbs028

[22] Loeb GB, Khan AA, Canner D, et al. Transcriptome-wide miR-155 
binding map reveals widespread noncanonical microRNA targeting. 
Mol Cell. 2012;48(5):760–770. doi: 10.1016/j.molcel.2012.10.002

[23] Silva-Filho JL, Caruso-Neves C, Pinheiro AAS. IL-4: an important 
cytokine in determining the fate of T cells. Biophys Rev. 2014;6 
(1):111–118. doi: 10.1007/s12551-013-0133-z

[24] Keegan AD, Leonard WJ, Zhu J. Recent advances in understanding the 
role of IL-4 signaling. Fac Rev. 2021;10:71. doi: 10.12703/r/10-71

[25] Luo CT, Li MO. Foxo transcription factors in T cell biology and 
tumor immunity. Semin Cancer Biol. 2018;50:13–20. doi: 10.1016/ 
j.semcancer.2018.04.006

[26] Ren L, Zhao Y, Huo X, et al. MiR-155-5p promotes fibroblast 
cell proliferation and inhibits FOXO signaling pathway in 
vulvar lichen sclerosis by targeting FOXO3 and CDKN1B. 
Gene. 2018;653:43–50. doi: 10.1016/j.gene.2018.01.049

[27] Hou L, Chen J, Zheng Y, et al. Critical role of miR-155/FoxO1/ 
ROS axis in the regulation of non-small cell lung carcinomas. 
Tumour Biol. 2016;37(4):5185–5192. doi: 10.1007/s13277-015- 
4335-9

[28] Gu AD, Zhang S, Wang Y, et al. A critical role for transcription 
factor Smad4 in T cell function that is Independent of transform
ing growth factor β receptor signaling. Immunity. 2015;42 
(1):68–79. doi: 10.1016/j.immuni.2014.12.019

[29] Malhotra N, Kang J. SMAD regulatory networks construct 
a balanced immune system. Immunology. 2013;139(1):1–10. doi:  
10.1111/imm.12076

[30] Elton TS, Selemon H, Elton SM, et al. Regulation of the 
MIR155 host gene in physiological and pathological processes. 
Gene. 2013;532(1):1–12. doi: 10.1016/j.gene.2012.12.009

[31] Barth S, Pfuhl T, Mamiani A, et al. Epstein-Barr virus-encoded 
microRNA miR-BART2 down-regulates the viral DNA polymer
ase BALF5. Nucleic Acids Res. 2008;36(2):666–675. doi: 10.1093/ 
nar/gkm1080

[32] Beitzinger M, Peters L, Zhu JY, et al. Identification of human 
microRNA targets from isolated argonaute protein complexes. 
RNA Biol. 2007;4(2):76–84. doi: 10.4161/rna.4.2.4640

[33] Dunand-Sauthier I, Santiago-Raber ML, Capponi L, et al. 
Silencing of c-Fos expression by microRNA-155 is critical for 
dendritic cell maturation and function. Blood. 2011;117 
(17):4490–4500. doi: 10.1182/blood-2010-09-308064

[34] Szklarczyk D, Gable AL, Lyon D, et al. STRING v11: protein– 
protein association networks with increased coverage, supporting 
functional discovery in genome-wide experimental datasets. 
Nucleic Acids Res. 2019;47(D1):D607–D13. doi: 10.1093/nar/ 
gky1131

RNA BIOLOGY 9

https://doi.org/10.1093/nar/gkaa788
https://doi.org/10.1038/nmeth.3485
https://doi.org/10.1038/nmeth.3485
https://doi.org/10.1093/nar/gkp294
https://doi.org/10.1101/gr.130435.111
https://doi.org/10.1101/gr.178194.114
https://doi.org/10.1093/nar/gkn851
https://doi.org/10.1093/bib/bbs028
https://doi.org/10.1093/bib/bbs028
https://doi.org/10.1016/j.molcel.2012.10.002
https://doi.org/10.1007/s12551-013-0133-z
https://doi.org/10.12703/r/10-71
https://doi.org/10.1016/j.semcancer.2018.04.006
https://doi.org/10.1016/j.semcancer.2018.04.006
https://doi.org/10.1016/j.gene.2018.01.049
https://doi.org/10.1007/s13277-015-4335-9
https://doi.org/10.1007/s13277-015-4335-9
https://doi.org/10.1016/j.immuni.2014.12.019
https://doi.org/10.1111/imm.12076
https://doi.org/10.1111/imm.12076
https://doi.org/10.1016/j.gene.2012.12.009
https://doi.org/10.1093/nar/gkm1080
https://doi.org/10.1093/nar/gkm1080
https://doi.org/10.4161/rna.4.2.4640
https://doi.org/10.1182/blood-2010-09-308064
https://doi.org/10.1093/nar/gky1131
https://doi.org/10.1093/nar/gky1131

	Abstract
	Introduction
	Results
	Combination of miR-155-5p target gene prediction and inverse correlation with time-resolved transcriptome data of early CD4+ Tcell activation
	Analysis of the predicted inverse-correlated miR-155-5p target genes by HiTmIR
	Validation of miR-155-5p target genes by mutagenesis HiTmIR
	Impact of the binding site type on the reduction of the RLU
	Protein–protein interaction network analysis of miR-155-5p target genes mirrors pathways of early Tcell activation

	Discussion
	Materials and methods
	Cell line
	miRNA expression plasmid and reporter vectors
	High-throughput miRNA interaction reporter assay (HiTmIR)
	Web tools and data analysis
	Predictions of potential miRNA targets

	Disclosure statement
	Funding
	Authors’ contributions
	Data availability statement
	References

