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Abstract: Accurate solar radiation data are crucial for solar energy applications, yet ground-
based measurements are limited in many regions. Satellite-derived and reanalysis products
offer an alternative, but their accuracy varies across spatial and temporal scales. This study
evaluated the performance of four widely used GHI products—CAMS, SARAH-3, ERA5
and MERRA-2—against ground measurements at hourly, daily (summed from hourly)
and monthly (averaged from daily) timescales. The analysis also examined how temporal
aggregation influenced error characteristics using correlation coefficients, the rMBD, the
rRMSD and the combined performance index (CPI). At an hourly scale under clear-sky
conditions, satellite products outperformed reanalysis products, with r ~ 1 and R* ~ 0.9
and the rMBD, rRMSD and CPI ranging from 0.1%, 11.4% and 11.8% to —14.7%, 33.3% and
75.1% for CAMS; 0.2%, 11.4% and 10.9% to 13.5%, 22.4% and 120.7% for SARAH-3; —0.2%,
21.6% and 23.8% to 21.5%, 40.9% and 128.8% for MERRA-2; and 0.8%, 14.6% and 16.3%
to 22%, 48.2% and 88.3% for ERA5. Under cloudy conditions, all products overestimated
GHI, with the rMBD reaching up to 39.7% (SARAH-3), 35.9% (CAMS), 22.9% (MERRA-2)
and 28% (ERAS), while the rRMSD exceeded 40% for all. Overcast conditions yielded the
poorest performance, with the rMBD ranging from 45.8% to 124.6% and the CPI exceeding
800% in some cases. From the hourly to daily and monthly datasets, aggregation reduced
errors for reanalysis products by 5.5% and up to 12.4%, respectively, in clear-sky conditions,
but for satellite-based products, deviations slightly increased up to 3.1% for the monthly
dataset. Under all-sky conditions, all products showed reductions up to 23%. These
results highlight the significant challenges in estimating GHI due to limited knowledge
of aerosol and cloud dynamics in the region. They emphasize the need for improved
parameterization in models and dedicated measurement campaigns to enhance satellite
and reanalysis product accuracy in West Africa.

Keywords: remote sensing; global horizontal irradiance; Kolmogorov-Smirnov test;
satellite data; Cote d’Ivoire; solar radiation

1. Introduction

Solar energy has emerged as one of the most promising renewable energy sources for
mitigating climate change and addressing global energy demand. In sub-Saharan Africa,
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the growing interest in solar energy is particularly vital, as the region experiences high solar
insolation levels but remains heavily dependent on traditional energy sources [1]. Cote
d’Ivoire, in West Africa, has set ambitious goals to increase its renewable energy capacity,
with solar energy playing a key role in its energy diversification strategies [2]. This is
demonstrated by the construction of a 47 MW solar power plant in Boundiali.

Reliable and accurate global horizontal irradiance (GHI) data are essential for the
successful development, deployment and management of solar energy systems in the
country. GHI refers to the hemispherical solar radiation received by a horizontal planar
surface [3]. It is the primary input for solar photovoltaic (PV) systems, determining
the potential energy output. For large-scale solar energy projects, precise GHI data are
necessary for feasibility studies, system design and performance evaluation. However,
GHI measurements from ground-based stations are often sparse due to the high cost and
maintenance of solar radiation sensors. In Cote d’Ivoire, the national meteorological agency
(SODEXAM) remains the only reliable entity possessing solar radiation and meteorological
data on a national scale. This limitation has led to an increasing reliance on satellite-
derived data, which offer extensive spatial and temporal coverage. These satellite-based
measurements of GHI rely on radiative transfer models applied to data collected by sensors
aboard satellites. These sensors measure reflected and emitted radiation from the Earth’s
surface and atmosphere, primarily in the visible and infrared spectral bands. The process
involves several steps: detecting incoming solar radiation, analyzing cloud cover and
atmospheric effects, modeling the radiative transfer of solar energy through the atmosphere
and estimating GHI by combining direct and diffuse solar radiation. However, the accuracy
of satellite products can vary across regions and timescales due to factors such as cloud
covet, aerosol concentrations, local atmospheric conditions [4,5] and the data sources used
for tuning radiation retrieval algorithms. For instance, tropical regions often experience
reduced accuracy due to high cloud variability and dense vegetation. In arid areas, dust
and high aerosol concentrations can introduce substantial biases. Similarly, high-latitude
regions can present challenges due to low Sun angles and prolonged periods of cloud cover.
To address these issues, satellite-derived GHI data are often validated against ground-
based measurements. This validation helps improve the accuracy of satellite products and
ensures better applicability. Several satellite-based and reanalysis GHI datasets, such as the
Copernicus Atmosphere Monitoring Service (CAMS), Surface Solar Radiation Data Set—
Heliosat (SARAH) and Modern-Era Retrospective analysis for Research and Applications
(MERRA), have been widely used in solar energy assessments [6-8]. These datasets provide
GHI estimates at different temporal resolutions (e.g., hourly, daily, monthly) and offer a
valuable resource for regions with limited ground-based measurements. The validation
of these satellite products is of paramount importance in regions with high humidity
and frequent cloud cover, such as Cote d’Ivoire, as these factors can introduce significant
uncertainties in satellite and reanalysis estimations.

Previous studies have demonstrated varying degrees of agreement between satellite-
derived and ground-measured GHI across different regions of the world, with discrepancies
often attributed to the complexity of local weather patterns. Sawadogo et al. [9] evaluated
the performance of hourly GHI from state-of-the-art reanalysis and satellite products (ERAS5,
MERRA-2, CAMS and SARAH-2) with 37 quality-controlled in situ measurements from novel
meteorological networks established in Burkina Faso and Ghana under different weather
conditions for the year 2020. Palmer et al. [8] highlighted how accurate solar data could
support the feasibility of photovoltaic (PV) cooking systems in meeting local needs. Their
paper specifically focuses on the selection of the most accurate satellite-derived solar irradi-
ance database for application in Africa, given the scarcity of ground measurements in the
region. To achieve this, the authors validated four readily available GHI satellite databases
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against ground measurements using various statistical tests. In [10], SOLCAST satellite-based
dataset estimates were validated against the McClear clear-sky model [11]. The study spanned
from 2014 to 2021 and encompassed various climatic regions within Morocco. The authors
utilized the PVLIB Python library [12] to configure the models and incorporated ERA5 hourly
fractional cloud cover data to identify clear-sky days. They concluded that the SOLCAST
satellite-based dataset and ERAS cloud fraction information could serve as reliable alternatives
in regions lacking access to inputs required for complex clear-sky models. The results in [9]
demonstrate that satellite-derived data perform better than reanalysis products under various
atmospheric conditions. Additionally, Kenny et al. [13] identified SARAH-2 as delivering
the best performance overall, while Psiloglou et al. [7] highlighted the strong performance of
CAMS and CMSAF-SARAH at lower temporal resolutions. Notably, their study also under-
scored a progressive reduction in biases from hourly to daily and monthly datasets, though
large uncertainties persisted under overcast and partially cloudy-sky conditions. Satellite
products leverage direct observations and advanced radiative transfer algorithms, giving them
an advantage in conditions with minimal atmospheric interference. In contrast, reanalysis
datasets often exhibit GHI misestimations, with studies reporting both underestimations and
overestimations depending on atmospheric conditions. For instance, Mathews et al. [14]
observed a significant global overestimation bias in MERRA-2 data, which contrasts with
studies reporting localized underestimation in specific regions. Their findings suggest that
overestimation bias tends to be more pronounced in cloudier climates with reanalysis products.
Similarly, Khan et al. [15] conducted a comparative analysis of seven global GHI reanalysis
datasets and found that all models underestimated GHI during rainy and cloudy-sky months.
Additionally, Potisomporn et al. [16] highlighted that reanalysis products often underestimate
generation variability over short timescales, potentially leading to the misrepresentation of
critical ramp events in energy production studies. Furthermore, Frank et al. [17] emphasized
systematic shortcomings in reanalysis datasets by comparing them with high-quality GHI
measurements obtained through the Baseline Surface Radiation Network. Their results re-
vealed an underestimation of GHI in clear-sky conditions and overestimation in cloudy-sky
conditions, underscoring the need for improvement in how these models handle varying
atmospheric scenarios.

Most of the studies mentioned spanned a single timescale, either hourly, daily or
monthly. The performance of satellite-derived GHI estimates can vary significantly de-
pending on the selected timescale. For instance, evaluating datasets only at an hourly scale
may overlook trends or biases that emerge over longer periods, such as daily or monthly
averages. Conversely, monthly or daily evaluations mask short-term fluctuations caused
by transient cloud cover, aerosols or atmospheric conditions, leading to incomplete conclu-
sions about a model’s accuracy in different weather scenarios. Liu et al. [18] highlighted the
importance of evaluating downward shortwave radiation (DSR) products across various
timescales to understand their performance differences. The accuracy of satellite-derived
and reanalysis DSR products, such as GLASS, BESS, CLARA A2, MCD18A1, ERA5 and
MERRA-2, was assessed using ground measurements from the Chinese Ecosystem Re-
search Network (CERN) and land-atmosphere observation sites. Significant variations
were found in their performance depending on the timescale.

The extensive body of research on accurate satellite-based measurement and the
validation of solar parameters confirms their importance for optimizing solar energy
applications and integrating renewable energy into national energy strategies. Our previous
research focused on evaluating satellite-derived sunshine duration (SDU) data, which serve
as a key indicator for solar energy availability. The authors of the present study conducted
a detailed validation of the Surface Radiation Dataset—Heliosat (SARAH) Edition 3 against
ground-based SDU measurements across eight stations in Cote d’Ivoire [19]. The study
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provided valuable insights into the accuracy and regional variability of satellite-derived
SDU data, revealing strong correlations in certain areas (e.g., San Pédro and Korhogo)
and highlighting discrepancies in others, such as Odienné. These findings underscored
the importance of localized validation for improving satellite data reliability in diverse
climatic conditions. Building on this foundation, the present study shifts focus to global
horizontal irradiance, the primary parameter for solar energy applications, particularly in
the prediction, design and efficiency optimization of photovoltaic systems. Unlike SDUs,
which primarily reflect sunlight duration, GHI quantifies the total solar energy received on
a horizontal surface, integrating both direct and diffuse radiation. This study expands the
scope by conducting a multi-timescale validation of satellite-derived and reanalysis GHI
data, leveraging ground-based measurements from various locations across Cote d’Ivoire.
Furthermore, it employs multiple satellite-derived and reanalysis products, such as CAMS,
SARAH, MERRA and ERAS5, and evaluates their performance under varying sky conditions
using standard and advanced statistical metrics, including relative mean bias difference
(rMBD), relative root mean square difference (rRMSD) and combined performance index
(CPI). While the first study laid the groundwork for understanding the accuracy of satellite-
derived SDU data, this work addresses the broader and more complex challenge of GHI
validation. By exploring GHI variability across regions and timescales, this study aims
to provide deeper insights into improving satellite-based and reanalysis solar radiation
products and enhancing their applicability to West Africa’s growing renewable energy
sector.

2. Materials and Methods
2.1. Study Area

This paper focuses on Cdte d’'Ivoire, a West African country located within the in-
tertropical zone, between the latitudes 4°30" and 10°30’ north and longitudes 8°30" and
2°30’ west. It covers an area of 322,462 km? (approximately 1% of the African continent)
and borders the Gulf of Guinea to the South, Ghana to the East, Liberia and Guinea to
the West and Mali and Burkina Faso to the North [20]. Céte d’Ivoire is a transitional zone
between a humid equatorial climate and a semi-arid tropical climate. Different classifica-
tions of climatic zones have been provided by authors, depending on whether they take
into account the number of rainy and dry seasons, the distribution of rainfall, temperature
or wind motions [21,22]. According to rainfall patterns, four climatic zones are distin-
guished, namely the transitional equatorial zone (Attié climate), the attenuated transitional
equatorial zone (Baoulé climate), the transitional tropical zone (Sudanese climate) and the
mountainous zone [23-25], as shown in Figure 1.

These zones can be grouped into two major climate types: (i) A humid equatorial
climate is in the southern part, characterized by four seasons with a mean temperature
of about 28°C. A long rainy season spans from April to July and a short one spans from
September to November, while a short dry season occurs in August and a long dry season
spans from December to March. (ii) The tropical climate in central and northern Cote
d’Ivoire is characterized by a single rainy season from June to September and a long dry
season from October to May, with temperatures varying between 14 °C and 36 °C [22].

Situated just above the equator, Cote d’Ivoire is among the regions where solar re-
sources are most abundant. Regarding these resources, the daily sum of global horizontal ir-
radiance (GHI) ranges from 4.4 kWh/m? in the southern part of the country to 5.6 kWh/m?
in the northern part, with the highest values recorded in Odienné and its surroundings. The
annual sum of GHI ranges from 1607 kWh/ m? to 2045 kWh/m? in the same direction [26].
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Figure 1. Distribution of study stations across four climatic regimes in Cote d’Ivoire.

2.2. Satellite and Reanalysis Datasets

Four satellite-based and reanalysis datasets, including the Copernicus Atmosphere
Monitoring Service (CAMS), the ECMWEF Reanalysis 5th Generation (ERA5), the Modern-
Era Retrospective Analysis for Research and Applications, Version 2 (MERRA-2) and the
Surface Radiation Data Set—Heliosat Version 3 (SARAH-3), were validated in this study.

The hourly solar radiation data retrieved from CAMS are available through the
Heliosat-4 method, which provides estimates under both clear-sky and all-sky condi-
tions. This dataset consists of gridded time-series data with global geographical coverage,
including Europe, Africa, the Middle East, the Atlantic Ocean, Brazil, East Asia and Ocea-
nia, based on the Meteosat Second Generation and Himawari satellite fields of view [27-29].
The dataset has a horizontal resolution of 0.1° and is provided at a single atmospheric level.
The original values of global horizontal irradiation (GHI), given in watt-hours per square
meter (Wh/m?), were converted to watts per square meter (W /m?) to ensure consistency
with ground-based measurements. Additionally, CAMS provides estimates of extraterres-
trial GHI, represented by the Top-of-the-Atmosphere (TOA) radiation and clear-sky GHI
estimated by the McClear model.

In the ERAS reanalysis dataset, solar radiation is represented by the Surface Solar Ra-
diation Downwards (SSRD) parameter, which quantifies the total solar radiation incidence
on a horizontal surface at the Earth’s surface. This gridded dataset has global coverage
with a horizontal resolution of 0.25° x 0.25° [30]. It accounts for atmospheric interactions
such as cloud and aerosol reflection, absorption and transmission. ERA5 provides SSRD as
accumulated energy in joules per square meter (J/m?) over a 1-hour period. These values
were converted to W/m?.
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In the MERRA-2 dataset, GHI corresponds to the Surface Incoming Shortwave Flux
(SWGDN). This dataset provides values at an hourly temporal resolution, with each value
representing the average flux over the preceding hour. The timestamp is assigned to the
center of the hour, meaning a value at 00:30 UTC corresponds to the period from 00:00 to
01:00 UTC. The spatial resolution is approximately 69.375 km in longitude and 55 km in
latitude (0.5° x 0.625°), with irradiance values directly expressed in W/ m? [31]. To ensure
consistency with ground measurement data, each value was assigned to the end of its
respective recording period.

Finally, the Surface Incoming Shortwave Radiation (SIS) data from SARAH-3 were
utilized. This dataset covers the full disk of METEOSAT, including Europe, Africa and the
Atlantic Ocean. Derived from MVIRI/SEVIRI sensors onboard METEOSAT satellites, the
data are provided at an instantaneous temporal resolution, recorded at 30-minute intervals.
The spatial resolution is 0.05° x 0.05° in latitude and longitude [32]. To obtain hourly SIS
values (SIS.,|c), the mean of three consecutive 30-minute records (SIS;ec) was calculated as
shown in Equation (1). This choice was made not only to align with the WMO definition,
which states that the timestamp assigned to hourly data corresponds to the end of the
measurement period [33], but also because using these three consecutive values provided
better agreement with ground-based data.

_ SIStec(hh-1:00) + SISyec (hh-1:30) + SISpec (hh:00)

SIScalc (hh:OO) - 3 1)

where hh:00 is the timestamp of the hourly data point, hh-1:00 is the record 1 h before hh:00
and hh-1:30 is the record 30 min before hh:00.

2.3. Quality Control of Ground Measurements Database

The in situ data used in this study were provided by the Société d’Exploitation
et de Développement Aéroportuaire, Aéronautique et Météorologique en Coéte d’Ivoire
(SODEXAM). These hourly data originated from 84 monitoring stations located in different
climatic zones and initially covered the period from 2016 to 2024, before any filters were
applied. SODEXAM manages data from more than 561 agrometeorological and clima-
tological stations. These synoptic and automatic weather stations, located throughout
Cote d’Ivoire and compliant with the standards of the World Meteorological Organization
(WMO), include many key operators such as the Centre International de Recherche en
Agroforesterie (ICRAF) and the West African Science service center on Climate change and
Adapted Land use (WASCAL) [34,35]. The WASCAL automatic weather stations are part
of a mesoscale research observation network developed in collaboration with WASCAL
and partner institutions. These stations record measurements at a temporal resolution of
five-minute averages, with regular maintenance, including sensor cleaning, conducted
approximately twice a month [9]. Data collection was guided by availability, with the goal
of covering multiple locations across the country to ensure a representative sample of GHI
conditions. To ensure the reliability of the validation results, these datasets underwent
several quality checks, as shown in the flowchart of Figure 2.

The initial step involved removing nighttime data based on sunrise and sunset times
at each station. Then, the data were subjected to a quality control process based on the
framework specified by [36]. The Extreme Rare Limit (ERL) was applied as follows, with
the upper limit set to 50 when o < 0° [36,37].

ERL : 0.03 X Gextra < Ggra < 1.2 % 1367 x c0s(90° — o) '? + 50
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where « is the solar altitude angle, Ggrd is the GHI measured on the ground and Gexira is
the extraterrestrial GHI (at the top of the atmosphere), given by Equation (2):

Gextra = Gse X € X Sin((bs) ()

where ¢; is the solar elevation and ¢ is the correction to the actual solar distance at any
specific time in the year [38]. Next, outliers were removed using the far-outlier limit criteria,
mathematically defined by Equations (3) and (4) [39]:

Llower = Ql —3 X (Q3 - Ql) (3)

Lupper = Q3 +3 X (Q3 - Ql) 4)

where Ligyer is the lower outlier limit, Lupper is the upper outlier limit, Q; is the first quartile
and Qj is the third quartile. As GHI varies significantly between hours and months, this
method was applied at each station, separately for each month-hour combination. For
instance, January-07:00 data, January-08:00 data and so on were used. Data that fell outside
these limits were flagged as outliers and removed. This method reduced the dataset from
1,326,940 data points to 849,169 data points, meaning that 36% of the data were classified as
outliers. Then, we ensured that the datasets contained at least 1 year of data with fewer
than 15% missing days. A missing day was defined as a day with at least two (18%) missing
hours between 7 AM and 5 PM [40]. This filtering resulted in a dataset of 52 remaining
stations, with data spanning different periods depending on the station, ranging from 11
August 2016 to 25 June 2024. The distribution of missing day proportions is shown in
Table 1.

GROUND DATASETS

4
(1) Calculate G, and SZA,
remove nighttime data
apply Extreme Rare Limit criteria

(2) Remove outliers on an hourly basis
i
(3) Calculate missing days proportion and
select dataset when proportion < 15 %

(4) Merge with satellite and reanalysis data (5) Create hourly, daily and monthly datasets
1
(6) Apply criteria to each dataset to classify
different sky conditions
CAMS SARAH-3 ERA5 MERRA-2 i
(7) Perform comparison analysis and compute
validation metrics

Figure 2. A flowchart of the validation process.
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Table 1. Attributes of the different stations. Lat stands for latitude, Long stands for longitude and Md [%] refers to proportion of missing days.

Station Lat Long Period Md [%] Station Lat Long Period Md [%]
Agboville 59 —42 24 November 2022/27 November 2023 4.6 Koflande 91 =31 12 November 2022/29 November 2023 10.7
Arrah 6.6 —39 20]July 2019/29 November 2023 9.2 Kouibly 7.3 —7.2 18 October 2022 /25 June 2024 94
Azaguie 56 —4.0 25November 2022/11 June 2024 57 Kounabhiri 78 =58 08 March 2023/09 April 2024 10.3
Badikaha 92 5.1 05 October 2022/25 June 2024 14.1 Lakota 58 —5.7 15 October 2022/09 April 2024 8.5
Bangolo 70 =74 17 October 2022/25 June 2024 7.9 Mafere 54 —3.0 26 November 2022/25 June 2024 3.8
Biankouma 7.7 —7.6 05 October 2022/25 June 2024 12.5 Mankono 80 —6.2 07 March 2023/18 June 2024 10.4
Bondoukou 8.0 —27 13 April 2019/17 June 2024 12.6 Mbahiakro 74  —4.3 04 October 2022/11 June 2024 6.6
Bongouanou 6.6 —4.2 28 November 2022/25 June 2024 3.8 Medon 53 —6.2 02 December 2022/17 June 2024 5.1
Bonon 69 —6.0 16 October 2022/11 June 2024 6.6 Niakara 8.7 =53 11 August 2016/25 June 2024 8.2
Botro 78 =53 19 April 2019/17 June 2024 11.5 Oume 6.4 —5.4 11 November 2022 /25 June 2024 11.8
Boundiali 95 —64 17 August 2016/25 June 2024 13.3 Sakassou 75 =53 18 April 2019/17 June 2024 14.8
Dabakala 83 —44 24 April 2019/17 June 2024 14.3 Samanza 7.5 —3.6 27 November 2022 /25 June 2024 6.6
Dabou 53 —4.3 25 November 2022/11 June 2024 94 Samatiguila 9.8 —7.6 21 May 2019/19 June 2024 13.5
Dimbokro 6.6 —47 08 April 2022/19 June 2024 9.7 Sandegue 79 =35 13 April 2019/17 June 2024 7.3
Djouroutou 53 —7.2 01 December 2022/11 June 2024 82 Semien 7.6 —7.1 18 October 2022 /25 June 2024 10.0
Doropo 9.8 —33 10 November 2022/11 June 2024 9.0 Sikensi 5.7 —4.6 23 November 2022/25 June 2024 5.2
Famienkro 78 =39 27 November 2022/11 June 2024 5.7 Sirasso 9.3 —6.1 13 October 2022 /25 June 2024 13.3
Ferke 95 =52 06 October 2022/05 April 2024 14.1 Ssokoura 79 —44 12]July 2019/18 June 2024 12.7
Gabiadji 50 —6.5 30 November 2022/25 June 2024 12.2 Tanda 78 =32 28 September 2016/11 June 2024 5.1
Grabo 49 —74 01 December 2022/25 June 2024 9.1 Tengrela 105 —6.4 18 August 2016/08 June 2024 12.3
Guiberoua 6.2 —6.2 12 November 2022/25 June 2024 7.6 Tienko 102 —7.5 05 October 2016/225 June 2024 8.3
Guiglo 6.5 —74 22 October 2022/25 June 2024 9.3 Tortiya 88 =57 13 May 2019/11 October 2022 14.4
Guitry 55 =52 14 October 2022/25 June 2024 5.5 Toumodi 6.6 —5.0 27 May 2019/18 June 2024 10.8
Issia 6.5 —6.6 11 October 2022/25 June 2024 6.9 Transua 7.5 —3.0 07 November 2022 /25 June 2024 54
Katiola 81 —5.1 23 April 2019/29 July 2023 12.3 Vavoua 74 —6.5 31 May 2018/25 June 2024 10.3
Kkouassikro 7.3 —4.7 16 July 2019/21 April 2024 12.0 Zaranou 6.4 —3.4 05 November 2022/25 June 2024 6.5
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2.4. Classification of Sky Conditions

The data were classified into three categories: clear-sky, cloudy-sky and overcast con-
ditions. Sky conditions can be determined by several parameters, including sky brightness
(A), the cloudiness index (K4) and the clearness index (K¢), with K; being the most widely
used [41]. The clearness index, defined by Equation (5), has been extensively studied in the
literature. C

grd
Kt B Gextra (5)

To differentiate between sky conditions, various thresholds have been adopted, de-
pending on the region, the study’s focus and even the season [42,43]. Reindl et al. [44]
considered K; values above 0.6 as clear sky and below 0.2 as cloudy. Other studies use
different thresholds, such as 0 to 0.15 (overcast), 0.15 to 0.7 (intermediate) and greater than
0.7 (clear sky) [45]. Kuye et al. [46] found K; values greater than 0.65 and between 0.12
and 0.35 as very clear and cloudy skies, respectively, in Port Harcourt, Nigeria. Another
study in West Africa (Ghana and Burkina Faso) classified skies based on K; values of 0.6 or
higher as clear and between 0.12 and 0.35 as cloudy [9]. The method used in the present
study to differentiate between sky conditions is described as follows. The root mean square
difference (RMSD) and the mean bias difference (MBD) between the ground-measured GHI
and the clear-sky GHI obtained from the McClear model were calculated for all stations
and plotted as a function of the calculated K, as shown in Figure 3. The figure reveals
three distinct regions: When K¢ = 0.7, the RMSD and MBD values reach zero at almost
all stations, indicating that the measured GHI values are equal to the clear-sky values.
Beyond this value, the metrics remain at zero at most stations, while at some stations,
the measured GHI values exceed those predicted by the model, which is possible due to
scattering phenomena. Conversely, when K; < 0.35, the average differences range between
200 and 400 W/m?, corresponding to more than 60% of the clear-sky GHI value. Between
these two limits, the metrics decrease linearly as the value of K; increases.

w e
S o
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0
S

100

MBD [W/m?]

0.1 0.2 0.3 0.4 0.6 0.7 0.8 0.9

0.5
Clearness Index (K;)

Figure 3. A plot of the root mean square difference (a) and mean bias difference (b) between the
clear-sky GHI provided by the McClear model and the ground-measured GHI data as a function of
K.

This analysis allowed the distinction of three sky conditions: clear-sky (K; > 0.65),
cloudy-sky (0.35 < K; < 0.65) and overcast (K; < 0.35) conditions. Figure 4 presents a
comparison between the measured GHI values and those given by the McClear model for
these three conditions for the Dimbokro station.
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Figure 4. A comparison between ground GHI and clear-sky GHI for the three sky conditions classified
in this study for the Dimbokro station. All other stations exhibit similar graphs.
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2.5. Validation Metrics

To assess the performance of the retrieved satellite and reanalysis data, several statis-
tical parameters were used, including standard metrics (the coefficient of determination
(R?), the relative mean bias difference (rMBD), the relative root mean square difference
(rRMSD) and the Pearson correlation coefficient (r)) and advanced metrics such as the
Kolmogorov-Smirnov Integral (KSI), OVER statistic and combined performance index
(CPI). The term “Difference” is used in this paper instead of “Error” to highlight the fact
that observed data themselves are imperfect and contain errors [47]. The coefficient of
determination measures the proportion of the variance in the dependent variable (ground
GHI) that is predictable from the independent variables (satellite and reanalysis GHI). It is
defined by Equation (6).

Y, (Grd; — Sat;)?

R*=1 —1
YN, (Grd; — Grd)?

(6)

where Grd; are the observed GHI values, Sat; are the satellite-based GHI values, Grd is the
mean of the observed values and N is the number of data points. Most often, R? ranges
from 0 to 1, with values closer to 1 indicating a good fit. However, a negative values can be
found, indicating a worse fit than the average line [48]. In the context of this paper, such
values would indicate that the satellite or reanalysis product is less performant than simply
using the mean of the observed GHI. This could arise due to high variability in the data
that the model cannot capture.

The rMBD measures in percentage the average bias between the model data and
observed data. It is calculated with the formula given by Equation (7). A positive rMBD
indicates overestimation, while a negative rMBD indicates underestimation.

MBD e
rMBD = = X 100%, where MBD = & ) (Sat; — Grd;) 7)

r i=1

The rRMSD measures in percentage the average magnitude of the differences. The
rRMSD provides a sense of the model’s overall accuracy, with lower values indicating
better performance. It is defined by Equation (8):

RMSD 1Y
rRMSD = i x 100%, where RMSD = ,|— ) (Sat; — Grd;)? (8)

Grd N =

The Pearson correlation coefficient (r) measures the linear correlation between ob-
served and predicted values (Equation (9)). r ranges from —1 (perfect negative correlation)
to 1 (perfect positive correlation), with 0 indicating no linear correlation.

YN (Grd; — Grd)(Sat; — Sat)

= — )
\/Ziil (Grdi — Grd)2 Zi\il (Sati — Q)Z
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The rMBD and rRMSD, referred to as Class A metrics in [47], are useful for assessing
the dispersion of individual points in performance evaluation studies. Along with standard
deviation and the coefficient of determination, they are among the most commonly used
metrics for evaluating model performance. However, these parameters alone are often
insufficient for establishing a comprehensive and coherent benchmarking comparison [49],
highlighting the need for more advanced similarity indicators. Several metrics have been
introduced, including the Kolmogorov-Smirnov Integral (KSI), the OVER statistic and the
combined performance index (CPI) (Equations (10)—(12)) [47,49]. Unlike Class A metrics,
these so-called Class C indicators provide insights into the similarity between different
distributions, offering a deeper understanding of how well a model replicates the statistical
properties of reference data. The usefulness of such indicators is justified by the fact that,
for instance, a model that better matches the distribution of observed data tends to be more
reliable for downstream applications.

Xmax
Ksi[] — 90 / Da (x) dx (10)
AC Xmin
100 fXmas
OVER[%] = -~ x / max [Dn(x) — D¢, 0] dx (11)
C Xmin
CPI[%] = % » (KSI 4+ OVER + 2 x rRMSD) (12)

1.63
VN
where Xmin and Xmax are the minimum and maximum values of the union of satellite-
based GHI and observed GHI values and Dy(x) is the absolute difference between the
two empirical cumulative distribution functions CDFg.q(x) and CDFsat(x) for ground

De = 2, Ac = De(Xmax — Xmin) , Dn(X) = max(‘CDFgrd(x) — CDFqu(x) () (13)

data and satellite data, respectively. A. is the critical area, a characteristic quantity of
the distribution. The KSI metric quantifies the agreement between the cumulative dis-
tribution functions of satellite GHI and observed GHI values. The OVER metric builds
on the KSI by measuring differences between the two CDFs but only where they exceed
a critical threshold, D, (N > 35). The CPI combines the KSI, OVER and the rRMSD to
provide a comprehensive assessment of both distribution similarity and overall differ-
ence [47,49,50]. In the present study, the KSI and OVER metrics were computed using
the kolmogorov_smirnov_integral and over functions from the Solar Forecast Arbiter’s
solarforecastarbiter.metrics.deterministic module [50].

2.6. Data Aggregation

The data provided by SODEXAM consist of hourly measurements. To obtain daily GHI,
hourly values were summed. This approach was chosen not only to investigate how temporal
aggregation affected error characteristics, which was a key objective of this study, but also
because daily totals are commonly used for assessing solar resource availability and evaluating
photovoltaic system performance. In datasets like ERA5, daily aggregation is performed during
the retrieval process and is not part of a permanently archived dataset [51]. Therefore, sum-
mation was applied to hourly data for both observed measurements and satellite or reanalysis
products. Monthly data were then derived by computing the arithmetic mean of daily values, as
this metric is widely recognized as important for evaluating model performance on a monthly
basis [52]. During the averaging process, any month with more than ten missing days or five or
more consecutive missing days was excluded [53,54]. The outlier removal method was applied
to the aggregated data. Although hourly data were cleaned, small remaining anomalies in
individual hours could accumulate, leading to an anomalous daily sum. Additionally, missing
values in hourly data could abnormally reduce the daily sum. For daily data, outlier removal
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was performed by grouping data by month to account for seasonal variability. To classify
daily and monthly sky conditions, the same method used for differentiating sky conditions in
hourly data was applied. The classification for daily data was as follows: clear-sky (K; > 0.6),
cloudy-sky (0.2 < K; < 0.6) and overcast (K < 0.2) conditions. For monthly data, the MBD
and RMSD graphs as a function of K; did not provide a clear distinction between the three sky
conditions, particularly for overcast conditions. Therefore, K; values greater than or equal to
0.55 were assigned to clear-sky conditions, while lower values were classified as cloudy-sky
conditions. For comparison across different timescales, only clear-sky and all-sky conditions
were considered.

To evaluate the average agreement between models and ground data throughout the
day for each sky condition, daily trends were analyzed by comparing satellite and reanalysis
products with ground measurements. Days classified under a specific sky condition were
first extracted for each station. In the hourly dataset, data points of the corresponding days
for each station were selected and the mean GHI values were calculated for each hour for
both ground measurements and satellite products. The 95% confidence interval (CI) was
then computed using the formula from Equation (14) [55].

o

CI=19 x — 14

VN 9

where o is the standard deviation of the sample, N is the sample size and 1.96 is the critical
value for a 95% confidence level.

3. Results

In this section, for readability purposes, most of the results will only include a selec-
tion of stations, prioritizing those that exhibit particular singularities. In the absence of
singularities, the stations with the best and worst results will be presented, or simply those
with the most data.

3.1. Clear-Sky Conditions

Figure 5 presents the monthly proportions of clear-sky hours across 15 stations in
the dataset of the present study. The proportion of clear-sky hours varies by month and
location, with the highest value (Badikaha, December) remaining below 40%. The highest
proportions are observed during the dry season (November to April), particularly in
the tropical zone. In this region, Badikaha records the highest values, reaching 34.2% in
December and 31.9% in January. In contrast, stations in the equatorial zone (Arrah, Bangolo,
Bongouanou) exhibit lower clear-sky proportions during this period, often falling below
10%. During the wet season (June to September), clear-sky proportions decrease across all
stations. In the equatorial zone, values frequently drop below 5%. Transition months like
May and October show transitional patterns, with clear-sky proportions increasing as the
dry season approaches (October) or decreasing as the wet season begins (May).

Spatially, stations in the tropical zone show higher clear-sky proportions compared
to equatorial stations. Dimbokro is an exception, showing relatively high values (26.9%
in March and 26.6% in November) despite being located in the equatorial zone. Simi-
larly, Biankouma deviates from the pattern observed in stations within the tropical zone,
recording relatively low proportions of clear-sky hours, particularly from December to May.
Although classified within the tropical zone, the Biankouma station (7.73°N, 7.61°W) is
situated in the mountainous northwestern region of Cote d'Ivoire, which is characterized
by high humidity and annual rainfall exceeding 200 mm [35]. These climatic conditions
contribute to persistent cloud cover in the region. While the case of Dimbokro requires
further investigation, it is worth noting that this station is located in the southern part of
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central Cote d'Ivoire, at the boundary between the savanna and forest zones. Dimbokro is
known for its relatively flat terrain with very few hills [56], which could reduce the effects
of orographic lifting, leading to fewer clouds.
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Figure 5. Monthly proportions of clear-sky hours. For readability, only the statistics of 15 stations are
displayed in this figure. The orange curves represent stations located in the tropical zone. The blue
curves represent stations in the equatorial zone.

3.2. Performance Evaluation Across Different Timescales
3.2.1. Performance Evaluation of Hourly Datasets

Hourly GHI values vary across climate zones in Cote d’Ivoire, as demonstrated by
the statistical summary displayed in Table 2. The CPI, rRMSD and rMBD metrics are
presented under different sky conditions, comparing hourly satellite data with observed
data, grouped by climate zones. Under clear-sky conditions, all products demonstrate good
performance across all climate zones, with a Pearson correlation coefficient of r ~ 1, an
rRMSD ranging from 13.3% to 30.8%, an rMBD ranging from 0.3% to 14.8% in absolute
value and CPI values between 34.4% and 236.8%. As for the different products, satellite-
based datasets (CAMS and SARAH-3) outperform reanalysis products (MERRA-2 and
ERAD5). The reanalysis products tend to underestimate GHI, which explains their negative
rMBD values. Among the climate zones, TT exhibits the best rRMSD values but has the
highest CPI, while M records the best CPI values.

By definition, the CPI incorporates information on dispersion through the rRMSD
and distribution similarity through the KSI and OVER. A low rRMSD combined with a
high CPI suggests that, while the overall difference between the two datasets is small,
there are discrepancies in the shape of the distribution between satellite-based data and
ground measurements. These distributional differences can be attributed to the effect of
grouping different stations in climatic zones. Under cloudy-sky and all-sky conditions
(entire dataset without filtering for specific conditions), the performance of satellite and
reanalysis products is moderate. All the values of the combined performance index are
above 100%. As for the rRMSD and rMBD metrics, they range between 41.4% and 19.1%
and 59.9% and 40.1% for all-sky conditions and between 30.2% and 10.8% and 37.9% and
32.1% for cloudy-sky conditions.
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Table 2. Metric comparison between the different satellite and reanalysis data under various sky conditions across various climatic zones: transitional equatorial

zone (TE), attenuated TE (ATE), transitional tropical zone (TT) and mountainous zone (M). All the metrics are expressed in percentages.

CAMS ERA5 MERRA-2 SARAH-3
Sky Zone
CPI TRMSD I'MBD CPI TRMSD I'MBD CPI TRMSD I'MBD CPI TRMSD I'MBD
TE 1414.4 53.9 37.6 1003.9 51.0 254 1092.4 59.9 28.5 1473.8 529 40.1
All TT 1435.8 44.8 30.7 1075.3 42.8 22.6 884.5 45.0 19.1 1455.8 414 31.1
M 676.2 54.8 37.7 466.8 48.1 26.1 508.4 54.9 28.1 671.2 49.0 38.1
ATE 1683.4 52.8 37.7 1294.9 514 27.9 1331.5 58.6 29.5 1682.3 49.2 38.0
TE 42.7 15.4 —-1.7 173.4 27.3 —-13.0 211.4 30.8 —14.8 43.9 14.5 3.1
Clear TT 153.3 13.3 2.9 108.1 18.0 —0.3 176.8 24.0 —-3.3 236.8 14.6 9.8
M 34.4 15.9 -2.2 36.4 22.3 -3.5 57.3 28.7 —4.8 41.3 15.6 8.9
ATE 72.7 15.0 2.1 122.3 23.3 —6.0 220.8 29.6 -114 97.2 15.5 7.3
TE 1227.5 35.6 27.0 715.8 31.7 14.3 557.3 32.9 10.8 1422.3 37.9 32.1
Cloudy TT 1389.7 33.6 26.4 975.5 30.2 17.8 670.4 30.7 12.7 1508.6 329 28.7
M 554.4 36.3 27.1 343.6 30.7 17.1 321.0 33.1 15.6 623.2 36.0 31.6
ATE 1479.3 35.9 28.6 974.7 33.1 18.0 728.5 33.6 13.9 1634.2 37.1 32.1
TE 1563.9 113.2 83.9 1363.7 110.3 72.7 1740.1 140.6 98.5 1458.5 101.7 77.5
Overcast TT 1359.6 132.1 95.1 1146.7 132.6 81.4 1200.1 139.8 87.6 1056.0 109.5 74.0
M 713.9 134.1 101.4 537.9 121.1 76.8 641.9 144.2 96.9 566.2 103.5 78.0
ATE 1700.4 117.2 86.0 1557.6 118.4 77.9 1944.0 146.0 103.2 1499.4 95.0 72.3
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The weakest performance is observed under overcast conditions. While the linear
correlation remains relatively strong, the rRMSD and rMBD values increase by 6 and
12 times, respectively, on average, compared to their clear-sky counterparts, and the CPI
values remain high. Here, the coefficient of determination (R?) is consistently negative,
meaning that the reanalysis and satellite products perform worse than simply using the
mean of the ground data as a predictor [48].

Regarding the observation sites, both satellite and reanalysis products align well with
ground-based measurements under clear-sky conditions. The best performance for CAMS
is recorded at the Bongouanou station, with a CPI of 11.8%, as shown in Figure 6. The first
row display the five stations with the lowest CPI, while the second row corresponds to the
five stations with the highest CPL. Stations in the equatorial zone are represented using
the Viridis colormap, whereas those in the tropical zone use the Plasma colormap. The
Tengrela station records the worst CPI, KSI and OVER values under these sky conditions,
even though the other statistical parameters remain good. With a few exceptions (such as
Dimbokro station in Figure 7), the KSI and CPI values found in this study seem to favor
stations with fewer data points. For instance, for the statistics presented in Table 2, the M
zone has a total of 56,717 data points across all sky conditions, whereas the TT zone has
390,974 data points. This becomes noticeable when there is a significant difference in the
number of data points, which could be due to the binning of the dataset in the calculation
of these metrics.
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Figure 6. Scatter plots of hourly clear-sky CAMS GHI vs. ground GHI. Stations from the equatorial
zone are colored using the Viridis colormap (gradient: dark blue — green — yellow), while those
from the tropical zone use the Plasma colormap (gradient: dark purple — red — orange — yellow).
The gradients indicate an increasing density of data points. The dashed black line represents the 1:1
reference line. Numbers of data ponts are indicated in parentheses for each station. The rMBD, the
rRMSD, the KSI, OVER and the CPI are expressed in percentages.
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Figure 7. Scatter plots of hourly clear-sky SARAH-3 GHI vs. ground GHI. The rMBD, the rRMSD, the
KSI, OVER and the CPI are expressed in percentages (similarly to Figure 6). While there is a tendency
for the CPI to favor smaller datasets, the Dimbokro station (1624) achieves a better CPI than stations
with fewer data points (e.g., Djouroutou (272)).
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Comparisons between hourly datasets from models are better presented in Figures 8-
11, with the rRMSD, rMBD and CPI metrics across 34 stations. Under clear-sky conditions,
the rRMSD values range from 11.4% to 48.2%, with a mean of 21.4% and a standard
deviation of 7.3%. The absolute values of the rMBD range from 0.1% to 22.0%, while the
CPI values vary between 10.9% and 139.4%. For the CP], stations located in the equatorial
zones (M and TE) show the best performance, particularly for CAMS and SARAH-3,
indicating stronger agreement between the observed GHI and the GHI estimated by these
products. MERRA-2, however, exhibits lower performance, especially in the ATE zone and
at Dimbokro station, which is an exception within the TE zone, recording the worst CPI
value (139.4%). The rMBD values indicate an underestimation of GHI by the reanalysis
products (MERRA-2 and ERAS), particularly in the southern and central regions (TE, ATE
and M). This trend is less pronounced in the north (TT), where CAMS and SARAH-3 tend
to overestimate GHI instead. The rRMSD values confirm the superior performance of
satellite products compared to reanalysis products under clear-sky conditions.
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Figure 8. Bar charts of performance metrics (rMBD, rRMSD and CPI) under clear-sky conditions for
reanalysis and satellite-based GHI across different stations in Cote d'Ivoire.

Reanalysis products better capture GHI when weather conditions alternate be-
tween cloudy and clear episodes, as seen under all-sky and cloudy-sky conditions
(Figures 9 and 10). However, the performance of both product types degrades compared
to their performance under clear-sky conditions. All products exhibit an overestimation
of GHI. The CPI values indicate an overall performance above 100% for all products at all
stations, except for Dimbokro, which records a CPI value of 40.2% for ERA5 and 75.5%
for MERRA-2 under all-sky conditions and 66.0% and 75.0%, respectively, for ERA5 and
MERRA-2 under cloudy-sky conditions.

Under overcast conditions, all products exhibit their most unfavorable values across
all metrics, showing significant discrepancies at all stations, as illustrated in Figure 11.
Except for a few stations such as Dimbokro, Badikaha and Ferke, which exhibit relatively
favorable rRMSD values for SARAH-3, all other stations record rRMSD and CPI values
exceeding 100% for all products, indicating their unsuitability for assessing GHI under
overcast conditions. This conclusion is further supported by the consistently negative
values of the coefficient of determination (R? ranging from —4.2 to 0.3).
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Figure 9. Bar charts of performance metrics ({MBD, rRMSD and CPI) under cloudy-sky conditions
for reanalysis and satellite-based GHI across different stations in Cote d’Ivoire.
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Figure 10. Bar charts of performance metrics (rMBD, rRMSD and CPI) under all-sky conditions for
reanalysis and satellite-based hourly GHI across different stations in Cote d’Ivoire.
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Figure 11. Bar charts of performance metrics (rMBD, rRMSD and CPI) under overcast conditions for
reanalysis and satellite-based hourly GHI across different stations in Cote d’Ivoire.

The average agreement between models and ground data on a hourly basis throughout
the day for each sky condition was evaluated. Figures 12-15 illustrate the daily trends of
GHI under the sky conditions differentiated in the present paper.
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Figure 12. Comparisons of daily trends between observed GHI and satellite-based and reanalysis
GHI on an hourly basis for clear-sky days.

Under clear-sky conditions (Figure 12), the satellite products generally capture the
overall trend of GHI throughout the day. This agreement with ground data is more
noticeable from 1 PM onwards. Before this time, all models tend to overestimate solar
radiation, with the maximum overestimation occurring around noon when GHI reaches its
peak. These results are comparable with those of Sianturi et al. [57]. They found that bias
of estimates from the reanalysis dataset peaked when the observed hourly solar irradiance
was also the largest, in tropical regions. The tendency to overestimate GHI in the morning
could be attributed to several factors, including the high concentration of aerosols and water
vapor. In the morning, the atmosphere often contains higher concentrations of aerosols and
water vapor near the surface. These particles scatter and absorb sunlight, thereby reducing
the actual GHI value, which models may struggle to accurately capture. Overall, the 95%
confidence interval indicates relatively low variability in the diurnal trends of GHI in the
observed data for this sky condition.
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Figure 13. Similar to Figure 12, but for cloudy-sky days.

Notably, discrepancies between satellite products and observed data are more pro-
nounced at certain stations, such as Tienko, Tanda and Biankouma. This decline in agree-
ment becomes even more evident under overcast conditions (Figure 15), where differences
peak around midday as GHI values reach their maximum. At stations like Tanda, these
errors can approach the magnitude of the ground-based GHI values. Under these condi-
tions, GHI variability is significantly higher compared to clear-sky conditions, as reflected
by the wider 95% confidence intervals. However, the trends depicted in the graphs may
not fully capture hourly variations. For instance, the clear-sky condition does not strictly
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represent model behavior during clear-sky hours, as days classified as clear-sky conditions
may still contain periods of cloud cover (cloudy-sky hours). The most representative case
for evaluating model performance is the all-sky condition, where no filtering is applied to
the dataset.
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Figure 14. Similar to Figure 12, but for all-sky days.
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Figure 15. Similar to Figure 12, but for overcast days.

In the hourly dataset analyzed in this study, satellite products (CAMS and SARAH-3)
outperform reanalysis products (MERRA-2 and ERA5) under clear-sky conditions but are
surpassed by the latter under cloudy and all-sky conditions. Overcast conditions yield
the poorest results, with significant discrepancies and consistently negative R? values.
The mountainous (M) zone demonstrates the strongest agreement between satellite and
reanalysis products and ground data, in terms of the CPI metric, maybe due to its fewer
number of stations, while the tropical transition (TT) zone shows lower rRMSD values but
a higher CPJ, indicating distribution discrepancies despite relatively low error dispersion.
A summary of the metrics is presented in Table 3. The significant biases observed in the
reanalysis products are comparable to the results of other studies [58], which have found
higher biases in tropical regions than in high-latitude regions [59]. These biases may be
due to the high intensity of solar radiation in tropical regions, as well as the high humidity
and dense cloud cover in these areas [57] that are known to greatly influence satellite and
reanalysis products’ performance.
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Table 3. Summary of statistical metrics for hourly datasets. For minimum and maximum val-
ues, the corresponding sky conditions are specified in parentheses (Al = all-sky; Cd = cloudy-sky;
Cl = clear-sky; and Ov = overcast).

Model tMBD [%] rRMSD [%] KSI [%] OVER[%] CPI[%] R2
CAMS Min 0.1 (Cl) 11.4 (Cl) 11.5 (Cl) 0 (Cl) 11.8(Cl)  0.8(Cd) —2.7(Ov)
Max 1133(Ov) 147.0(0v) 16619 (Al) 1566.3 (Al) 837.8(Al) 1.0(Cl) 1.0(Cl)
Mean 36.7 53.9 498.7 4247 257.8 0.9 0
SARAH-3 Min 0.2 (Cl) 11.4 (Cl) 18.6 (Cl) 0 (Cl) 109(Cl)  08(v) —1.7(Ov)
Max 91.7(Ov) 1247 (Ov) 16444 (Al) 15495(Al) 827.6(Al) 1.0(Cl) 1.0(Cl)
Mean 363 485 500.9 4262 256.0 0.9 0.2
ERA5 Min 0.8 (Cl) 14.6 (Cl) 26.9 (Cl) 0 (cl) 163(Cl)  07(Cd) —2.5(0v)
Max 962 (Ov) 143.0(0Ov) 13154 (Al) 12223 (Al) 663.0(Al) 1.0(Cl) 0.9 (Cl)
Mean 27.6 55.4 384.2 306.5 200.4 0.8 0
MERRA-2 Min 0.2 (Cl) 21.6 (Cl) 39.5 (Cl) 0.1 (Cl) 238(Cl)  0.6(Cd) —4.2(Ov)
Max 1246 (Ov) 1689 (Ov) 15059 (Ov) 14145(0v) 814.6(0Ov) 09(Cl) 0.9 (Cl)
Mean 30.7 64.2 397.7 320.1 2115 0.8 —03

3.2.2. Performance Evaluation of Daily Datasets

The bar charts in Figure 16 display the rMBD, rRMSD and CPI for the daily datasets of
satellite-based and reanalysis products at stations with at least 35 clear-sky days, ensuring
that CPI calculation is feasible. In the northern region, apart from the Tienko station, where
MERRA-2 underestimates GHI, all other stations exhibit an overestimation of their GHI
values by both satellite-based and reanalysis products. In this region, the rtMBD values
range from approximately 0 to nearly 20%, with MERRA-2 and ERA5 outperforming the
other products. This is not the case in other climatic zones. The same patterns observed
in the hourly data are found, meaning an overestimation by CAMS and SARAH-3 and
an underestimation by MERRA-2 and ERA5. Overall, the metrics show better values
compared to hourly data, due to error smoothing. Short-term fluctuations in cloud cover,
aerosol concentration and atmospheric conditions introduce noise in model estimates.
Over longer timescales, these errors average out, leading to better agreement with ground
measurements. Random errors in hourly estimates from reanalysis products (for instance,
due to short-term cloud cover misrepresentation) can partially cancel out when summed
over a day or month. In contrast, satellite-based errors, which are often systematic, persist
and do not average out, even after aggregation [60].

The coefficient r varies from 0 to 0.9 under cloudy-sky days, with an average value
of 0.6. The R? values vary widely, from —5.3 to 0.2, with a mean of —2.3. The rMBD and
rRMSD values range from 4.9% to 49.6% and from 17.7% and 52.7%, respectively, with
average values of 30.2% and 37.3%, respectively. The CPI shows significant variability,
ranging from 33.9% to 497.9%, with an average of 202.5%. Among the models, ERA5 and
MERRA-2 exhibit the best CPI performance, though overall differences between models
are not substantial. SARAH-3 and CAMS remain closely aligned, with an average rMBD of
8.7% for the two. Tienko (Figure 17) shows the highest distribution disagreement under
cloudy-sky days, while Dimbokro (Figure 18) has the best performance overall, with the
lowest values of CPL No clear trends emerge based on climatic zones. Metric values under
all-sky conditions are similar to those of cloudy-sky days. Under all-sky conditions, the
rMBD ranges from a minimum of 3.5% to a maximum of 50.4%, with an average of 30.7%.
The rRMSD varies between 16.5% and 58.0%, with a mean of 38.0%. CPI values range from
24.1% to 477.1%, with an average of 191.0%. CAMS and SARAH-3 are still outperformed
by reanalysis products. They remain closely aligned, with an average rMBD of 8.6% for
both of them. Tienko (CPI = 477.1% for CAMS) and Dimbokro (CPI = 24.1% for ERAD)
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remain the stations with lowest and highest performance, respectively. Regarding climatic
zones, northern stations (ATE and TT) generally exhibit the poorest model performance.
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Figure 16. Bar charts of performance metrics (rMBD, rRMSD and CPI) comparing models for all-sky

days.
Dimbokro (704) Ferke (442) Badikaha (522) Koflande (365) Kouibly (601)
8.0
6.0
4.0 =091
2=-1.45
bl ™ 2 rMBD=28.6
g 20 KS[=228.5 34.3 K 9.5
E OVER=156.4 OVER=171.3 ‘OVER=200.9
e rRMSD=19.5 rRMSD=23.5 rRMSD=30.2 / rRMSD=32.4
Z - CPI=106.0 CPI=113.2 CPI=124.7 CPI=135.2 » CPI=138.2
2 00~ *
T
g Toumodi (1740) Vavoua (2159) Boundiali (2766) Tanda (2592) Tienko (2706)
f 8.0
2
< 6.0 rd
% X
4.0 r=0.87 r=0.86 r=0.88 r=0.61
R?=-3.55 R?=-3.74 R?=-2.20 R?=-3.56
rMBD=41.8 rMBD=42.4 rMBD=33.2 rMBD=46.1
2.0 KSI=619.5 o KSI=732.2 KSI=764.9 KSI=917.6
OVER=547.5 ;" OVER=656.1 rd OVER=684.7 OVER=721.8 OVER=839.3
¥ TRMSD=43.8 / TRMSD=44.3 - TRMSD=34.9 MSD=50.7 TRMSD=50.6
0.01~ CPI=313.6 p CPI=369.2 p CPI=379.8 p CPI=404.6 y CPI=464.6
0.0 2.0 40 6.0 8.0 0.0 2.0 40 6.0 8.0 0.0 2.0 40 6.0 8.0 0.0 2.0 40 6.0 8.0 0.0 2.0 40 6.0 8.0

Ground GHI [kWh/m?]

Figure 17. Scatter plots of daily cloudy-sky ground GHI vs. SARAH-3 GHI. rMBD, rRMSD, KSI,
OVER and CPI are expressed in percentages. Stations from the equatorial zone are colored using the
Viridis colormap (gradient: dark blue — green — yellow), while those from the tropical zone use the
Plasma colormap (gradient: dark purple — red — orange — yellow). (similar to Figure 6).
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Figure 18. Scatter plots of daily cloudy-sky ground GHI vs. ERA5 GHI. rMBD, rRMSD, KSI, OVER
and CPI are expressed in percentages. Stations from the equatorial zone are colored using the Viridis
colormap (gradient: dark blue — green — yellow), while those from the tropical zone use the Plasma
colormap (gradient: dark purple — red — orange — yellow). (similar to Figure 6).



Remote Sens. 2025, 17,998

22 of 31

For overcast days, the Pearson coefficient ranges from —0.2 to 1.0, with an average
of 0.7. Most negative values are observed at stations with fewer data points. As analyses
are performed at the station level, these stations do not influence the results and are not
removed. All R? values are negative, ranging from —120.2 to —1.4, with a mean of —28.3.
The rMBD reveals that all models tend to overestimate solar radiation under overcast
conditions, with values ranging from 38.9% to 197.7% and an average of 97.7%. The rRMSD
varies between 45.3% and 213.1%, with a mean of 113%, while the CPI ranges from 42.9%
to 260.7%, averaging 107%. Among the models, CAMS and SARAH-3 outperform the
reanalysis products, with MERRA-2 showing the poorest performance. In terms of station
performance, Katiola (Figure 19) records the best agreement (CPI = 42.9% for SARAH-3),
while Tanda (Figure 20) shows the worst CPI value (260.7% for MERRA-2). Dimbokro has
fewer than 35 data points under this condition. Regarding climatic zones, no clear trends
are observed.
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Figure 19. Scatter plots of daily overcast ground GHI vs. SARAH-3 GHI (similar to Figure 6).
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Figure 20. Scatter plots of daily overcast ground GHI vs. MERRA-2 GHI (similar to Figure 6).

Table 4 presents the minimum, maximum and average values of the metrics for
the daily dataset analysis. The results at this temporal scale indicate an overall better
performance in products compared to the hourly data. This enhancement is attributed to the
fact that, over longer timescales, errors in short-term values tend to average out, resulting
in a closer alignment with ground-based measurements. While the linear correlation
coefficients remain relatively high for the CAMS and SARAH-3 datasets, more advanced
metrics (OVER, KSI and CPI) suggest that reanalysis products generally perform better
under all the sky conditions, except for overcast days. However, the limited number of data
points available for most stations under clear-sky and overcast conditions may introduce
biases in the analysis.
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Table 4. Summary of statistical metrics for daily datasets. For minimum and maximum val-
ues, corresponding sky conditions are specified in parentheses (Al = all-sky; Cd = cloudy-sky;
Cl = clear-sky; and Ov = overcast).

Model tMBD [%] rRMSD [%] KSI[%] OVERI[%] CPI[%] r R2

CAMS Min 4.1 (Cl) 6.4 (Cl) 129(Cl)  0(Cl) 8.9 (Cl) 05(0v)  —25.8(0v)
Max 1067 (Ov) 126.0(0Ov)  907.8(Cd) 829.3(Cd) 459.3(Cd) 1.0(C)  1.0(Cl)
Mean 37.3 40.4 344.6 275.8 1753 0.9 -3.1

SARAH-3 Min 5.2 (Cl) 7.6 (Cl) 157(Cl) 0 (Cl) 112(Cl)  04(©Ov) —218(Cl)
Max 954(0Ov) 1162 (Ov)  917.6(Cd) 839.3(Cd) 464.6(Cd) 1.0(C)  1.0(Cl
Mean 37.3 41.1 3493 281.2 1782 0.8 —3.1

ERA5 Min 1.4 (Cl) 9.4 (Cl) 115(Cl) 0 (cl) 8.7 (Cl) —02(0v) —62.6(0V)
Max 1393 (Ov) 162.1(0v)  667.6(Al) 601.5(Cd) 340.1(Cd) 1.0(C) 0.9 (Cl)
Mean 343 45.0 256.5 193.8 135.1 0.6 —54

MERRA-2 Min 0.3 (Cl) 14.2 (Cl) 184(Cl)  0(Cl) 148(Cl)  0(Cd) —120.2 (Ov)
Max 1977 (Ov) 213.1(Ov)  687.5(Al) 610.0(Al) 3534 (Al) 09(C) 0.9 (Cl
Mean 415 57.4 2615 195.2 142.8 0.3 ~10.6

3.2.3. Performance Evaluation of Monthly Datasets

For this dataset, to continue with the analysis using the CPI metric, only stations
with at least 35 data points are considered. As a result, most stations have very few data
points classified as clear-sky conditions. Therefore, the analysis focuses solely on all-sky
conditions. However, in Section 3.2.4, clear-sky conditions are considered when comparing
across the different timescales. Figure 21 presents the rMBD, rRMSD and CPI metrics of
the four products under all-sky conditions for the monthly dataset.
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Figure 21. Bar charts of performance metrics (rMBD, rRMSD and CPI) comparing models under

all-sky conditions for monthly datasets.

No station from the mountainous zone has sufficient data. In terms of the rMBD,
all products overestimate GHI, with biases ranging from 13.7% (MERRA-2, Niakara) to
49.4% (SARAH-3, Tanda). The rRMSD values range from 18.8% (ERA5, Niakara) to 51.5%
(SARAH-3, Tanda). As for the CPI values, they range from 33.7% (MERRA-2, Tortiya) to
130.1% (CAMS, Tienko). ERA5 demonstrates the best metric values, except in the northern
region, where SARAH-3 performs better. The two satellite-based products show close
values. Geographically, northern stations such as Boundiali and Tienko exhibit higher
errors for CAMS and SARAH-3, likely due to challenges in capturing GHI variability
influenced by aerosols or cloud cover, whereas ERA5 performs relatively better. In central
and southern regions, performance varies across models, but reanalysis products (ERA5
and MERRA-2) generally outperform satellite-based products. Overall, ERA5 consistently
achieves the best performance across most metrics, followed by MERRA-2. SARAH-3
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exhibits the highest bias and error, making it less reliable for monthly GHI estimation,
while CAMS shows more variable performance depending on location.

3.2.4. Comparison Across Temporal Scales

The performance of the four products was compared across different temporal scales
at various stations. These comparisons are summarized in the heatmaps shown in
Figures 22 and 23 for clear-sky and all-sky conditions, respectively. To avoid the con-
straint of requiring at least 35 data points (N > 35) when calculating the CPI and to enable
comparison across multiple stations while considering all timescales (hourly, daily and
monthly), the rRMSD was chosen for product comparisons across the three timescales.
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Figure 22. Heatmaps comparing the rRMSD for satellite and reanalysis products across hourly, daily
and monthly data under clear-sky conditions, including only stations with clear-sky data points

across all three datasets.

Under clear-sky conditions, Figure 22 illustrates a significant reduction in overall de-
viations between ground-based measurements and the GHI values estimated by reanalysis
products. On average, aggregation reduces errors by approximately 5.5% for these two prod-
ucts. However, for satellite-based products, deviations from ground measurements instead
increase by an average of 0.1% for CAMS and 0.4% for SARAH-3. This increase in errors for
satellite products becomes more pronounced from the hourly dataset to the monthly dataset,
with errors rising by 2.5% for CAMS and 3.1% for SARAH-3. In contrast, reanalysis products
maintain a reduction in errors, averaging 6.7% for ERAS5 and 12.4% for MERRA-2.

Under all-sky conditions, however, both reanalysis and satellite products show reduced
deviations when moving from the hourly dataset to the daily dataset through summation.
ERA5 and MERRA-2 exhibit a decrease in deviations of 13.5%, while CAMS and SARAH-3
show a more modest reduction of 11.9% and 7.9%, respectively. In these conditions, the
presence of clouds, in addition to aerosol and water vapor effects, increases the complexity
of GHI estimation. As a result, errors are more pronounced in hourly data and propagate to
longer timescales. From the hourly dataset to the monthly dataset, errors decrease by 19.5%,
23%, 13.4% and 9.2% for ERA5, MERRA-2, CAMS and SARAH-3, respectively.

Finally, the performance of the products was analyzed from a seasonal perspective.
The combined performance index (CPI) was calculated for each station by grouping the
data by month. The results are presented in the heatmaps in Figure 24, with values ranging
from 18.0% (MERRA-2, Ferke, March) to 529.3% (SARAH-3, Tienko, January). All products
struggle to accurately estimate GHI for the December—January—February period, which
corresponds to the Harmattan season in Cote d’Ivoire. For the other months, CAMS,
SARAH-3 and ERAS exhibit relatively stable performance, with ERA5 outperforming the
other two. MERRA-2, on the other hand, achieves its best performance for the March—-April-
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May period, even surpassing the other three products. However, during the remaining
months, particularly from June to October—the rainy season—MERRA-2 records the worst
performance, although some northern stations continue to show good results for this
product.
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Figure 23. Heatmaps comparing the rRMSD for satellite and reanalysis products across hourly, daily
and monthly data under all-sky conditions.
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Figure 24. Heatmaps illustrating the seasonal performance of satellite-based and reanalysis products
under all-sky conditions using the hourly dataset.
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4. Discussion

The findings of this study underscore the infrequent occurrence of clear-sky conditions
in Cote d’'Ivoire. This rarity of clear-sky events has been extensively documented in
previous research [61,62]. The country’s consistently high humidity levels, driven by
its proximity to the Atlantic Ocean and moisture-laden winds from the Gulf of Guinea,
fosters the development of clouds [63,64]. This persistent cloud cover greatly reduces the
occurrence of clear-sky days. Furthermore, Danso et al. [65] reported that southern West
Africa exhibits higher cloudiness compared to other parts of the region across all seasons,
with mean total cloud cover fractions reaching up to 80% during the monsoon season.
Additionally, their analysis indicated a consistently high fractional coverage of low-level
clouds for extended periods throughout the year, with ERA5 data showing values of up to
40% during the rainy season.

During clear-sky hours, CAMS and SARAH-3 outperform ERA5 and MERRA-2, with
CAMS demonstrating the highest overall accuracy, except in northern Céte d’Ivoire, where
ERADS performs best. The superior performance of satellite-based products can be attributed
to their use of real-time satellite observations of the Earth’s surface and atmosphere. Under
clear-sky conditions, the absence of clouds minimizes uncertainties related to cloud detec-
tion and optical properties, resulting in greater accuracy. In contrast, reanalysis products
rely on assimilated data and model physics, often with coarse spatial resolution. Errors
in the representation of aerosols, water vapor and surface albedo can negatively impact
the accuracy of clear-sky radiation estimates [32]. However, the overestimation of GHI by
satellite products—reaching up to 10.4% for CAMS and up to 13.5% for SARAH-3—may
be linked to uncertainties in aerosol data used in these models. Both CAMS and SARAH-3
acknowledge this issue [32,66]. In regions like Cote d’Ivoire, where ground-based mea-
surements are scarce, the accuracy of aerosol data is less well constrained. This may lead
to an underestimation of aerosol concentrations in satellite products, contributing to the
observed overestimation of GHI. Conversely, this significant knowledge gap regarding
aerosol and water vapor concentrations may result in their overestimation in reanalysis
products, leading to an underestimation of GHI values. The overall better performance
of ERAS in the northern part of Cote d’Ivoire could be explained by the distribution of
aerosols across the country. Indeed, the northern region has higher concentrations of strong
GHI-reducing aerosols, such as biomass burning and domestic fires (70.7%), road traffic
(16%), road dust and sea salt (8.1%) and natural dust (2.6%) [67], which aligns with the
tendency of ERA5 to overestimate aerosol concentrations, as stated earlier. However, CAMS
and SARAH-3 exhibit lower error dispersion, which is likely due to their reliance on direct
satellite observations.

Reanalysis products outperform satellite products during cloudy-sky and all-sky
conditions. However, all products tend to overestimate GHI in these conditions. The
performance of both satellite and reanalysis products under cloudy and overcast conditions
is largely influenced by their ability to accurately represent cloud properties [68,69]. The
decline in satellite product performance under these conditions could be linked to the
inability of satellite sensors to detect optically thin clouds in the atmosphere [65]. Numerous
studies have highlighted the predominance of low-level cloud cover (extending from the
Earth’s surface up to 800 hPa [70] or 2 km [63]) in Cbte d’Ivoire. Danso et al. [65] also
reported that reanalysis products (such as ERA5) tend to accurately account for this high
cloud coverage over Cote d’'Ivoire. The overestimations observed under these conditions
could be attributed to the same reasons mentioned earlier. The presence of clouds may
further challenge both satellite and reanalysis products.

At longer timescales (daily and monthly), the errors associated with shorter timescales
tend to smooth out. The metric values decrease by 7.2% for the daily dataset and 9.8% for
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the monthly dataset on average, compared to their values for the hourly dataset. Although
satellite products benefit from direct observations, the few systematic errors present in
each observation accumulate over time, leading to more biases at longer timescales. In
contrast, reanalysis products, despite potential inaccuracies in aerosol and water vapor
representation at shorter timescales, tend to perform better over longer periods as these
variables are better averaged out. This can explain the greater reduction observed in their
rRMSD values, compared to satellite-based products.

In terms of seasonal performance, all products face challenges in accurately estimating
GHI during the DJF period (winter in the northern hemisphere). This may be due to the
presence of the Harmattan season during this period, when aerosol concentrations reach
their peak [71]. The strong performance observed during the MAM period (summer),
as clearly demonstrated by MERRA-2 (Figure 24), could be linked to the more frequent
occurrence of clear-sky hours during this season (Figure 5).

5. Conclusions

This study evaluated the performance of four satellite-based and reanalysis products in
estimating GHI across hourly, daily and monthly timescales, using ground-based measure-
ments as a reference. Among the evaluated datasets, CAMS and SARAH-3 outperformed
reanalysis products under clear-sky and overcast conditions, particularly for overcast hours
and days. However, in all other conditions, ERA5 and MERRA-2 demonstrated superior
performance, with ERA5 emerging as the most reliable overall. This can be attributed to its
advanced data assimilation techniques, which enhance cloud representation and reduce
biases in irradiance estimation. CAMS and SARAH-3 performed well under clear-sky
conditions but tended to overestimate GHI in cloudy conditions due to limitations in their
cloud parameterization schemes. While all evaluated products struggled to capture GHI
accurately at shorter timescales, they proved to be viable alternatives for estimating daily
and monthly total irradiation, particularly in regions with scarce ground-based data. As
the timescale increased, deviations between model estimates and ground measurements
tended to smooth out. However, under clear-sky conditions, where random errors were
minimal, CAMS and SARAH-3 accumulated systematic errors over longer periods, lead-
ing to increased biases. This study highlights the importance of improving local cloud
microphysics modeling to enhance future GHI estimations. Additionally, ground-based
observations of aerosol and water vapor distributions are crucial for refining the accuracy
of satellite-based and reanalysis products in West Africa and beyond.
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