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Abstract: Ovarian endometriomas (OEMs), cystic formations within the ovaries, are a sig-
nificant manifestation of endometriosis and present in 20–40% of affected women. Despite
extensive research, the pathogenesis of endometriosis remains unclear, with retrograde men-
struation, coelomic metaplasia, and lymphatic dissemination being proposed mechanisms.
OEMs negatively impact ovarian function by reducing the ovarian reserve, disrupting
folliculogenesis, and altering the ovarian microenvironment through oxidative stress, in-
flammation, and fibrosis. Elevated reactive oxygen species (ROS) accelerate follicular
atresia, and extracellular matrix remodeling contributes to ovarian damage, while immune
dysregulation and cytokine imbalances further exacerbate the condition. The presence of
OEMs does not significantly affect live birth rates in in vitro fertilization (IVF) treatments,
despite potential reductions in the quality and quantity of oocytes. However, their surgical
excision compromises the ovarian reserve. This review highlights the complex mechanisms
by which OEMs impair ovarian function and emphasizes the need for further research to
develop strategies that mitigate these effects, ultimately improving reproductive outcomes
for women with endometriomas.

Keywords: endometrioma; ovarian reserve; in vitro fertilization; infertility; endometriosis

1. Introduction
Endometriosis is a complex and chronic inflammatory condition characterized by the

presence of endometrial-like tissue outside the uterus. This ectopic tissue primarily affects
the ovaries, peritoneum, and other pelvic structures, significantly impacting the health,
fertility, and quality of life of those affected. Within the broader context of endometriosis,
an ovarian endometriotic cyst, or endometrioma, refers to cystic formations that develop
within the ovaries due to the growth of ectopic endometrial tissue. Endometriomas rep-
resent a significant manifestation of endometriosis and are diagnosed in approximately
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20% to 40% of women suffering from the condition [1,2]. There are several theories on
the pathogenesis of endometriomas [3], including the following: invagination and subse-
quent collection of menstrual debris from endometriotic implants, which are located on the
ovarian surface and adherent peritoneum [4]; colonization of functional ovarian cysts by
endometriotic cells [5]; and coelomic metaplasia of the invaginated epithelial inclusions [6].
These lesions are frequently associated with pelvic pain and infertility, thereby making them
a crucial focus of reproductive health research [7–9]. In this review article, we summarize
the mechanisms of endometrioma-mediated ovarian damage based on the pathophysiology
of endometrioma, including the changes in the local ovarian microenvironment.

2. Materials and Methods
A systematic search of electronic databases, including PubMed, Scopus, Web of Sci-

ence, and Embase, was performed. Keywords and MeSH terms used included “ovarian
endometrioma”, “ovarian reserve”, “anti-Müllerian hormone”, “antral follicle count”,
“folliculogenesis”, “ovarian function”, and “fertility outcomes”. Only English-language
publications released between January 2000 and December 2024 were included in the search.
Studies were included if they investigated the effect of ovarian endometriomas on ovarian
reserve markers, histological changes in ovarian tissue, or clinical fertility outcomes. Both
observational studies (prospective and retrospective), interventional studies, and review
articles were considered. Case reports and studies lacking ovarian function data were
excluded. Two independent reviewers (P.Ö and B.V.) screened titles and abstracts, followed
by full-text reviews to determine eligibility. Data extracted included the study design,
sample size, patient characteristics, ovarian reserve markers, histopathological findings,
and reproductive outcomes.

3. The Impact of Endometriomas on Ovarian Function
Endometriosis doubles the risk of infertility in women who are diagnosed with the

condition before they start trying for a pregnancy [9]. This is likely to be due to a number
of factors, including mechanical distortion, disturbances in ovum pick-up, and gamete
and embryo transport. OEMs may be partly involved in these mechanisms. However,
the influence of OEMs on ovarian function extends well beyond the mere presence of
cysts. Emerging research suggests that OEMs may lead to a reduction in the ovarian
reserve, disrupt the hormonal environment, and impair folliculogenesis—each of which is
essential for maintaining normal ovarian function and fertility [10]. For example, studies
have linked OEMs to a decreased antral follicle count (AFC) and serum anti-Müllerian
hormone (AMH) level, both of which serve as key markers of the ovarian reserve [11].
Furthermore, the surgical excision of OEMs may also compromise ovarian function by
inadvertently reducing healthy ovarian tissue, thus raising concerns regarding long-term
fertility implications [12,13].

Understanding the physiological effects of OEMs on ovarian function is vital for opti-
mizing fertility treatment strategies, particularly for women undergoing assisted reproduc-
tive technologies (ARTs). There is an ongoing debate around the impact of endometriosis on
in vitro fertilization–embryo transfer treatment [14]. Several studies suggest that although
the clinical pregnancy rates are lower, especially in those with advanced endometriosis,
the live birth rates do not seem to be affected based on meta-analyses and data from na-
tional ART databases [15,16]. Furthermore, the presence of endometrioma itself does not
change the clinical pregnancy and live birth rates [16]. Whether endometriosis impacts the
oocyte and embryo quality is also controversial. The overall opinion is that the presence
of endometriosis does reduce the oocyte and embryo quality, but this does not seem to
translate into a clinical impact, as demonstrated by the similar live birth rates [17]. This
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section will delve deeper into how OEMs impact follicular development and the overall
ovarian reserve (Table 1 and Figure 1).
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3.1. The Effect of Endometrioma on the “Two-Cell-Two-Gonadotropin Theory” and Folliculogenesis

Ovarian follicles consist of several components, including an oocyte, granulosa cells
(GCs), and theca cells (TCs), along with a follicular antrum that fills with follicular fluid
(FF) as the follicle matures. For a high-quality, mature oocyte to develop, these biological
structures must work in harmony. Any disruptions in this intricate balance can adversely
affect a woman’s reproductive capacity [18,19].

Granulosa cells are essential players in the process of follicular development. They
provide the necessary energy and materials for oocyte growth, regulate meiotic processes,
and enhance the oocyte’s resistance to oxidative stress. However, the presence of OEMs
can have adverse effects on GCs via induced apoptosis and autophagy, promotion of
inflammation and fibrosis, and increased oxidative stress and decreased angiogenesis
within the ovarian environment [20–23]. Additionally, the OEMs can disrupt steroid
hormone synthesis and secretion, affecting the normal hormonal balance that is required
for ovarian function [24–29]. These changes can impair the energy metabolism in cellular
organelles like mitochondria and the endoplasmic reticulum, further complicating follicular
health [26,30,31].

While theca cells are often studied less than GCs, they are crucial for hormone pro-
duction. Theca cells primarily produce androgens in response to luteinizing hormone (LH)
stimulation, which GCs convert into estrogens through the action of aromatase. TCs also
produce growth-regulatory factors such as bone morphogenic proteins (BMPs) and trans-
forming growth factor-β [32,33]. Recent studies have suggested a potential link between
endometriosis and TCs. For instance, Casalechi et al. noted hormonal variations, such as
differences in the adiponectin levels secreted by TCs, in endometriosis patients, which may
impact follicular health and development [34]. BMPs, particularly BMP-15, play a vital role
in ovarian follicle growth and differentiation. Notably, studies have shown that the BMP-15
levels in follicular fluid from patients with OEMs were significantly elevated compared to
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control groups, indicating a potential protective mechanism, possibly provided by the TCs,
against the detrimental effects of OEMs [35,36].

3.2. Endometriomas and Ovarian Microenvironment

The ovarian reserve is defined as the functional capacity of the ovary, which is de-
termined by both the quantity and quality of oocytes that are available for potential
fertilization. It serves as a crucial indicator of a woman’s reproductive lifespan and her
ability to conceive. Understanding how OEMs influence the ovarian reserve is therefore
critical for both clinical practice and patient counseling.

A critical analysis in this article highlights the major pathophysiological mechanisms
that negatively affect fertility in terms of oocyte quantity and quality and the subsequent
embryo development in the presence of OEMs. All potential pathophysiological mecha-
nisms are commonly related to the molecular milieu inside an OEM, the nature of the wall
of the OEM, and the changes in the environment around the OEM.

3.2.1. The Effect of Elevated Levels of Reactive Oxygen Species (ROS)

The deleterious effect of the presence of OEMs on the surrounding healthy tissue could
be considered as one of the specific mechanisms. The concentrations of free iron in OEMs
are reported to be higher because of the nature of the fluid in endometriotic cysts [37]. The
source of iron is hemoglobin destruction via macrophages. Iron physiologically plays a key
role in several cellular functions, including energy metabolism and oxygen transport. But
a supraphysiological level of free iron could provide the production of ROS (superoxide
anion, hydrogen peroxide, and hydroxyl radicals) by means of the Fenton reaction [38].
There is a balance between the ROS and cellular antioxidant defenses in the cell. This
balance could be disturbed when the level of ROS exceeds the capacity of the cellular
antioxidant. This is called oxidative stress (OS). The resultant OS could create a detrimental
effect on the cellular function via the alteration of gene expression, growth and angiogenic
factors, pro-inflammatory cytokines, signaling pathways, and adhesion molecules due
to the unstable and highly reactive nature of ROS [39]. Additionally, significantly higher
ROS production affects the molecular components of the cell via dysregulation of protein
synthesis and membrane architecture, mitochondrial DNA damage, the depletion of ATP,
dynamic instability of microtubules, inhibition of polymerization, enhancement of the
depolymerization of microtubules, and, finally, chromosomal aberrations [40–42]. ROS
can directly damage nuclear and mitochondrial DNA by inducing single- and double-
strand breaks, as well as chemical modifications to DNA bases, such as the formation of
8-hydroxy-2′-deoxyguanosine (8-OHdG), a prominent marker of oxidative DNA damage.
These alterations can lead to mutations, impaired DNA repair mechanisms, and genomic
instability, further contributing to cellular dysfunction and disease pathogenesis. The
interaction of ROS with DNA is particularly detrimental due to its potential to disrupt
transcriptional fidelity and promote carcinogenic transformations [43]. In the context of
female fertility, pathogenic variants in essential regulators of DNA damage repair, such
as BRCA1, BRCA2, and other key genes involved in homologous recombination and
non-homologous end-joining, play a critical role in maintaining genomic integrity during
oogenesis. Dysregulation of these pathways can lead to meiotic errors, reduced oocyte
quality, and early embryonic lethality, which are particularly relevant in conditions such
as OMA (oocyte maturation arrest). Understanding the molecular mechanisms by which
these variants impair DNA repair and their impact on fertility is crucial for developing
targeted therapeutic strategies to improve reproductive outcomes in affected patients [44].
Moreover, the detrimental impact of ROS on the reproductive physiology, including ovarian
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steroidogenesis, oocyte maturation, ovulation processes, and blastocyst formation, should
be taken into consideration because of the cytotoxic effects of ROS [45].

Endometriomas also influence the dynamics of FF. They tend to increase the OS
and inflammation within the ovarian environment [21,46]. Elevated levels of iron and
ferritin in endometrioma fluid and adjacent follicular fluids have been well documented. A
systematic review by Wyatt et al. reported that all examined studies indicated increased
levels of iron and iron-related proteins in endometriotic fluid compared to other types
of ovarian cysts. They also noted localized iron overload in and around endometriotic
lesions [47]. In instances where elevated FF iron levels are present, in vitro maturation
rates of oocytes have shown a decline [48]. Increased ROS within the FF may contribute
to this reduction in quality, although findings have been mixed across studies [49]. Singh
et al. reported elevated ROS levels in FF from affected patients [50], while Nakagawa
et al. found no significant differences in oxidative stress between FF in patients with
unilateral endometriomas and those without [51]. An alternative perspective was provided
by Regiani et al., who conducted a proteomic analysis using mass spectrometry on FF near
endometriomas, suggesting that the protein profile in these patients promotes high OS
levels [52]. Furthermore, iron overload and the resulting oxidative stress can trigger local
inflammation. Numerous studies have documented elevated levels of cytokines such as
IL-1 beta, IL-6, IL-8, and monocyte chemoattractant protein-1 in the follicular fluid from
ovaries affected by endometriomas [53,54].

Table 1. Summary of the pathophysiology of endometrioma-mediated ovarian damage.

Pathophysiology Effects on Ovarian Function and Microenvironment

Elevated levels of ROS [38–40,49,50]

• Dysregulation of protein synthesis and
membrane architecture

• Mitochondrial DNA damage
• Depletion of ATP
• Dynamic instability of microtubules
• Chromosomal aberrations
• Triggered local inflammation

Accelerated follicular atresia and
increased apoptosis [51–58]

• Decline in AMH levels
• Premature activation of primordial follicles

Activation of the plasminogen system
and matrix metalloproteinases [59–64]

• Degradation of ovarian cortex close to the endometrioma
• Increased proteolytic activity
• Excessive extracellular matrix remodeling leads to invasion

and fibrosis

Chronic inflammation and increased
levels of cytokines [65–75]

• Promotion of angiogenesis
• Escape of ectopic endometrial tissue from the host

immune system
• Proliferation of stromal cells

ROS: reactive oxygen species; DNA: deoxyribonucleic acid; ATP: adenosine triphosphate; AMH: anti-Müllerian hormone.

3.2.2. Accelerated Follicular Atresia and Increased Apoptosis in the Presence
of Endometrioma

It has been hypothesized that localized inflammation in the ovarian cortex associated
with endometriomas can disrupt the delicate ovarian microenvironment by promoting
aberrant follicle recruitment and accelerating follicular atresia, ultimately impairing antral
follicle development. This inflammatory state may contribute to a significant reduction
in the antral follicle count, which appears to correlate with a localized decline in AMH
levels. AMH, a critical paracrine regulator, plays a pivotal role in maintaining the dormancy
of primordial follicles. The diminished availability of AMH may lead to the premature
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activation of primordial follicles, rendering them vulnerable to atresia and further depleting
the ovarian reserve [55,56].

In a landmark study conducted by Kitajima et al., the researchers aimed to investigate
the effects of OEMs on early follicular development. The findings revealed a significantly
higher percentage of atretic follicles in the cortex of ovaries with endometriomas compared
to unaffected contralateral ovaries (20.3% vs. 6.3%), as confirmed by immunostaining.
Additionally, the proportion of primordial follicles in the cortex of ovaries that were af-
fected by endometriomas was considerably lower than in contralateral cyst-free ovaries
(34% vs. 54%). When examining the developmental stage of early follicles, there was a
notably higher rate of transitional follicle activation in cortex samples from endometriomas
compared to contralateral cyst-free ovaries (82% vs. 63%). This study was the first to indi-
cate that early follicular development might be prematurely activated, and that follicular
atresia is more pronounced in ovaries with endometriomas compared to their contralateral
counterparts, potentially resulting in a reduction in the ovarian reserve, a phenomenon
referred to as the “burnout” hypothesis [57]. The localized depletion of primordial follicles
in endometriomas is thought to result from focal inflammation, fibrosis, and the loss of
cortex-specific stroma during disease progression. Recent studies have highlighted the
activation of key signaling pathways, including phosphoinositide 3-kinase (PI3K)/protein
kinase B (Akt)/mechanistic target of rapamycin (mTOR), Yes-associated protein (YAP), and
transcriptional co-activator with PDZ-binding motif (TAZ), in human oocytes from ovaries
that are affected by endometriomas. The PI3K/AKT/mTOR pathway plays a critical role
in regulating cell survival, proliferation, and metabolism, and its dysregulation has been
implicated in the pathogenesis of endometriosis. In endometriomas, the overactivation of
this pathway may contribute to aberrant follicular activation and accelerated depletion of
the ovarian reserve, providing mechanistic support for the “burnout” hypothesis [58,59].
Targeting this pathway could offer a potential therapeutic strategy to mitigate ovarian
damage in endometriosis patients, as suggested by recent research on kinase signaling
pathways in endometriosis [60].

In a cohort study conducted by Kasapoğlu et al., the researchers assessed the ovarian
reserve in women with endometriomas over a six-month period. The results demonstrated
a significant decline in AMH levels and AFC among endometrioma patients compared
to control groups, highlighting the detrimental impact of endometriomas on the ovarian
reserve [61]. A meta-analysis by Muzii et al. corroborated these findings, revealing signifi-
cantly lower AMH levels in patients with endometriomas compared to those with benign
ovarian cysts or those without endometriosis altogether [62]. Additionally, a recent com-
prehensive meta-analysis reported a notable decrease in AFC in endometrioma-affected
ovaries when compared to healthy contralateral ovaries, further underscoring the negative
implications of endometriomas on the ovarian reserve [63].

3.2.3. Extracellular Matrix Remodeling and Fibrosis in the Presence of Endometrioma

The plasminogen activation system and matrix metalloproteinases (MMPs) play piv-
otal roles in the degradation and remodeling of the extracellular matrix (ECM). The plas-
minogen activation system consists of a network of proteolytic enzymes, with its central
step being the extracellular conversion of the inactive plasminogen to plasmin, a broad-
spectrum serine protease. The aberrant expression of components within this system has
been implicated in pathological processes such as tissue invasion and fibrosis. Notably,
plasminogen activator inhibitor-1 (PAI-1) regulates ECM degradation, promoting the ac-
cumulation of matrix structural elements that drive fibrotic responses. These responses
are characterized by the recruitment of inflammatory cells, macrophages, and myofibrob-
lasts [64]. In patients with endometriosis, the PAI-1 mRNA expression is significantly
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elevated in both the eutopic endometrium and endometriotic lesions compared to the
normal endometrium [65]. Supporting this, Boss et al. demonstrated significantly higher
concentrations of PAI-1 in endometrioma fluid compared to benign ovarian cysts (247 vs.
37 µg/L). Additionally, the levels of urokinase plasminogen activator (uPA) and PAI-2
were markedly elevated in endometrioma fluid compared to cyst fluid from malignant
ovarian tumors (155 vs. 21.7 µg/L and 199 vs. 12.2 µg/L, respectively) [66]. The high
concentrations of these substances in endometrioma fluid contribute to the degradation of
surrounding tissues, exacerbating disease progression and fibrosis.

Matrix metalloproteinases are zinc-dependent endopeptidases and are essential for
ECM remodeling, with their activity being tightly regulated by tissue inhibitors of metal-
loproteinases (TIMPs). Increased expressions of MMP-1 and MMP-9 have been observed
in ovarian endometriotic tissue [67,68]. Luddi et al. analyzed the molecular profiles of
MMP-2, MMP-3, and MMP-10, along with their inhibitors TIMP-1 and TIMP-2, in the
healthy endometrium and eutopic endometrium from women with endometriomas. Their
study revealed significant upregulation of all investigated MMPs and TIMPs in OEMs [69].
These alterations resulted in enhanced proteolytic activity and excessive ECM remodeling,
contributing to the invasive and fibrotic characteristics of endometriomas.

It is very well known that ECM remodeling generated via activated platelets,
macrophages, and myofibroblasts contributes to the formation of fibrosis during the repair
of inflamed or damaged tissue. The increase in the level of transforming growth factor
(TGF-β) and the deposition of collagen are primarily responsible for the biological process
of fibrosis. OEMs are surrounded by fibrotic tissue known as a pseudo-capsule because
of OEM-associated fibrogenesis. Activated platelets that produce important growth fac-
tors and cytokines such as TGF-β, platelet-derived growth factor (PDGF), and epidermal
growth factor (EGF) also play a key role in the onset of tissue fibrosis related to OEM [70].

3.2.4. The Immune System and Inflammatory Processes in the Presence of Endometrioma

Endometriosis is recognized as a chronic, inflammatory condition characterized by
both local and systemic inflammatory processes, which play a critical role in the patho-
genesis of endometriomas. The role of the immune system and inflammatory processes is
also critical in the pathogenesis of endometriosis. These inflammatory mediators not only
promote angiogenesis but also support the survival of ectopic endometrial tissue, further
complicating the condition. Key contributors to the inflammatory milieu in endometriomas
include alterations in serum and local cytokine levels, particularly interleukin-6 (IL-6),
interleukin-8 (IL-8), and interleukin-1β (IL-1β), alongside dysfunctions in the innate im-
mune system. Among the numerous signaling pathways that have been proposed to be
involved in these processes, the NF-κB pathway has been conclusively demonstrated to be
a central player in mediating the inflammatory responses linked to endometriomas [71].

Elevated levels of IL-6 have been consistently reported in both the blood serum and
tissues of endometriomas and their surrounding environment [21,72,73]. IL-6 exerts a
range of immunomodulatory effects that contribute to the chronic inflammatory state.
Firstly, it impairs the cytotoxic function of natural killer (NK) cells, thereby weakening
immune surveillance [74]. Additionally, IL-6 facilitates the transition from acute to chronic
inflammation by promoting a shift from a neutrophil-dominated infiltrate, typical of acute
inflammation, to one dominated by monocytes and macrophages, characteristic of chronic
inflammation [75]. Furthermore, elevated serum IL-6 levels have been associated with
unexplained infertility [76]. This may be due to its inhibitory effects on blastocyst formation,
as observed in animal models [77].

Like IL-6, IL-8 levels are significantly elevated in both the serum and tissues of patients
with endometriomas [78]. As a pro-inflammatory cytokine, IL-8 plays a crucial role in main-
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taining the inflammatory microenvironment. Beyond its inflammatory effects, IL-8 also
promotes the proliferation of stromal cells, contributing to the pathological remodeling and
progression of endometriotic lesions [79]. Additionally, interleukin-1β (IL-1β), another key
pro-inflammatory cytokine, has been found at elevated levels in endometrioma tissues [21].
IL-1β is known to stimulate the production of other inflammatory mediators, such as IL-6
and tumor necrosis factor-alpha (TNF-α), which further exacerbate the proliferation of
endometrial stromal cells and tissue inflammation [80]. Moreover, IL-1β and vascular
endothelial growth factor (VEGF) reduce apoptosis and decrease Bax expression in en-
dometrial epithelial cells from patients with endometriosis [81]. This cytokine also activates
the NF-κB pathway [82], amplifying the inflammatory cascade within endometriomas
and promoting the chronic inflammatory state that is characteristic of the disease. These
cytokine-driven processes underscore the intricate interplay between inflammation and
immune dysfunction in the pathophysiology of endometriomas, highlighting potential
therapeutic targets for managing this condition.

4. The Impact of Endometriomas on Assisted Reproductive
Technology Outcomes

The impact of endometriomas on the ovarian response to exogenous gonadotropins,
embryo quality, and reproductive outcomes during IVF treatment remains a topic of on-
going debate in the field, as previously noted [83]. Results from various studies present
a mixed picture: some report higher rates of unexpected poor responses, lower numbers
of oocytes retrieved, and lower live birth rates in patients with endometrioma [84], while
others find no significant difference in terms of pregnancy rates [85,86], and a few even
report higher fertilization rates among those with endometriomas [87]. Recently, Lafuente
et al. published a systematic review and meta-analysis that evaluated indirect markers of
oocyte quality in patients with OEMs undergoing IVF or in vitro cytoplasmic sperm injec-
tion (ICSI). Their findings indicated no significant difference in fertilization or blastulation
rates between patients with and without OMA. This comprehensive study was noteworthy
for being the first meta-analysis to examine blastulation rates in this specific context [88].
While the latest meta-analysis suggests that endometriomas do not significantly affect
oocyte quality based solely on indirect markers, earlier studies have indicated considerable
changes in the morphological structure and transcriptomic profile of oocytes from patients
with endometriomas [89–91].

In conclusion, endometriomas can negatively impact the ovarian reserve, oocyte and
embryo quality, and success of oocyte retrieval during IVF treatment. Nevertheless, despite
these adverse effects, endometriomas do not appear to significantly affect the live birth rate
following IVF (Table 2). However, for individuals attempting to conceive naturally, the
detrimental effects of endometriomas on oocyte and embryo quality may present challenges
in achieving pregnancy.

Table 2. Myths and facts regarding endometrioma-mediated ovarian damage.

Myths Facts

Myth: Endometriomas do not
significantly affect the ovarian reserve.

Fact: Endometriomas are associated with a reduction in the
ovarian reserve, evidenced by decreased AFC and AMH
levels [15,16,61–63].

Myth: Endometriomas do not affect the
oocyte or embryo quality.

Fact: Endometriomas are linked to reduced oocyte and embryo
quality due to oxidative stress, inflammation, and altered
follicular fluid composition [21,43,50,89–91].
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Table 2. Cont.

Myths Facts

Myth: Endometriomas do not influence
IVF outcomes.

Fact: While live birth rates are not significantly affected,
endometriomas are associated with a lower number of retrieved
oocytes and poor ovarian response during IVF [84,85].

Myth: Oxidative stress in
endometriomas has no significant
impact on ovarian function.

Fact: Elevated ROS in endometriomas cause mitochondrial DNA
damage, ATP depletion, chromosomal aberrations, and impaired
folliculogenesis [40–43,45].

Myth: Endometriomas do not accelerate
follicular atresia.

Fact: Endometriomas promote the premature activation of
primordial follicles and accelerate follicular atresia, leading to a
decline in the ovarian reserve [55–57].

Myth: Endometriomas do not alter the
ovarian microenvironment.

Fact: Endometriomas induce chronic inflammation, fibrosis, and
extracellular matrix remodeling, disrupting the ovarian
microenvironment [65–82].

Myth: Endometriomas do not affect
granulosa cell function.

Fact: Endometriomas impair granulosa cell steroidogenesis,
induce apoptosis, and disrupt energy metabolism, negatively
impacting follicular development [19–22,25,30,31].

Myth: Endometriomas do not influence
theca cell function.

Fact: Endometriomas alter theca cell hormone production and the
secretion of growth factors, such as BMP-15, which may impact
follicular health [32–36].

Myth: Endometriomas do not trigger
immune dysregulation.

Fact: Endometriomas are associated with elevated levels of
pro-inflammatory cytokines (e.g., IL-6, IL-8, IL-1β) and immune
dysfunction, contributing to disease progression [71–82].

Myth: Endometriomas do not cause
fibrosis in the ovarian tissue.

Fact: Endometriomas are surrounded by fibrotic tissue due to
excessive extracellular matrix remodeling and the activation of
fibrogenic pathways (e.g., TGF-β, PDGF) [65–70].

Myth: Endometriomas do not affect the
follicular fluid composition.

Fact: Endometriomas alter follicular fluid by increasing iron
levels, ROS, and pro-inflammatory cytokines, which negatively
impacts oocyte maturation and quality [21,37,45–54].

Myth: Endometriomas do not activate
signaling pathways that harm
ovarian function.

Fact: Endometriomas activate pathways such as
PI3K/AKT/mTOR, YAP, and TAZ, leading to aberrant follicular
activation and ovarian damage [56–60].

AFC: antral follicle count; AMH: anti-Müllerian hormone; IVF: in vitro fertilization; ROS: reactive oxygen
species; DNA: deoxyribonucleic acid; ATP: adenosine triphosphate; BMP-15: bone morphogenic protein-15;
IL-: interleukin; TGF-β: transforming growth factor beta; PDGF: platelet-derived growth factor; YAP: yes-associated
protein; TAZ: transcriptional co-activator with PDZ-binding motif.

5. Conclusions
In summary, the presence of endometrioma seems to cause ovarian damage via several

potential factors that induce oxidative stress, apoptosis, inflammation, and fibrosis; the
disruption of folliculogenesis; and decreased angiogenesis within the ovarian microenvi-
ronment. However, endometriosis does not affect the chances of pregnancy during IVF
treatment, despite an unexpectedly poor response and a retrieval of a lower number of
oocytes. Although existing studies substantiate the premise that endometriomas induce
ovarian damage, further research is essential to explore interventions that may minimize
these adverse effects on ovarian function. Finally, while this review discusses key mech-
anisms such as oxidative stress, inflammation, and fibrosis, it does not comprehensively
explore emerging areas such as epigenetic modifications, microbiome changes, or other
molecular pathways that may contribute to endometrioma-mediated ovarian damage. Ad-
dressing these limitations in future research will be essential to deepen our understanding
of the pathophysiology of endometrioma-mediated ovarian damage and improve clinical
management strategies.
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