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Abstract: Instrumented insoles have created opportunities for patient monitoring via long-
term recordings of ground reaction forces (GRFs). As the GRF curve is altered in patients
after lower-extremity fracture, parameters defined on established curve landmarks often
cannot be used to monitor the early rehabilitation process. We aimed to screen several new
GRF curve-based parameters for suitability and hypothesized an interrelation with days
after surgery. In an observational longitudinal study, data were collected from 13 patients
with tibial fractures during straight walking at hospital visits using instrumented insoles.
Parametrized curves were fitted and regression analyses conducted to determine the best
fit, reflected in the highest R2-value and lowest fitting error. A Wald Test with t-distribution
was employed for statistical analysis. Strides were classified as regular or non-regular, and
changes in this proportion were analyzed. Among the 12 parameters analyzed, those with
the highest R2-values were the mean force between inflection points (R2 = 0.715, p < 0.001,
t42 = 9.89), the absolute time between inflection points (R2 = 0.707, p < 0.001, t42 = 9.83),
and the highest overall force (R2 = 0.722, p < 0.001, t42 = 10.05). There was a significant
increase in regular strides on both injured (R2 = 0.427, p < 0.001, t42 = 5.83) and healthy
(R2 = 0.506, p < 0.001, t42 = 6.89) sides. The proposed parameters and assessment of the
regular stride ratio enable new options for analyses and monitoring during rehabilitation
after tibial shaft fractures. They are robust to pathologic GRF curves, can be determined
independently from spatiotemporal coherence, and thus might provide advantages over
established methods.

Keywords: gait cycle; gait analysis; digital medicine; wearable; smart insole; biomechanics

1. Introduction
Gait analysis is a fundamental tool to understand human locomotion during rehabili-

tation, as it provides valuable insights into biomechanical patterns and functional recovery.
Motion capture and force plates are the gold standards used to record data in the laboratory.
Recently, improvements in wearable technologies have introduced new devices for post-
operative patient monitoring, including instrumented insoles and footwear equipped with
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force sensors and inertial measurement units. These have evolved into valuable tools for
rehabilitation and treatment monitoring [1,2]. The devices allow for in-depth analyses of
ground reaction force (GRF)-based gait parameters. Frequently used parameters describe
the trajectory of the stance-phase force curve and the center of pressure (COP) [3,4]. How-
ever, these established parameters are designed for healthy gait patterns, namely, a force
trajectory with two maxima and a minimum that reflect the loading and push-off phases of
the gait cycle [5]. Consequently, the exact magnitudes and relative timings of these maxima
and minima are parameters of interest, as they correspond to specific sections of the stance
phase such as loading response or terminal stance [6]. As the foot is usually put on the
ground carefully and without a rolling movement after surgery, regular parameters cannot
be derived in the early stages of recovery after a tibial fracture. Further causes for the
altered pattern include pain or pain avoidance, load instructions, the use of walking aids,
and reduced limb functionality [7]. Figure 1 provides an example of characteristic changes
in the gait cycle throughout recovery.
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Figure 1. Selected stance phases of a patient during recovery from a distal tibial fracture at 3, 36, and
183 days after surgery.

The analysis functions of commercial solutions frequently fall short in analyzing data
from patients with lower-limb injuries. Inbuilt stride detection fails to identify the gait
events of patients, as it relies on predefined healthy gait behaviors or machine learning
models fitted to healthy gait patterns. We therefore propose novel parameters that are
less reliant on the M-shape of the GRF. In addition, a broader stride detection method to
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accommodate the varied gait patterns exhibited by patients during the rehabilitation phase
is suggested.

2. Methods
2.1. Study Design

In this observational prospective cohort study, all patients presenting to Saarland
University Hospital with a tibial fracture between February 2022 and June 2023 were
screened for eligibility to participate. Inclusion criteria were an age of 18 years and older,
and a newly obtained fracture of the tibia. Exclusion criteria were further major injuries
of the lower extremities, the use of walking aids and/or immobility prior to the fracture,
pregnancy, inability to give consent, and participation in another ongoing clinical study
within the preceding month.

Measurements were conducted in the laboratory during inpatient stays and when
outpatient clinic appointments were scheduled anyway to guarantee that the frequency of
consultations and degree of care were not affected. To determine whether healing occurred
with or without delay, a specialist orthopedic surgeon evaluated if the fracture had healed.
Instrumented pedography insoles (OpenGo insoles, Moticon GmbH, Munich, Germany)
with 16 pressure sensors were fitted to the shoe size and calibrated to the body weight
using the procedure provided by the recording app. Data were recorded from both feet
at 100 Hz and exported using the provided software (OpenGo version 03.05.00_11808,
Moticon GmbH, Munich, Germany). At each visit to the hospital, data were recorded
during a 9 m straight walk. Measurements were usually conducted shortly after the
surgery, around six weeks, three months, and six months post-operatively.

2.2. Data Processing

The extraction of stance-phase parameters from gait data entails the following key
challenges: (1) sensor noise and (2) pathological stride patterns. We addressed noise by a
low-pass filtering and interpolation procedure described below. To address the deformed
gait shape, we replaced conventionally used landmarks with landmarks more robust to
pathological gait patterns.

Filtering and Interpolation

First, we extracted the stance phases within the gait cycles from the time-series data.
Stance phases were defined by periods of consecutive force readings exceeding 30 N with
a tolerance of up to three missing values due to device faults. Activities with a duration
of less than 300 ms or exceeding 3500 ms were excluded as non-stride events. A Gaussian
filter (σ = 4) was applied to mitigate sensor noise and jitter.

To ensure cross-subject comparability, normalization was applied as follows: Force
readings were transformed to percentage body weight. The absence of a fixed cadence
leads to varying amounts of samples per stance phase. Therefore, the data were resampled
using natural cubic spline interpolation to 100 equidistant samples.

All further shape-based properties, such as the indices of local maxima or inflection
points for the determination of TP1 and TP2, were calculated based on the normalized
and filtered signal. These indices were then re-applied to the unfiltered, interpolated, and
normalized signal to determine force values to avoid over-smoothing.

2.3. Landmarks Robust to Pathological Gait Patterns

Using the first and second local maxima is the common method to determine the
interval of interest on the typical M-shape. However, gait impairments make a clear
distinction of maxima inconsistent. We found that the first inflection point reliably marks a
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point of load-bearing commitment, akin to the 80% max-force definition by Larsen et al. [3].
On the filtered and interpolated signal, this point is quite insensitive against low-force
loading-phase variations.

When dealing with regular-shaped gait patterns, the ratio between the two maxima
and the difference of maxima from minima can be used to describe rolling behavior during
COP transmission [8] or slope [9]. For patients, this ratio is known to increase during
recovery, as the stance phase develops from a plateau-like shape toward the typical M-
shape [10]. Trendlines through the mid-section of the stance phase and the associated
mean error calculations provide a metric for this ‘de-plateauization’ without requiring
further shape assumptions. For each stance phase, it was determined whether a regular
M-shape curve could be found. The M-shape requires the existence of two unambiguous
local maxima with a single local minimum in between, which was often not the case with
patient data. In case the result did not meet the criteria after applying the Gaussian filter,
multiple strategies were applied: (i) selection of the highest/lowest candidate in case of
multiple extrema occurring within 5% of overall time span, or (ii) if one candidate exceeded
the others by a factor of 1.05 within the same half of the stance phase; (iii) check for signal
monotony for 5% of the overall duration in both directions and eliminate candidates failing
this check. For any stance phase still failing to meet the criteria, it was determined that the
M-curve could not be found.

The stance phases were annotated as ‘regular’ if the M-curve could be found un-
equivocally, or ‘non-regular’ otherwise. We calculated the ratio of regular and non-regular
stance phases for each measurement. Following this, the parameters were determined as
described below.

Table 1 shows the new parameters subject to our investigation and their definitions.
Hereby, ‘enclosing turning points’ are defined as the first and last instant where the second
derivative of the ground reaction force curve changes sign, corresponding to inflection
points (zeros of the 2nd derivative) on a discrete signal. Figure 2 provides a graphical
illustration of the concepts used in this parameter design.

Table 1. Names, definitions, computation equations, and units of the parameters investigated in this
work. For a stride given as an array of 100 equidistant force measurements [y1, y2, . . ., y100], iMaxfirst,
iMaxlast, iTP1, and iTP2 denote the array indices of the first/last maximum and TP1/2, respectively.
MAE( ŷ) and RMSE( ŷ) are defined as the mean average error and root mean square error of a given
least squares regression line ŷ = β̂1t + β̂0. The function abs(t) returns the absolute timestamp of
measurement yt at array index t.

Parameter Name Definition Computation Unit

F_mean_TP Mean force between enclosing
turning points

∑
iTP2
i=iTP1

yi

iTP2−iTP1

%Bodyweight

F_total_max
Highest overall force

measurement in the entire
stance phase

max1≤i≤100 yi %Bodyweight

F_trendline_max_slope

Slope of the least squares
regression line

ŷmax = β̂1t + β̂0 of force
readings between the first and

the last maxima 1

β̂1 =
SSty
SStt

,
iMax f irst ≤ t ≤ iMaxlast

%Bodyweight
%Stance Duration

F_trendline_TP_slope

Slope of the least squares
regression line

ŷtp = β̂1t + β̂0 of all force
readings between enclosing

turning points

β̂1 =
SSty
SStt

,
iTP1 ≤ t ≤ iTP2

%Bodyweight
%Stance Duration
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Table 1. Cont.

Parameter Name Definition Computation Unit

L1_trendline_max

Mean average error of the
least squares regression line

corresponding to
F_trendline_max_slope

MAE(ŷmax) %Bodyweight

L1_trendline_TP
Mean error of the least squares
regression line corresponding

to F_trendline_TP_slope
MAE

(
ŷtp

)
%Bodyweight

L2_trendline_max

Root mean square error of the
least squares regression line

corresponding to
F_trendline_max_slope

RMSE(ŷmax) %Bodyweight

L2_trendline_TP

Root mean square error of the
least squares regression line

corresponding to
F_trendline_TP_slope

RMSE
(
ŷtp

)
%Bodyweight

Time_inter_max
Absolute time passed between

the first and last local
maxima 1

abs
(

iMax f irst

)
−

abs(iMaxlast)
Seconds

Time_inter_max_normalized

Time passed between the first
and last local maxima in

proportion to overall step
duration 1

iMax f irst−iMaxlast
100

×100%Stance Duration

Time_inter_TP
Absolute time passed between

enclosing turning points
in seconds

abs(iTP1)− abs(iTP2) Seconds

Time_inter_TP_normalized

Time passed between
enclosing turning points in

proportion to overall
step duration

iTP1−iTP2
100 ×100%Stance Duration

1 This parameter can only be calculated if more than one local maximum is present within the stance-phase curve
and is omitted otherwise.
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Figure 2. Definition of concepts which are used in many of the 12 investigated parameters. The graph
shows ground reaction forces in percent body weight over the normalized stance-phase duration.
Hereby, Maxfirst, corresponding to F_z_2 in [3] given a regular stance-phase curve, is the first local
maximum. Similarly, Maxlast, corresponding to F_z_4, is the last local maximum. Inter_max is defined
as the interval from Maxfirst to Maxlast. TP1 and TP2 are the first and last inflection points. Inter_TP
is the interval from TP1 to TP2. Trendline_max is the least squares regression line of the data in the
interval Inter_max, shown in orange. Trendline_TP is defined similarly on the interval Inter_TP and
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shown in light blue. The slope of either trendline is given as trendline_slope. MAE is the mean
absolute error between the trendline and the data; similarly, RMSE is the root mean square error
between the trendline and the data. The concepts are used as definitory suffixes in the naming
convention in Table 1.

Our findings for the highest singular force measurement over the entire load event
(F_total_max) are included for reference, because it has no shape prerequisites and is
computationally trivial. Therefore, it can be determined with even the most basic baropodo-
metric setups and wearable products. Maximum voluntary weight-bearing has been used
in clinical studies regarding stroke recovery [11], to evaluate distal tibial fracture [12],
and total hip arthroplasty recovery [13]. However, with the lower recording frequencies
of insoles compared to treadmills, there is an increased chance of missing the true force
maximum [14].

Parameter Analysis

All parameter data were aggregated per measurement and leg side (injured/non-
injured) using the arithmetic mean. Due to the computation requirements of all inter_max-
based parameters (F_trendline_max_slope, Time_inter_max, Time_inter_max_normalized),
they were only determined for regular strides as well as non-regular strides with more
than one maximum, but omitted for non-regular strides featuring a single maximum.
Preliminary investigation revealed vast differences in means between patients, which is
why Min-Max normalization was applied to facilitate between-subject comparability, using
the within-subject minimum and maximum values over all the measurements accordingly.

2.4. Statistics

We hypothesize an interrelation between the introduced, robust parameters and the
time spent in recovery. However, any single parameter will likely be insufficient to form
a predictive model, as previous studies have shown considerable variability even after
including additional biometric factors for gait parameters in healthy subjects [4]. To
determine the best function for the interrelation between each new parameter and the
time passed after surgery, the following types of functions were tested: linear, polynomial
(second and third degree), and logarithmic. First, a parametrized curve was fitted for
each relation, using a least squares approach. To eliminate obvious mismatches, the
fitting algorithm was capped at 500 attempts of parameter alterations and the relation
was discarded from further investigation in case an optimal parameter set yielding the
lowest least squares curve fit could not be found within those attempts. For the remaining
instances, a linear least squares regression analysis was performed on the parameter data.
These data were transformed according to the respective relation (if non-linear), with the
parameter value as the dependent variable and the recovery time in days after surgery
as the independent variable. A slope of zero was assumed as the null hypothesis, and a
Wald Test with a t-distribution of the test statistic was used to determine the p value of
this hypothesis test. Non-significant results (p ≥ 0.05) were discarded. From all significant
results, the best-fitting relation for each parameter–side pair was determined by selecting
for the lowest fitting error based on the optimized curve and coefficient of determination.

Trial Registration: This study was registered in the German Clinical Trials Register
(DRKS-ID: DRKS00025108). Ethical approval was obtained from the IRB of Saarland
Medical Board (Ärztekammer des Saarlandes, Germany, application number 30/21).
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3. Results
3.1. Patients

Overall, 13 patients with tibial fractures participated in this study, with repeated
laboratory assessments occurring from three to seven times in the period between 3 and
175 days after surgery. Radiographic imaging confirmed that all patients showed union of
the tibial fracture, as confirmed by a specialist orthopedic surgeon based on the clinical and
radiographic findings. Mean demographics are shown in Table 2.

Table 2. Demographics of the subject group.

N (male/female) 13 (5/8)

Age [y] 49 ± 14

Weight [kg] 75 ± 12

Body height [cm] 175 ± 10

Side injured (r/l) (4/9)

3.2. Stride Ratio Analysis

We used linear regression on the log-transformed ratio of regular strides (reg-
ular_ratio) to test whether post-operative days significantly predicted the parame-
ter availability on the injured and healthy sides. The fitted regression models were
log(regular_ratiohealthy) = −3.18 + 0.02 days_after_surgery (R2 = 0.506, p < 0.001, t42 = 6.89)
and log(regular_ratioinjured) = −2.38 + 0.014 days_after_surgery (R2 = 0.427, p < 0.001,
t42 = 5.83). The results are depicted in Figure 3. While a solid recovery trend was shown,
there were multiple instances of outliers producing few or no regular steps at all throughout
most of the rehabilitation phase, whereas only a few instances with a 100% regular ratio
existed. While three patients did not show any regular steps in the first week after surgery,
the other patients had a low ratio (mean of 0.07; SD of 0.04). Over the course of the entire
study, only about a third of all steps recorded could be considered regular (mean of 0.34;
SD of 0.30).
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ground reaction force curves.

3.3. Parameter Analysis

Table 3 shows the results of the parameter analysis, their relations, and the coefficients
of determination. Data are only shown if the respective parameter–side pair yielded
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significant results. All parameters had at least one significant fitting relation to post-
operative days for at least one side. The distinction between the injured and healthy
sides not only led to notable differences in R2 in some cases but was also essential for the
correlation of some parameters. These were L1_trendline_TP and Gradient_loading_slope,
which only showed a significant correlation with days after surgery on the injured side,
and F_trendline_TP_slope, Timer_inter_TP, Time_inter_TP_normalized, Time_inter_max,
and Time_inter_max_normalized on the healthy side. Figure 4 presents these regression
results graphically with a 95% confidence interval. Each subfigure features one parameter.
Depending on the side-specific results listed in Table 3, either one or both sides are shown
for a given parameter–relation pairing.
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Table 3. List of parameters that showed a significant (p < 0.05) correlation with days post-op with
corresponding relation type, coefficient of determination, p value, and test value given as t_value (df).
R2 values above 0.7 and p values below 0.001 are presented in italics.

Parameter Side Relation R2 p Value t-Test (df)

F_mean_TP Healthy Linear 0.381 <0.001 4.96 (42)

F_mean_TP Injured Linear 0.715 <0.001 9.89 (42)

F_total_max Healthy Logarithmic 0.141 0.020 2.57 (42)

F_total_max Injured Linear 0.722 <0.001 10.05 (42)

F_trendline_max_slope Healthy Linear 0.269 <0.001 3.84 (42)

F_trendline_max_slope Injured Linear 0.386 <0.001 4.97 (42)

F_trendline_TP_slope Healthy Linear 0.365 <0.001 4.79 (42)

L1_trendline_max Healthy Linear 0.255 <0.001 3.7 (42)

L1_trendline_max Injured Linear 0.369 <0.001 4.78 (42)

L1_trendline_TP Injured Square 0.245 0.001 3.56 (42)

L2_trendline_max Healthy Linear 0.223 0.002 3.39 (42)

L2_trendline_max Injured Linear 0.370 <0.001 4.78 (42)

L2_trendline_TP Injured Square 0.253 <0.001 3.63 (42)

Time_inter_TP Healthy Logarithmic 0.707 <0.001 9.83 (42)

Time_inter_TP_normalized Healthy Linear 0.479 <0.001 6.06 (42)

Time_inter_max Healthy Linear 0.363 <0.001 4.77 (42)

Time_inter_max_normalized Healthy Linear 0.162 0.008 2.77 (42)

4. Discussion
The present study used longitudinal insole-derived gait data from thirteen patients

with tibial fractures to determine the suitability of new parameters for studying recovery in
cases where the force curve of the stance phase is not regular. The most suitable parameters
were the highest overall force (injured), the mean force, and the time between enclosing
turning points (healthy). Several of the newly proposed parameters proved suitable when
analyzing gait data from patients with tibial fractures throughout the rehabilitation process.
However, most of the significant parameters were associated with low R2-values. We
therefore recommend also considering the R2-value when determining the suitability of
new parameters in a simple regression model.

The problem addressed in this study is that conventional parameters, such as pa-
rameters derived from the two maxima and the minimum in the classical M-shape of the
curve, cannot be used when these extrema are absent or ambiguous. The first maximum is
connected to the loading of the foot, followed by the in-between minimum. The second
maximum reflects the forceful push-off before the foot leaves the ground. As most parame-
ters could not be determined when the extrema were not present, there were limitations
in extracting insight from force-curve data for rehabilitation research. Previous studies
have analyzed parameters computed from the curve of healthy participants [4,15]. In
addition, simple asymmetry parameters have been found helpful in studying rehabilita-
tion after lower-leg fractures [10]. From a clinical perspective, it would be beneficial if,
in addition to radiography-based imaging, which shows the healing progress only with
a time delay and is associated with radiation exposure, gait analyses could be used to
monitor recovery after injuries in a timelier manner. The early diagnosis of healing delays
could allow earlier intervention [16]. Several recent studies have dealt with the use of



Sensors 2025, 25, 2475 10 of 15

wearables to continuously monitor recovery in the daily life of patients [17,18]. Advances
in the usability of instrumented insoles and their increasing recording frequencies have
opened up new possibilities for much timelier and more individual, patient-centered care.
Further studies now need to evaluate the suitability of the new parameters in other patient
groups with lower-limb injuries or disorders, and for the prediction of complications, with
further endpoints.

4.1. Stride Quality

The results of the stride ratio analysis showed a considerable proportion of non-regular
strides during the early stages of recovery. Even in the later phases of rehabilitation, it
was only possible to achieve a regular ratio of 100% in a few cases. This is not necessarily
an indication of a lack of recovery. In previous studies using the same insoles under
laboratory conditions, healthy participants reached about 80% regular strides without
the use of further data refinement strategies [4]. This finding underlines the necessity for
gait parameters, which are independent of idealized force-graph shapes. Our regression
analysis showed an association of a gain of regularity with recovery time.

4.2. Parameters

All proposed parameters correlated with days after surgery. However, some of them
had low variability and thus need to be handled with more caution. The side has a relevant
impact on healing patients [18]. For this reason, stride analysis should be performed
sidewise instead of with aggregates over all instances. Pooling GRF data of both sides
may still yield significant results, but model quality will likely decrease. Furthermore, the
one-sidedness of some parameters enables one-sided monitoring. Since there are several
instances of only the healthy side showing a significant correlation, it would also be feasible
to only measure this side during recovery. To reduce the risk of complications, i.e., delayed
union or non-union, multiple devices and concepts are in development that aim to provide
monitoring, live patient feedback, and means of active intervention through actuation [16].
When measuring forces through a smart implant with sensing and acting capabilities,
this implant will only be placed in the injured leg, which makes it of interest to identify
parameters that will work in this case. In relation to this, the highest model quality was
found for the reference measure F_total_max on the injured side. This finding shows that
rehabilitation monitoring using a single insole and a very basic baropodometric setup
already provides valuable data for the clinician. Furthermore, it underlines the importance
of side separation during analysis, as the F_total_max (healthy) model provides the weakest
results out of all significant models.

The model quality varied notably between parameters and sides. While almost all
significant parameter–side pairings yielded very strong correlations with recovery time,
the coefficients of determination (R2) ranged between 0.141 and 0.722 with only a few
reaching above 0.5. This is an indication that for a low R2, in most cases, the model
in question lacks additional independent variables. In order to produce a model with
predictive capability beyond just correlation, these factors would need to be identified and
included. This hypothesis is supported by the findings of Hollman et al. [19], in which
several biometric factors influence gait patterns to a point where established methods exist
to identify individuals based on GRF features [20]. These influences persist even after
weight/time normalization, although their impact is decreased [4,21,22]. A concurrent
explanation is the use of Min-Max scaling in our study, which normalizes features to the
range [0,1]. This approach was chosen to enable between-subject comparison and trend
analysis. However, the difficulty of curve fitting might be increased since Min-Max scaling
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is sensitive to outliers, which reduces the overall R2. When monitoring the progression of a
patient in the clinic, this Min-Max scaling is not necessary for a within-subject comparison.

In their general trends, most parameters described predicted behavioral changes
during recovery. The increase in error metric-based parameters (L1, L2) indicated an
increase in variance during the central parts of the stance phase, which can be explained
as a ‘de-plateauization’ of the gait pattern, e.g., development toward the distinct M-shape.
This is supported by the decrease in Time_inter_max and increase in Time_inter_max
normalized to the healthy side; the overall stride becomes quicker, and the maxima become
more pronounced, as the functional deficiency of the injured leg decreases [10]. This effect
also occurs in F_trendline_TP_slope (healthy), as the increase in the regression slope is
caused by a relative increase in the push-off phase. The continuous decrease in loading and
unloading slope gradients points toward a smoother unreeling behavior with less relative
impact shock, marking a return to natural heel-to-toe movement.

To the best of the authors’ knowledge, there are no other publications dealing with
a longitudinal parameter analysis of the GRF stance-phase curve specifically for altered
gait using insoles. Likewise, there has been related work on gait parameter derivation from
insole GRF data in patients with hemiplegia who vary distinctly in the plantar pressure
difference (PPD) between the feet [23]. The PPD and phase coordination index (PCI), which
determine motion asymmetry based on stride time differences, also distinguished between
stroke survivors and healthy individuals [24]. The PCI has further applications in the
analysis of geriatric patients and patients with Parkinson’s [25,26]. This approach was
refined and new additional indices were introduced to increase differentiation rates between
healthy adults and stroke patients [27]. A natural limitation of asymmetry parameters
such as PPD, PCI, and partially COP is the need for (spatio)temporal coherence. Therefore,
one-sided recording or the analysis of isolated, individual strides outside the context of a
walking bout is either impossible or non-sensical. This also applies to data contaminated by
temporal sensor drift, which is an inherent challenge of insole systems [28]. While sensor
drift has a negligible impact in a short-term laboratory setting, it is a factor in long-term
monitoring scenarios.

4.3. Correlation with Bone Healing

Fracture union in the present study was determined by an experienced specialist
orthopedic surgeon based on the clinical and radiographic findings combined. As all
patients healed quickly, this was considered sufficient for the present research question.
Scientifically, however, a quantitative method is desirable to correlate gait parameters with
healing progress. Currently, the availability of objective outcome parameters to quantify the
progress of fracture healing in patients is insufficient. Out of the few alternatives applicable
to human patients, the RUST score is among the most popular measures [29]. Based on
X-ray images, it considers whether the cortical bone has reached radiographic continuity.
However, an increase in calcification does not directly correlate with increases in fracture
stiffness [30]. In addition, radiographs would need to be taken at defined time points
to allow standardization and comparability in such a study, which would be associated
with additional exposure to ionizing radiation [31]. Computed tomography imaging
is associated with even higher radiation doses and therefore not an option. Magnetic
Resonance Imaging (MRI) is problematic in patients with metal implants due to artifacts
and therefore not an option either. Among the most promising emerging methods to study
fracture healing progress in vivo are Laser-Doppler and white-light spectroscopy [32] as
well as photoacoustic imaging [33].
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4.4. Limitations

There are several limitations to this study. The sample size decreased toward the later
time points. This patient number is the result of the single-center study design implemented
in a busy university hospital. Future studies may favor a multi-center study design. The
low patient number might have exacerbated the high variability found in the data, which
influences not only model quality but also the process of relation fitting. Furthermore, it
might be biased regarding both the rate and quality of the changes in gait features over
time in comparison to the general population. Although none of the patients showed any
complications, the usage of days after surgery as a time metric is prone to inter-subject
variability and might not be equally representative of a gain of function in the affected limb.

4.5. Further Applications

The findings of the present study are not only of relevance for patients with tibial
fractures but may also be useful for gait analyses in people with disabilities and neurological
disorders, i.e., cerebral palsy [34]. Animals with hooves, such as horses, generally do
not have an M-shaped GRF curve during the stance phase but usually show only one
maximum [35]. Similar findings were obtained for rabbits [36]. The new parameters may
be of use in analyzing gait in such animals.

Insoles facilitate studies conducted in real-world settings, enabling the measurement of
patients without supervision and within realistic environments. Periodic data transmission
allows for continuous monitoring over typical recovery periods lasting several weeks,
providing unprecedented insights into a patient’s gait development [18]. However, this
cutting-edge approach also presents new challenges. Individuals in their daily lives,
regardless of any handicap, generate a variety of load-bearing non-gait motion data that
must either be distinguished from regular gait data or be analyzed separately for potential
effects on recovery. Conceptually, this presents a challenge for the implementation of
stride detection algorithms that do not rely on additional information typically available
in a laboratory setting, such as video recordings or strict study designs: they must be
robust enough to detect wide varieties of strides without becoming prone to a possibly
greater variety of false positives. One potential solution is to employ machine learning
algorithms in various forms [37–39]. In the long term, a system taking into consideration
overall gait behavior, development over time, and lifestyle factors could permit prediction
and offer individualized feedback to patients [40,41]. In the short term, a live event
classification system could serve as a foundation for more complex prediction algorithms.
However, this approach faces a bootstrapping problem: the data required to train such a
system—extensively annotated GRF gait recordings—are the same type of data the system
is meant to produce. The substantial increase in data collected through near-continuous
measurement compared to isolated trials in a gait lab makes manual annotation impractical.
To the best of the authors’ knowledge, there is no existing data repository that meets
the essential criteria both qualitatively and quantitatively. Nevertheless, to develop a
meaningful machine learning application on a medium-to-large scale, robust analysis and
therefore annotation at the single-event level will be a likely prerequisite.

5. Conclusions
When using instrumented insoles to study the rehabilitation progress after tibial

fractures, classical parameters derived from the ground reaction force curve often cannot be
used to monitor early changes. We proposed new parameters applicable to individuals in
the early stages of recovery after a tibial fracture and hypothesized interrelation with days
after surgery. Among the newly proposed parameters, the mean force between enclosing
turning points, the absolute time between enclosing turning points, and the highest overall
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force appeared most suitable. The proposed parameters and the approach to assess the
number of regular strides enable new options for analyses and monitoring in rehabilitation
after tibial shaft fractures. Further studies might be able to formulate advanced models
that allow more explicit conclusions in relation to the process of healing or detection
of complications.
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