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ABSTRACT: Hyperforin is considered the flagship congener
among polycyclic polyprenylated acylphloroglucinols due to its
compelling and complex molecular architecture, coupled with
remarkable biological activity, thus rendering it an appealing
synthetic target for chemists over the past two decades. Herein, an
innovative linear total synthesis of hyperforin is reported. Our
synthesis relies on the formation of the bicyclo[3.3.1]nonane-2,4,9-trione framework via transannular acylation of a decorated eight-
membered ring, followed by late stage bridgehead substitution.

Polycyclic polyprenylated acylphloroglucinols (PPAPs) are
meroterpenoid natural products found in plants of the

Hypericum and Garcinia genera. Their distinctive and complex
structure is composed of a densely substituted and highly
oxygenated bicyclo[3.3.1]nonatrione core. This characteristic
is accompanied by a broad diversity of biological activity. At
present, over 1000 PPAPs are known.1,2

Hyperforin (1, Figure 1), found in St. John’s wort
(Hypericum perforatum) and identified as one of its major
bioactive constituents, was the first PPAP to be isolated and
structurally elucidated.3 Since then, it has become the most
prominent congener among the PPAPs. The attention paid to
it stems from its unique structure, which highlights a
quaternary stereogenic center in the vicinity of its one-carbon
bridge, as well as its remarkable potency in various therapeutic
areas, including its antidepressant,4 antibiotic,5 anti-inflamma-
tory,6 and anticancer effects,7 and as a potential treatment for
Alzheimer’s disease.8,9

Over the past few decades, several research groups have
presented ingenious chemistry to successfully synthesize
hyperforin (1).10 From our perspective, the bicyclo[3.3.1]-
nonane framework should be considered not just as two fused
rings but also as a bridged eight-membered ring. Given that
other PPAP total syntheses typically use six-membered

precursors to construct the bicyclic core, this perspective
suggests that an eight-membered ring strategy could be a
crucial missing piece in the puzzle of PPAP syntheses.
Encouraged by our recent success in synthesizing a simplified
congener of 1 from cyclooctadiene,11 we decided to apply our
approach to the more complex target hyperforin (1).
Our retrosynthetic idea can be divided into three major

steps (Scheme 1). We envisioned that decorated carboxylic
acid 3 could be derived from commercially available cyclo-
octatetraene (COT) (4) via multiple conjugate additions. The
key intermediate, bicyclo[3.3.1]nonatrione 2, should be
generated through transannular cyclization, followed by
consecutive oxidation. Finally, hyperforin (1) would be
obtained after subsequent bridgehead substitution of C5, C3,
and C1.
Pineschi reported the copper-catalyzed addition of common

organometallic nucleophiles to COT-monoepoxide (5),
followed by a thermally induced 1,5-sigmatropic hydrogen
shift of the resulting allylic alcohols to their respective
ketones.12 The group successfully introduced methyl, ethyl,
and butyl moieties but did not report the introduction of any
allylic substituents.13 We initially found that the overall yields
of prenylated alcohol 6 were highly dependent on the quality
of the Grignard reagent prepared prior to the reaction (Scheme
2). Extensive experimentation was necessary to identify the
factors that ensure a potent solution of prenylmagnesium
bromide.14
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Figure 1. Structure of hyperforin (1).
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Among the copper sources tested (CuTC, Cu(OTf)2·C6H6,
and CuCN), only CuCN resulted in any reaction. Allylic
alcohol 6 was converted into ketone 7 directly after column
chromatography due to its instability, even under an argon
atmosphere at −18 °C.
When compound 6 was refluxed in toluene or heated neat to

80 °C, ketones 7 and 8 were obtained. The yields and ratio of
the ketones were not reproducible, but ketone 8 was generally
the main product. Bicyclic ketone 8 results from a 6π-
electrocyclic ring closure of the enol form of 7.
We envisaged that unreacted alcohol 6 facilitates enolization,

as ketone 7 remained unreactive in refluxing toluene. However,
in the presence of octanol, the formation of ketone 8 was
observed by TLC. The tautomeric equilibrium could be shifted
in favor of ketone 7 with 1.1 equiv of NEt3, which acted as a
hydrogen bonding acceptor during the reaction. This adjust-
ment resulted in an excellent yield of 91% for ketone 7. From a
practical perspective, any byproduct 8 could be collected and
subjected to the reverse 6π-electrocyclic ring opening. Under
the optimized conditions, we were able to easily synthesize 7
from cyclooctatetraene (4) on a multigram scale. Simple
copper-mediated conjugate addition and subsequent trapping
of the respective enolate with 2-(trimethylsilyl)ethyl (TSE)
cyanoformate furnished β-keto ester 9 in an excellent 95%
yield. To ensure the syn conformation of the selenide and the
proton at the tertiary center in our double bond regeneration
sequence, 9 was reacted slowly with PhSeCl at −100 °C. The
crude product was then oxidized with mCPBA,15 with excess
2-methyl-2-butene and NEt3 added at the end to mimic the
prenyl moiety and prevent over-oxidation. Considering the two
adjacent tertiary centers of 9, we were pleased with the 68%
overall yield of doubly activated Michael acceptor 10.
Initial attempts to implement the homoprenylic side chain

were unsuccessful. Reactions conducted in the presence of
Cu(OTf)2·C6H6 or CuCN yielded no product. Merely,
degradation of starting material 10 could be observed above
−30 °C. With CuBr·SMe2 at −40 °C, the desired ester 11 was
obtained in 47% yield, accompanied by 20% of enol 12 (Table
1, entry 1). The latter results from vinylogous deprotonation,
followed by double bond isomerization.

Intense NMR analysis and multiple chromatography steps
revealed that 11 was obtained as a mixture of three
diastereomers; 11c can be separated using petroleum ether
and DCM in a 1:2 ratio. NOESY experiments led to the
structural assignments, as shown in Table 1. Although the
desired diastereomer 11d was not formed in this reaction, the
good anti:syn ratio of 3:1, referring to the relative configuration
of the prenyl and homoprenyl substituents, would ultimately
allow us to generate 11d from 11a through epimerization. We

Scheme 1. Retrosynthetic Idea

Table 1. Excerpt of the Optimization Work for the Second
Conjugate Addition

aIsolated yield. bDetermined by NMR. cNot determined.
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initiated optimization work using TMSCl as an activating agent
and HMPA to enhance the nucleophilicity. Under these
conditions, the sole product obtained was silyl ether 13 (Table
1, entry 2).
Inspired by the work of Stoffman and Clive,16 which

involved adding allylmagnesium bromide to an equally
activated β-ketoester with great yields, we explored the use
of soluble CuI with LiCl and TMSCl.17 Under these
conditions at −78 °C, yields increased to 77%, although the
anti:syn ratio decreased to 1:3.4 (Table 1, entry 3). To
determine whether the change in the anti:syn ratio was due to
Lewis acid activation or temperature dependency, we repeated
the experiment at −20 °C. At this temperature, 11 was
obtained in 63% yield with an anti:syn ratio of 1.3:1 (Table 1,
entry 4). Additionally, attempts using catalytic quantities of
copper did not lead to any reaction as did the change from
homoprenylmagnesium bromide to bishomoprenyl zinc.18

The diastereomeric mixture of 11a−c was next subjected to
the thermodynamic equilibration of epimers (Scheme 3). The
desired diastereomer 11d was obtained in 70% yield for each
cycle of epimerization, based on the amount of 11a present in
the recovered diastereomeric mixture of 11a−c. Fortunately,
diastereomer 11d was found to be completely separable from
the mixture. To further substantiate the aforementioned
structural assumptions, we proceeded to investigate the
diastereomers of 11 separately. Most likely due to double
bond conjugation, we found that enol ether formation is
favored over acetalization under acidic conditions in methanol.
Diastereomer 11a with minor impurities of 11b, separated

isomer 11c, and separated isomer 11d were reacted with
substoichiometric amounts of (±)-CSA and 2 equiv of
HC(OMe)3 in methanol. After 2 h, we observed full
conversion of 11a as well as 11c, both resulting in a 67%
yield of their respective enol ethers. Surprisingly, 11d reacted
much more slowly, yielding only 11% of enol ether 14 and 57%
of the recovered starting material. Satisfyingly, at this point we

Scheme 2. Decoration of the Core Structurea

aReagents and conditions: (a) CuCN, prenylmagnesium bromide,
DCM, −78 °C, 6 h, 84%; (b) NEt3, benzene, reflux, overnight, 91%;
(c) CuCN, MeLi, THF, −78 to −40 °C, 1 h, then 2-(trimethylsilyl)-
ethyl cyanoformate, −78 to −40 °C, 1.5 h, 95% dr 3.8:1 (9a/9b); (d)
(1) NaH, THF, rt, 1 h, then PhSeCl, −100 to −78 °C, 3 h; (2)
mCPBA, NEt3, 2-methyl-2-butene, DCM, −78 °C, 1.5 h, 68%; (e)
LDA, THF, −78 °C to reflux, overnight, 57% (71% BRSM).

Scheme 3. Finalization of Hyperforin (1) Total Synthesisa

aReagents and conditions: (a) DBU, THF, reflux, 20 h, 70% BRSM; (b) (±)-CSA, HC(OMe)3, MeOH, 60 °C, 3.5 h, 63% BRSM; (c) TBAF,
THF, 40 °C, 2.5 h, 98%; (d) 2,6-di-tert-butyl-4-methylpyridine, TFAA, CHCl3, −40 °C, 30 min, then saturated K2CO3, rt, 1 h, 69% dr 1.4:1.0 (exo/
endo); (e) PCC, NaOAc, DCM, 0 °C to rt, 1 h, 73%; (f) PTSA, HC(OMe)3, MeOH, 50 °C, 42−50 h, then HCl, THF, 50 °C, 25 min, 70%; (g)
Cy2NLi, prenyl bromide, THF, −78 °C, 15 min, 73%.
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were able to confirm the assigned relative configuration of 11d
by X-ray crystallography of 14. Ultimately, optimization of the
enol ether formation of 11d was necessary. The best results
were achieved using 1 equiv of (±)-CSA and terminating the
reaction after 3.5 h to prevent decomposition of both the
product and the starting material. Changing the acid to PTSA
or 5-sulfosalicylic acid gave the same results with slightly
diminished yields. Catalytic amounts of H2SO4, AcOH, TFA,
Amberlyst 15, or HCl in 1,4-dioxane proved to be futile, as
most of the product and starting material degraded. Due to the
more acidic proton at C1, any efforts to generate 14 via anionic
pathways were unsuccesful. Although Lewis acid-catalyzed enol
ether formation with TiCl4 in methanol19 worked well for
diastereomer 11c, delivering 60% of the respective enol ether
and 33% of the re-isolated starting material, no major product
formation for diastereomer 11d was observed by TLC or NMR
before decomposition.
With 11d in hand, we released carboxylic acid 3 in nearly

quantitative yield. Unlike our initial cyclization protocol,20 the
addition of 2,6-di-tert-butyl-4-methylpyridine21 to the natural
product scaffold and the use of lower reaction temperatures
were crucial to avoid side reactions with intermediate cationic
species. The resulting 69% yield of allylic alcohol 15 is
comparable to the result from our model studies. Following
this, the next step involved the oxidation of 15 to ketone 16.
Standard procedures such as Swern, TPAP, hypervalent iodine,
and manganese oxidants yielded only trace amounts of ketone
16. This finding aligns with literature reports on the difficulties
of oxidizing a bicyclic PPAP scaffold to its 1,3,5-trione
system.22 However, we were pleased to find that 15 could be
readily oxidized by using PCC with NaOAc as an additive.
Bicyclo[3.3.1]nontraiones without any bridgehead substitu-

ents are rare in PPAP chemistry, and to the best of our
knowledge, only one total synthesis based on a respective
intermediate has been reported.23 While direct prenylation of
C5 would yield an intermediate known from Barriault’s
synthesis of hyperforin (1),10d we chose to isomerize
vinylogous ester 16 to its regioisomer. On the basis of
previous reports, regioisomer 17 should be the thermodynami-
cally favored product and expected to react more readily.24

Isomerization was carried out under standard conditions with
the addition of HCl at the end to cleave the dimethyl acetal
formed simultaneously at C9 during the reaction.25

Next, we turned to bridgehead substitution. While LDA and
LTMP are commonly used bases for this transformation, both
proved to be ineffective in our case. LTMP led to complete
decomposition, and LDA resulted in the reduction of the C9
ketone and a poor 37% yield of the desired product 18.26

Fortunately, we found that using just 2 equiv of the rather
unusual lithium dicyclohexylamide in the reaction afforded 18
in a good 73% yield. In light of Maimone’s previous work, we
successfully completed our synthetic venture from 18.10e The
sequence involving C3 chlorination, C1 acylation, metal−
halogen exchange enabling substitution at C3, and Krapcho-
type demethylation proceeded as described.
In conclusion, we successfully synthesized the complex

flagship PPAP hyperforin (1) in 17 steps from commercially
available cyclooctatetraene (4). The presented strategy
provides significant insights into cyclooctane chemistry,
demonstrates a salient approach to selective C5−C9 bond
formation in PPAP chemistry via transannular acylation, and
employs an adaptive intermediate that offers full control over
derivative-specifying positions around the bicyclo[3.3.1]-

nonane framework. We look forward to applying this strategy
to synthesize other prominent yet untouched PPAPs.
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