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Abstract
While local methods for image denoising and inpainting may use similar concepts,
their connections have hardly been investigated so far. The goal of this work is to
establish links between the two by focusing on the most foundational scenario on
both sides – the homogeneous diffusion setting. To this end, we study a denoising by
inpainting (DbI) framework. It averages multiple inpainting results from different
noisy subsets. We derive equivalence results between DbI on shifted regular grids and
homogeneous diffusion filtering in 1D via an explicit relation between the density
and the diffusion time. We also provide an empirical extension to the 2D case. We
present experiments that confirm our theory and suggest that it can also be
generalized to diffusions with nonhomogeneous data or nonhomogeneous
diffusivities. More generally, our work demonstrates that the hardly explored idea of
data adaptivity deserves more attention – it can be as powerful as some popular
models with operator adaptivity.
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1 Introduction
Investigating connections between different fields in image analysis has often been re-
warded with deep structural insights. Consider, for example, the link between variational
image inpainting [1–5] and optic flow computation [6–8] via the concept of the filling-in
effect. This effect is due to the smoothness term (regularizer) of the models, which inserts
information at locations where the data term is absent or small in magnitude. The gradient
flow for minimizing the variational energy functional leads to partial differential equations
(PDEs) with a diffusion term.

While the filling-in effect has an obvious benefit for image inpainting, it can also lead
to more powerful optic flow methods. It produces a dense flow field from the sparse in-
formation of the data term. Surprisingly, the parts of the flow field that are filled in by the
diffusion-like regularization terms are usually those with the highest confidence [9].

Figure 1 shows a similar but hitherto hardly studied effect when performing sparse in-
painting on noisy data. There the known data – the so-called mask – is a scattered set of
pixels. The noisy mask pixels remain unchanged during the process, while the unknown
areas in between are interpolated smoothly by averaging information from the noisy pix-
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Figure 1 Homogeneous diffusion (HD) inpainting on the test image peppers (256× 256 pixels, image range
[0, 255]) with additive Gaussian noise of standard deviation σn = 30 that we do not clip. The mask pixels are
randomly selected. Note that the inpainted pixels are more reliable, since they average noisy information from
the neighborhood. The visual difference is also reflected by the mean squared error (MSE): The MSE of the
noisy image in (b) is 904. Since the mask pixels are chosen randomly and are not changed by the inpainting,
the MSE at mask pixel locations in (d) is still approximately 900. However, the total image MSE in (d) is only 475

els. We thus again have a scenario, where the filled-in data are more reliable than the
known data. In the present manuscript we study how far this idea can lead us.

1.1 Our contribution
The goal of our work is to shed some light on the connections between PDE-based inpaint-
ing and denoising, two tasks which have coexisted for a long time, while their links have
hardly been studied so far. We bridge this gap by a detailed investigation of the uncon-
ventional idea of denoising by inpainting. To facilitate a rigorous mathematical analysis,
we focus on homogeneous diffusion. As will be explained below, it constitutes the most
transparent and most foundational setting in both worlds.

The present paper builds upon our previous conference publication [10], in which the
basic denoising by inpainting framework is established. This framework reconstructs a
denoised version of an image by averaging the results of multiple inpaintings obtained
from distinct masks. Furthermore, two concrete implementations of this framework are
proposed in [10]: The first uses shifted regular masks and allows establishing a relation
between denoising by inpainting and classical diffusion filtering in 1D, while the second
uses probabilistic densification to adapt the masks to the image structures and enables an
edge-preserving denoising behavior.

We extend the aforementioned results by a much broader study of the framework in [10],
providing a fundamental understanding of the connections between PDE-based image in-
painting and denoising. Since denoising methods can also be used as plug-and-play priors
in algorithms for solving inverse problems [11–13], our relations between inpainting and
denoising approaches may have an even broader application spectrum. Compared to [10],
we introduce the following additional contributions:

• We show that the heuristically motivated DbI framework from [10] can be seen as a
representative of a general probabilistic framework, for which we derive a sound
theory. We argue that the denoising result obtained with such framework is an
approximation of a minimum mean squared error (MMSE) estimate.

• We provide convergence estimates for the framework and propose a deterministic
sampling approach to boost the convergence.
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• We prove a general relation between the mask density of regular masks in the DbI
framework and the diffusion time of homogeneous diffusion filtering in 1D. We also
propose an empirical generalization of this result to 2D for uniform random masks.

• We integrate a step that optimizes the gray values at the selected mask pixels (tonal
optimization) into the DbI framework. We investigate its effect on the MMSE
estimate and perform experiments which confirm that tonal optimization can
improve the denoising performance of DbI in practice.

• We show that the different spatial optimization approaches in the DbI framework
correspond to specific posterior distributions. We compare two such strategies (that
presented in [10] and a novel one) in terms of quality and provide the formulations for
the respective probability distributions. Our experiments demonstrate that this data
optimization leads to an edge-preserving denoising behavior.

• We replace homogeneous diffusion inpainting in the DbI framework by biharmonic
inpainting and show that it is unable to improve denoising results. This confirms one
of our key insights: The hitherto hardly practiced data optimization can be as
powerful as widely used operator optimizations.

Why homogeneous diffusion? Our decision to focus on homogeneous diffusion is based
on several reasons:

• For denoising and image simplification, one should keep in mind that homogeneous
diffusion filtering is equivalent to Gaussian convolution. The Gaussian is the only
convolution kernel that is separable and rotation invariant. The diffusion evolution
generates a Gaussian scale-space representation [14–16], which is one of the most
widely-used scale-spaces and forms the basis of highly successful interest point
detectors such as SIFT [17] and its numerous variants.

• In inpainting applications, homogeneous diffusion is particularly popular in
inpainting-based compression [18], where one stores only a sparse subset of all pixels
and reconstructs the image in the decoding phase by inpainting. By optimizing the
stored data, homogeneous diffusion can achieve surprisingly faithful reconstructions
[19]. Moreover, its simplicity allows a detailed theoretical analysis [20], it frees the
user from specifying parameters, and one can achieve real-time performance on
current PC hardware even for large images [21].

• Last but not least, there exist already well-understood connections between diffusion
processes for denoising and other approaches, such as variational regularization
methods [22, 23] and wavelets [24, 25], but also deep neural network architectures
[26, 27]. Thus, establishing also connections to inpainting ideas gives more
comprehensive insights into various paradigms beyond diffusion-based denoising.

This discussion also implies that it is not the goal of the present paper to design novel
approaches that outperform the most recent state-of-the-art approaches for denoising or
inpainting. This is reserved for future research that may benefit from the foundational
insights in the our manuscript.

1.2 Related work
Since we consider image inpainting as well as image denoising, we give an overview of
some relevant methods from both fields and relate them to our work.
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PDE-based denoising and inpainting We borrow several ideas from sparse PDE-based
inpainting methods [18]. We mostly restrict ourselves to homogeneous diffusion inpaint-
ing [28], which can be implemented very efficiently [21, 29–33], and – in spite of its sim-
plicity – can produce convincing results for suitably chosen data [20, 34–40]. Especially
on piecewise constant images, such as cartoon images, depth maps or flow fields, homo-
geneous diffusion inpainting in conjunction with edge or segment information performs
very well [28, 33, 41–45]. This even allows some of these methods [43, 44] to outperform
HEVC [46] on such data. Nonlinear diffusion inpainting methods, e.g., edge-enhancing
diffusion (EED) inpainting [18, 47], can improve reconstruction quality for sparse inpaint-
ing, enabling lossy image codecs [18, 48, 49] competitive to JPEG [50] and JPEG2000 [51].
On the other hand, such methods are more complex due to their nonlinearity. This com-
plexity also carries over to the data optimization process. Higher-order inpainting oper-
ators can also be used for sparse inpainting [18, 36, 49, 52, 53], but can be more sensi-
tive to noise. The quality of PDE-based sparse inpainting approaches strongly depends on
the stored data, and in our denoising by inpainting framework we incorporate ideas from
spatial optimization [20, 30, 33, 34, 36–40] and tonal optimization [30, 36, 38, 39, 54]. To
interpret the filtering results of the denoising by inpainting framework, we compare to
classical diffusion-based image denoising methods. Aside from the simple homogeneous
diffusion [14], we also consider methods that adapt the diffusion operator to the given
image, namely linear space-variant diffusion [55] and nonlinear diffusion [56]. We choose
these methods because they are closest conceptually so we expect them to provide useful
insights.

Patch-based denoising and inpainting Patch- or exemplar-based methods are another
class of inpainting methods, and work especially well with textured data. The idea is to
copy similar patches from known to unknown regions. Efros and Leung have proposed
the first exemplar-based inpainting method [2], but many versions have been developed
since then (e.g., [57–60]), including the method of Facciolo et al. for sparse inpainting [61].
Inpainting approaches combining PDE- and patch-based methods have also been pre-
sented [62, 63]. Inspired by the method of Efros and Leung [2], a patch-based denoising
method called NL-means [64] has been proposed. It denoises an image based on a non-
local weighted averaging of similar image patches. Other algorithms such as the famous
BM3D algorithm [65] are also based on the filtering of image patches. These observations
further substantiate the ties between denoising and inpainting. The NL-means method
can even be interpreted as a case of a denoising by inpainting approach, although it does
not use the inpainting ideas as directly as we do. Of course, a direct application of patch-
based inpainting techniques would lead to the copying of erroneous noisy data, and not
to a denoising effect.

Sparse signal approximation A popular approach in the field of image denoising relies on
the idea that signals (and images) can be represented as a linear combination of a smaller
number of basis signals – so-called atoms – that are selected from a dictionary [66]. Such
a dictionary might for example consist of the basis vectors of a suitable transform, that
makes the signal representation sparse (e.g., a wavelet transform [67] or a discrete co-
sine transform (DCT) [68]). The task is to then find those atoms, that best represent the
given signal [69–71]. To fill in missing information in images, several authors also consider



Gaa et al. Advances in Continuous and Discrete Models         (2025) 2025:74 Page 5 of 38

sparse representations in some transform domain such as the DCT [72] or the shearlet
domain [73]. This shows another bridge between the two tasks of denoising and inpaint-
ing. Hoffmann et al. [31] relate linear PDE-based inpainting methods to concepts from
sparse signal approximation. They solve the inpainting problem with the help of discrete
Green’s functions [74, 75], which can be interpreted as atoms in a dictionary. This allows
for a sparse representation of the inpainting solution. Kalmoun et al. [32] follow a sim-
ilar approach by solving homogeneous diffusion inpainting with the charge simulation
method [76, 77]. An application of homogeneous diffusion inpainting with Green’s func-
tions is the video codec by Andris et al. [29]. We justify certain design choices within the
DbI framework with results from this field. Notably, homogeneous diffusion inpainting is
based on the idea that the Laplacian of the reconstructed image is mostly sparse. On the
other hand, the DbI framework combines multiple noisy sparse representations in order
to get a denoised but nonsparse representation. The latter can be studied rigorously from
a Bayesian denoising perspective, which is why we discuss this next.

Bayesian denoising The study of denoising has also been carried out from a probabilis-
tic perspective. Here, the assumption is that some prior information regarding the noise
distribution and/or the image distribution is available. This can be incorporated in a de-
noising framework through Bayes’ rule, such that the final denoised result is conditioned
on this information about the distributions. The latter provides a correspondence between
classical denoising variational methods and specific Bayesian priors [78–80]. The standard
approach is to employ statistical inference approaches, such as maximum likelihood (ML)
estimation, maximum a posteriori (MAP) estimation, or minimum mean squared error
(MMSE) estimation. Both the MAP and MMSE approach rely on a posteriori density, and
as such they require a model of the distribution of considered classes of images. One of
the first such models uses a Gibbs distribution for the prior [81]. Subsequently, a number
of works have built upon this idea. The most relevant to our setting is that by Larsson
and Selen [82], which studies MMSE estimation in the context of sparse vector represen-
tations. Our sparse inpaintings can be interpreted as such sparse vector representations.
Moreover, in the current work we show that the averaging performed in [10] is, in fact, a
Monte Carlo approach to approximate an MMSE estimate.

Cross-validation We also see the work of Craven and Wahba [83] on (generalized) cross-
validation as conceptually related to parts of our work. Cross-validation can be used to op-
timize parameters in denoising models [82–84]. It removes data points from given noisy
observations and judges the quality of a parameter selection in terms of the model’s capa-
bility to reconstruct the data at these locations. Related ideas are also pursued in [85].
Probabilistic densification [42] and sparsification [39], two concepts from spatial opti-
mization that we consider in our framework, also use the error of the inpainted recon-
struction at left out locations – in our case also on noisy data. Yet, both applications differ,
as the goal of the latter methods is to construct an inpainting mask and not to optimize
model parameters.

Neural denoising and inpainting In recent years, many very powerful methods for in-
painting and denoising have been proposed that rely on neural networks. They are, how-
ever, not a topic of our paper, since we aim at gaining structural insights into the con-
nections between inpainting and denoising. Such results on classical approaches are still



Gaa et al. Advances in Continuous and Discrete Models         (2025) 2025:74 Page 6 of 38

relevant in the learning era [78]. They may serve as foundations for deep learning-based
methods, and model- and learning-based approaches may be fused to obtain powerful
and transparent algorithms. It is our hope that in the long run, our insights can also be
beneficial to neural approaches.

1.3 Paper organization
In Sect. 2 we briefly introduce the basic idea behind diffusion filtering and its application to
image denoising and image inpainting. In Sect. 3 we present the framework for denoising
by inpainting from [10] and show that it can be interpreted as a Monte Carlo approach
for approximating an MMSE estimate. We additionally provide convergence results, and
suggest a method to boost the convergence by employing low-discrepancy sequences. In
Sect. 4 we relate denoising by inpainting with nonadaptive masks to classical diffusion
filtering. In Sect. 5 we present strategies for adaptively selecting the mask pixels in the
DbI framework, which leads to space-variant denoising behavior. Our experiments and
results are presented in Sect. 6, and we conclude the paper in Sect. 7.

2 Basics of diffusion filtering
In its original context of physics, diffusion is a process that equilibrates particle concentra-
tions. When working with images, we interpret the gray values as particle concentrations
and use diffusion processes as smoothing filters that balance gray value differences. To this
end, we define the original grayscale image as a function f : Ω → R, with Ω ⊂ R

2 being
a rectangular image domain. Similarly, u : Ω × [0,∞) → R denotes the evolving, filtered
image. Then the diffusion evolution is described by the following PDE:

∂tu(x, t) = div(g∇u(x, t)) for x ∈ Ω, t ∈ (0,∞). (1)

Here t denotes time, ∇ = (∂x, ∂y)T is the spatial gradient, div(v) = ∂xvx + ∂yvy is the spatial
divergence, and the scalar diffusivity g determines the local smoothing activity. We discuss
different choices of g in Sect. 2.1. Note that g can be extended to a diffusion tensor to
introduce anisotropy into the process [86], but since we do not consider such a case in
this paper, we refrain from discussing it here. We equip the PDE with an initial condition
at time t = 0 and reflecting boundary conditions at the image boundary ∂Ω:

u(x, 0) = f (x) for x ∈ Ω, (2)

∂nu(x, t) = 0 for x ∈ ∂Ω, t ∈ (0,∞), (3)

where n is the outer normal vector at the image boundary. Solving this initial boundary
value problem for u yields a family of filtered images {u(·, t) | t ≥ 0}.

2.1 Diffusion for image denoising
In image denoising the image f is a noisy version of the noise-free ground truth image fr .
In our case we assume zero-mean additive white Gaussian noise, i.e., f = fr + n with n ∼
N (0,σ 2

n ). Diffusion processes are good candidates for image denoising tasks thanks to
their smoothing properties. Depending on the form of the diffusivity g , different processes
are obtained.
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2.1.1 Homogeneous diffusion
By setting g ≡ 1, (1) simplifies to ∂tu = Δu, with Δu = ∂xxu+∂yyu being the Laplacian oper-
ator. The resulting process is known as homogeneous diffusion [14]. Its analytical solution
in the unbounded image domain R

2 is given by a convolution of the original image with a
Gaussian kernel Kσ with standard deviation σ =

√
2t. The resulting images {u(·, t) | t ≥ 0}

constitute the so-called Gaussian scale-space [14, 87]. Since g is selected to be constant,
the smoothing strength is the same across the entire image. Therefore, not only the noise
is reduced, but also semantically important image structures such as edges are smoothed.

2.1.2 Linear space-variant diffusion
To overcome the drawbacks of homogeneous diffusion, one can make the process space-
variant by selecting a diffusivity function that varies depending on the structure of the
initial image f [55]. This is called linear space-variant diffusion. If edges and other high-
gradient features are to be preserved, the diffusivity should be decreasing with increasing
gradient magnitude of the image, so that that the smoothing would be reduced at edges.
An example for a suitable function is the Charbonnier diffusivity [88],

g(|∇f |2) =
1√

1 + |∇f |2
λ2

, (4)

where | · | denotes the Euclidean norm. The contrast parameter λ > 0 is used to distinguish
locations where smoothing should be applied (for |∇f | 
 λ, we get gλ → 1) and locations
where it should be reduced (for |∇f | � λ, we obtain gλ → 0).

2.1.3 Nonlinear diffusion
Alternatively, one can make the diffusivity function g dependent on the evolving image u.
This allows updating the locations where smoothing is reduced during the evolution, by
choosing them based on the image u, which becomes gradually smoother and less noisy.
The resulting process ∂tu = div(g(|∇u|2)∇u) is nonlinear [56]. The feedback mechanism
throughout the evolution helps steering the process to achieve better results.

2.2 Diffusion for image inpainting
Diffusion processes can also be used to fill in missing information in images [28, 47, 89].
Particularly, they allow reconstructing an image from only a small number of pixels by
propagating information from known to unknown areas [18]. The set of known pixels is
called the inpainting mask and is denoted by K ⊂ Ω. To recover the image, the information
at the unknown locations is computed as the steady state (t → ∞) of a diffusion process,
while the values at mask locations are preserved. The parabolic inpainting formulation is
obtained by modifying (1) and (2) accordingly:

∂tu(x, t) = div(g∇u(x, t)) for x ∈ Ω \ K , t ∈ (0,∞), (5)

u(x, t) = f (x) for x ∈ K , t ∈ [0,∞), (6)

u(x, 0) = 0 for x ∈ Ω \ K , (7)

∂nu(x, t) = 0 for x ∈ ∂Ω, t ∈ (0,∞). (8)
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For g ≡ 1, (5) is the homogeneous diffusion PDE [14] and we talk about homogeneous dif-
fusion inpainting (also called harmonic inpainting). We almost exclusively consider ho-
mogeneous diffusion inpainting in the remainder of this paper, so we set g ≡ 1 in the
following. Instead of computing the steady state of the parabolic diffusion equation, we
may solve the corresponding boundary value problem:

–Δu(x) = 0 for x ∈ Ω \ K , (9)

u(x) = f (x) for x ∈ K , (10)

∂nu(x) = 0 for x ∈ ∂Ω. (11)

The problem may be written equivalently using the variational formulation

min
u

∫

Ω

|∇u(x)|2 dx, such that u(x) = f (x) for x ∈ K . (12)

This suggests the interpretation that the inpainting is designed to penalize the gradient
magnitude of the reconstruction, i.e., it inherently promotes smoothness. In order to sim-
plify the discretization of the boundary value problem formulation, we introduce a mask
indicator function c = 1K (we use the term mask synonymously for the set K and the func-
tion c), that takes the value 1 at points from K and 0 elsewhere. This allows us to combine
(9) and (10) into a single equation

(
c(x) + (1 – c(x))(–Δ)

)
u(x) = c(x)f (x) for x ∈ Ω. (13)

2.3 Discrete homogeneous diffusion inpainting
Since we are working with digital images, the above considerations need to be translated
to the discrete setting. We therefore discretize the images on a regular pixel grid of size
nx × ny. Then we write them as vectors of length N = nxny that are obtained by stacking
the discrete images column-by-column, e.g., f , u ∈R

N . Furthermore, let L ∈R
N×N denote

the five-point stencil discretization matrix of the negated Laplacian (–Δ) with reflecting
boundary conditions ∂nu(x) = 0 for x ∈ ∂Ω. Additionally, let C = diag(c) be the diagonal
matrix with the mask vector c ∈ {0, 1}N discretizing c, and let I be the N × N identity ma-
trix. Then the discrete version of (13) can be formulated as the linear system of equations,

(C + (I – C)L) u = Cf , (14)

and the reconstruction can be written explicitly as

u = r(c, f) = (C + (I – C)L)–1 Cf . (15)

The inverse of the inpainting matrix Mc := C + (I – C)L exists as long as C = 0 [33]. To
deal with the case C = 0, we define r(0, f) := 1

N 1Tf , i.e., we take the average. If we want
to approximate the image f instead of interpolating it over C, we can replace Cf with Cg,
where

g ∈ argmin
h : h|c̄=0

‖r(c, h) – f‖2
2. (16)
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Here h|c is the restriction of h to c and h|c̄ is the restriction of h to the complement c̄ = 1–c.
The optimization is thus only over h|c since the remainder of the values are irrelevant
for the inpainting result, so we set them to zero. The least squares problem is known as
the tonal optimization problem and we discuss its implications for the current work in
Sect. 3.1.1. Additionally, we observe that the reconstruction is linear in g. This motivates
us to write it as a linear combination of basis vectors with weights given by g|c . Let Bc :=
(M–1

c )|I×C be the restriction of M–1
c to the columns corresponding to nonzeros in c, and we

set m = ‖c‖0 to be the number of nonzeros in c. By denoting the columns as
{

bk
c
}m

k=1, i.e.,
Bc =

[
b1

c . . . bm
c
]
, we can write the reconstruction as

u = r(c, g) = M–1
c Cg = Bc g|c =

m∑
k=1

(g|c)k bk
c . (17)

We see that the columns of Bc are the basis vectors induced from r and c. They are also
termed inpainting echoes [39, 90]. We note that inpainting with g|c = f |c constructs the
interpolant over c in the space span(Bc) ⊆ R

N . Since the tonal optimization solution can
be written as g|c = (Bc)+f , where (Bc)+ is the Moore–Penrose pseudoinverse, we note that
r(c, g) = Bc(Bc)+f is the orthogonal projection of f on the subspace span(Bc) ⊆R

N , i.e., the
best approximant of f in this space.

3 Our denoising by inpainting framework
We now present the basic idea and the framework for denoising by inpainting proposed
in our conference paper [10]. Since the framework inherently links inpainting and denois-
ing, it is well suited to study connections between the two tasks. As previously mentioned,
we use diffusion-based inpainting – specifically homogeneous diffusion inpainting – for
image denoising, by only keeping a sparse subset of the noisy input data and by recon-
structing the rest. Inpainting on noisy images differs from the classical setting and poses
additional challenges. During the inpainting process, gray values at mask locations are
not altered. As they might contain errors from the noise, these mask pixels are less trust-
worthy than inpainted pixels, which combine information from their surrounding mask
pixels. While we want to exploit the filling-in effect in unknown areas, this observation
implies that a single inpainted image cannot give satisfactory denoising results. There-
fore, we compute multiple inpaintings with different masks and obtain the final result by
averaging them. This ensures that none of the pixels remain unchanged (unless a pixel is
contained in all masks). In the current work, we further mitigate the issue of noisy mask
pixels by employing tonal optimization (see Sect. 3.1.1). If we denote the n different masks
by {c�}n

�=1, we can generate the inpaintings {v�}n
�=1 via

v� = r(c�, f) =
(

C� +
(

I – C�
)

L
)–1

C�f . (18)

We obtain the final denoising result 〈u〉n by averaging,

〈u〉n =
1
n

n∑
�=1

v� =
1
n

n∑
�=1

r(c�, f). (19)

As we fix the inpainting operator (for a discussion of denoising by biharmonic inpaint-
ing see Sect. 6.4), the only freedom in the framework lies in the selection of the different
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masks. This is in contrast to the common strategy in denoising, where all available data is
used and the operator is optimized instead. To study the effects of different data selection
strategies, we will borrow several ideas from mask optimization for image compression. To
obtain multiple different masks as our framework requires, we rely on some degree of ran-
domness in the mask generation processes (see Sect. 5). Since we make use of stochastic
strategies, we formalize and study DbI from a probabilistic point of view in the following
subsection.

3.1 Probabilistic theory
As seen in (19), the denoised image is the result of averaging n inpaintings from n different
masks, that are generated by some mask optimization process. In the following, we inter-
pret this from a probabilistic point of view. This allows us to formalize the DbI framework
from our conference paper [10] and provides us with tools to study and boost the con-
vergence of our methods in Sects. 3.1.4 and 3.1.5, respectively. We take the masks {c�}n

�=1

to be independent and identically distributed samples from a predetermined distribution
conditioned on f , with a conditional probability mass function (PMF) p(c|f). Then the
estimator u converges to the following conditional expectation for n → ∞:

E[〈u〉n|f] = E

[
1
n

n∑
�=1

r(c�, f)

∣∣∣∣f

]
=

1
n

n∑
�=1

E[r(c, f)|f] =
∑

c∈{0,1}N

r(c, f) p(c|f). (20)

The second equality holds because the masks were assumed to be identically distributed,
and thusE[r(c�, f)|f] = E[r(c, f)|f] for any c sampled with the same PMF p. The third equal-
ity follows from the definition of the conditional mathematical expectation. We note that
from this probabilistic point of view, spatial adaptivity is provided through the design of
the PMF p. The following proposition shows that the DbI result constitutes a minimum
mean squared error (MMSE) estimate. This emphasizes its optimality under certain as-
sumptions.

Proposition 1 (DbI as an MMSE Estimate) The expectation (20) of the DbI averaging (19)
can be interpreted as an MMSE estimate under prior assumptions on the image and noise
distributions, i.e., it solves the minimization problem

min
u∈RN

E[‖u – w‖2
2|f] = min

u∈RN
E[‖u – r(c, f)‖2

2|f]. (21)

Proof We can rewrite the minimization problem (21) as

min
u∈RN

E[‖u – r(c, f)‖2
2|f] = min

u∈RN

∑

c∈{0,1}N

‖u – r(c, f)‖2
2 p(c|f). (22)

Taking the derivative with respect to u and setting it to zero results in the MMSE estimate

uMMSE = E[r(c, f)|f] =
∑

c∈{0,1}N

r(c, f) p(c|f). (23)

By (20) this is the same as the expectation E[〈u〉n] of the DbI estimator 〈u〉n. □
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The estimate uMMSE is close to f r (and 〈u〉n is close to f r), whenever v = r(c, f) with c ∼
p(c|f) provides a good model for the distribution from which f r is assumed to originate.
This formalization of DbI as an estimator for the MMSE estimate therefore provides an
additional justification for the DbI framework as an image denoising approach.

3.1.1 MMSE and tonal optimization
The classical DbI formulation (19) from [10] employs an interpolating inpainting. It is
natural to extend the framework to the best approximating inpainting, computing the
denoised image 〈u〉n as

〈u〉n =
1
n

n∑
�=1

r(c�, g𝓵), (24)

where the masks {c�}n
�=1 are selected as before, while {g�}n

�=1 are the solutions to the corre-
sponding tonal optimization problems (16). Next we show that after relaxing assumptions
on the gray values compared to Proposition 1, the MMSE estimate actually corresponds
to DbI with an approximating inpainting instead of an interpolating one.

Proposition 2 (DbI with Approximating Inpainting as an MMSE Estimate) The DbI re-
sult based on a best approximating inpainting (24) can also be interpreted as an MMSE
estimate, assuming that the gray values h are now also a random variable conditioned on f .

Proof Firstly, we note that the minimization problem for the MMSE now differs, as the
expectation has to be taken over the gray values h as well:

min
u∈RN

E[‖u – w‖2
2|f] = min

u∈RN
E[‖u – r(c, h)‖2

2|f]

= min
u∈RN

∑

c∈{0,1}N

E[‖u – r(c, h)‖2
2|f , c] p(c|f)

= min
u∈RN

∑

c∈{0,1}N

(∫

h∈RN
‖u – r(c, h)‖2

2 p(h|f , c) dh
)

p(c|f).

(25)

As before, differentiation with respect to u yields the MMSE estimate

uMMSE = E[r(c, h)|f] =
∑

c∈{0,1}N

E[r(c, h)|f , c] p(c|f), (26)

which is similar to (23), but now contains the expectation

E[r(c, h)|f , c] =
∫

h∈RN
r(c, h) p(h|f , c) dh. (27)

To compute E[r(c, h)|f , c], we need to know the a posteriori density p(h|f , c). If we assume
that the noise is normally distributed n = (r(c, h) – f) ∼N (0,σ 2

n I), and that the gray values
restricted to the mask h|c are normally distributed h|c ∼N (0,σ 2

h|c
I), then the expectation

can be calculated [82] as

E[r(c, h)|f , c] = Bc E[h|c|f , c] = Bc

(
σ 2

n

σ 2
h|c

I + BT
c Bc

)–1

BT
c f . (28)
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Since we do not know σh|c and because the assumption of the normality of the gray values
may not be a very plausible one, we can dispense away with it by taking σh|c → ∞, which
results in a tonally optimized inpainting:

lim
σh|c →∞E[r(c, h)|f , c] = Bc lim

σh|c →∞

(
σ 2

n

σ 2
h|c

I + BT
c Bc

)–1

BT
c f = Bc(Bc)+f . (29)

Using Bc(Bc)+f = r(c, (Bc)+f), the new MMSE estimate differs with (23) only in that we have
approximation instead of interpolation:

uMMSE =
∑

c∈{0,1}N

E[r(c, h)|f , c] p(c|f) =
∑

c∈{0,1}N

r(c, (Bc)+f) p(c|f). (30)

This corresponds exactly to the expectation of the approximating DbI formulation. □

We note that the above analysis did not require r to be linear in f except for the approxi-
mation of f . Given a fixed c, a natural extension to nonlinear operators could use nonlinear
least-squares to compute something similar to B+

c f . By using the approximating formula-
tion, we project the image onto the various subspaces induced by the inpainting operator
r and the mask c. We will show in Sect. 6.3.2 that in practice, tonal optimization is able
to improve quality and to reduce the variance of MMSE denoising, since it mitigates the
error from the interpolation of noisy mask pixels and provides representations that are
closer to f in terms of MSE.

3.1.2 Interpreting tonal optimization as MAP estimate
Not directly related to the classical averaging formulation of DbI, but nevertheless inter-
esting and a valuable extension, is the fact that spatial and tonal optimization for a single
inpainting can also be framed as a maximum a posteriori (MAP) estimate. In MAP esti-
mation, instead of minimizing the MSE, we want to find an inpainting w that maximizes
the posterior:

argmax
w

p(w|f) = argmax
c,h

p(h, c|f) = argmax
c,h

p(f |h, c)p(h|c)p(c). (31)

We have assumed that w = r(c, h) is an injection, so we have p(w|f) = p(r(c, h)|f) = p(h, c|f).
In the noninjective case, one gets a set

p(w|f) = p(r–1(w)|f) = p({h, c : w = r(c, h)}|f), (32)

which does not change the derivation meaningfully, except for introducing additional
technical details. Thus, for the sake of clarity, we proceed with the injective case, but a
similar argument holds in the general setting. The maximization problem (31) can be split
into two optimization problems:

max
c,h

p(f |h, c)p(h|c)p(c) = max
c

(
max

h
p(f |h, c)p(h|c)

)
p(c). (33)
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The inner one optimizes over the gray values h given a mask c, and the outer one optimizes
over the masks c. If we again assume that f = r(c, h) + n, where n ∼ N (0,σ 2

n I), then the
density p(f |h, c) is given by a Gaussian

p(f |h, c) =
1

(2πσ 2
n )N/2 exp

(
–

‖r(c, h) – f‖2
2

σ 2
n

)
. (34)

Assuming also that the gray values are normally distributed, i.e., h|c ∼N (0,σ 2
h|c

I), then the
minimization problem with respect to h is what we call the regularized tonal optimization
problem:

argmax
h|c̄=0

exp

(
–

‖r(c, h) – f‖2
2

σ 2
n

–
‖h|c‖2

2
σ 2

h|c

)
= argmin

h|c̄=0
‖Bch|c – f‖2

2 +
σ 2

n

σ 2
h|c

‖hc‖2
2, (35)

where the solution is the same as in (28), namely

h|∗c =

(
σ 2

n

σ 2
h|c

I + BT
c Bc

)–1

BT
c f . (36)

Note that this can already be used for denoising with just a single inpainting with a mask c,
provided that we know the ratio of the variances of the noise and the gray values. The above
expression suggests that we can then just apply a regularized tonal optimization to get the
best MAP estimate. As before, we may take σh|c → ∞ to get classical tonal optimization if
desired. Of course, we also need to optimize with respect to the masks according to p(c).
In fact, if we take p(c) = 0 for ‖c‖0 = m, and p(c) being equal for all ‖c‖0 = m, then we get
the spatial optimization problem with tonally optimized values

min‖c‖0=m
‖r(c, h|∗c (f)) – f‖2

2. (37)

If we take the interpolating case, we get the classical spatial optimization problem [39]

min‖c‖0=m
‖r(c, f) – f‖2

2. (38)

The above further motivates using spatial optimization for denoising in both the interpo-
lation and approximation cases; see Sect. 5.

3.1.3 Bayesian interpretation
In this subsection, we discuss how the above approaches fit in a general Bayesian perspec-
tive, which allows for meaningful interpretations of the occurring probabilities. This is
valuable as MMSE and MAP estimates rely on a posterior p(w|f). Using Bayes’ rule, this
posterior can be rewritten as

p(w|f) =
p(f |w)p(w)

p(f)
=

p(f |w)p(w)∫
RN p(f |w)p(w) dw

, (39)

where p(w) is the probability density function (PDF) for the distribution of images w from
which we assume f r to originate. The likelihood p(f |w) is the noise PDF, which in our case
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is a Gaussian. The term p(f) is just a normalization constant that is irrelevant in prac-
tice, since it is not a function of w. This shows that the task of finding a proper posterior
distribution corresponds to introducing an appropriate prior p(w) under a given noise dis-
tribution p(f |w). This is known to be crucial for good denoising performance of Bayesian
methods, and links our DbI framework to such approaches.

Incorporating the inpainting operator To introduce an inpainting operator r into the
above model, we make the assumption that any w is synthesized as w = r(c, h) for some
mask c and some gray values h|c . Since now the model depends on the masks we can
rewrite the PDF as

p(w|f) =
∑

c∈{0,1}N

p(w|f , c)p(c|f), (40)

which is where the conditional mask PMF p(c|f) comes into play – this is the other key
ingredient for DbI along with the inpainting operator. We will see that this PMF allows
us to introduce spatial adaptivity (Sect. 5.2, Fig. 9) for operators that are otherwise not
spatially adaptive. Finally, we can also rewrite p(w|f , c) using Bayes’ rule in order to relate
the above formulation to (39):

p(w|f , c) =
p(f |w, c)p(w|c)

p(f |c)
=

p(f |w, c)p(w|c)∫
RN p(f |w, c)p(w|c) dw

. (41)

This provides a similar interpretation, but now we have knowledge about the mask. As be-
fore p(f |w, c) models the noise, but now p(w|c) models the distribution of the gray values
defining w given c, i.e., the distribution of h|c . As before, the denominator is a normaliza-
tion constant that is not practically relevant.

The mask posterior Bayes’ rule allows us to explore further theoretical considerations
about the involved mask probabilities. We can study the mask posterior p(c|f) in more
detail, using

p(c|f) =
p(f |c)p(c)

p(f)
. (42)

Now p(c) models the probability of the mask c being generated (irrespective of f ) and p(f |c)

models some measure of the noise and image content in relation to the mask. In practice,
ideally the density 1T

E[c]/N should be chosen to be inversely proportional to the standard
deviation of the noise. Similarly if we know that the noise distribution is space-variant, or
if we suspect that features (e.g., edges) are present, we can choose the local density of c
to account for that: higher for more prominent edges, lower for higher noise variance.
The weight of these choices are modeled by p(f |c). Selecting p(c) is less trivial, as it needs
to match the mask distribution of natural images, i.e., the distribution of natural images
from the perspective of the masks used in the inpainting operator. It is simpler to choose
it based on the density, i.e., p(c) = p(‖c‖0/N), which makes it blind to spatial variations,
or to just choose it as a constant, if we have no data on it. Note that these considerations
are meant to provide a different view on the mask posterior and an alternative strategy on
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how to construct it. The adaptive mask selection methods that we consider in this work
directly induce a mask posterior p(c|f) and do not model p(f |c) or p(c). They are based on
strategies from the noise-free case in image inpainting and we adapt and extend them to
the noisy case. For all the approaches that we consider, we state their induced PMFs p(c|f)

(see Eq. (64), Proposition 5, Appendix B).

On the importance of the inpainting operator A crucial question is whether an inpainting
operator r is suitable for modeling natural images in a sparse and robust manner, such
that noise can be attenuated by averaging multiple nearby representations of a noisy image
from a lower-dimensional image manifold. For r being homogeneous diffusion inpainting,
we know that it has been used successfully for image compression of natural images with
low to medium frequencies [33]. Moreover, we present new results in Sect. 4 that relate
the MMSE estimate to homogeneous diffusion denoising. The large body of literature on
sparse image approximation and compression should provide a reasonable selection of
good inpainting operators r. In the current work we also consider biharmonic inpainting
(see Sect. 6.4).

Interplay between the mask PMF and homogeneous diffusion The basis vectors Bc for
homogeneous diffusion are generally low-frequent and smooth, with the local frequency
depending on the local density of the mask points. For a constant PMF p(c|f), i.e., a homo-
geneous mask density, we get a process similar to isotropic homogeneous diffusion, and it
is in fact approximately equivalent to it, as we demonstrate later in Sects. 4.2 and 4.3. As
such it also shares its drawbacks, i.e., smoothing equally over image structures and noise.
More sophisticated denoising methods such as space-variant diffusion allow for steering
the smoothing away from image structures by relying on a guidance image, e.g., the gra-
dient magnitude |∇u|. Similarly, we may use the PMF p(c|f) to guide the denoising. One
instance of a PMF that we consider is inspired by a result for mask selection in inpainting.
Belhachmi et al. [20] have argued that the local density of an optimal inpainting mask c
should be proportional to the pixelwise magnitude of the Laplacian |Lf |. In our setting this
translates to constructing a PMF p such that E[c|f] ∼ |Lf |; see Sect. 5.2.

3.1.4 Convergence
A question which arises is how well the estimator 〈u〉n approximates the MMSE estimate
uMMSE = E[〈u〉n|f] as a function of the number of samples n. We consider this scaling
behavior in the next proposition.

Proposition 3 (Convergence of the DbI Estimator) The root mean square error (RMSE)√
MSE(〈u〉n,E[〈u〉n|f]) between the estimator 〈u〉n and its expectation E[〈u〉n|f] scales as

O(n–1/2), where n is the number of sampled masks.

Proof We first recall that we can decompose the MSE between some estimator θ̂ and some
fixed parameter θ into a variance and a bias part:

MSE(θ̂ , θ ) = E
[‖θ̂ – θ‖2

2
]

= E
[‖θ̂ – E[θ̂]‖2

2
]

+ ‖E[θ̂ ] – θ‖2
2

= V[θ̂] + Bias(θ̂ , θ )2.

(43)
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If we consider the MSE between the estimator 〈u〉n and its expectation E[〈u〉n|f], the bias
vanishes and we have MSE(〈u〉n,E[〈u〉n|f]) = V[〈u〉n|f]. The variance V[〈u〉n|f] is given
by

V[〈u〉n|f] = V

[
1
n

n∑
�=1

r(c�, f)

∣∣∣∣f

]
=

1
n2

n∑
�=1

V
[

r(c, f)|f] =
1
n
V[r(c, f)|f]. (44)

The second equality holds because the masks are independent and identically distributed.
For a finite variance V[r(c, f)|f], the root mean square error between the estimator and its
expectation thus scales as O(n–1/2). □

3.1.5 Acceleration by low-discrepancy sequences
When the masks are random variables, as noted in Sect. 3.1.4, we have a somewhat slow
convergence of O(n–1/2). Informally this means that to decrease the RMSE by a factor 4
we would need 16 times as many samples. The natural question arises whether we can
do better by trading randomness for a more structured sampling strategy. The answer is
positive, as in the context of integration (and our problem can be framed as such with
respect to the counting measure), a prominent approach for speeding up convergence is
the use of low-discrepancy sequences. These sequences fill up space more uniformly than
random sequences. The uniformity is typically quantified using the (star) discrepancy of
the sequence. Theoretically, the Koksma–Hlawka inequality [91] allows one to bound the
numerical integration error, i.e., ‖〈u〉n – E[〈u〉n|f]‖2 in our case, by using the product of
the discrepancy of the sequence and the variation of the integrand. In practice this usually
translates to a convergence that can reach as high as O(n–1) which is much better than the
O(n–1/2) convergence for the purely random case. Experimental results illustrating a boost
to the convergence in the DbI setting are presented in Sect. 6.2.

4 Linking denoising by inpainting to homogeneous diffusion
The simplest approaches for mask selection in the DbI framework are those, that are in-
dependent of the image that is to be filtered (p(c|f) ≡ p(c)). We consider shifted regular
masks as well as randomly selected masks. They are characterized by a spatially flat ex-
pectation E[c] = const. In the following, we briefly introduce regular masks, show how
they can be used in the DbI framework and discuss the resulting filtering behavior. Then
we derive relations between DbI with regular masks and homogeneous diffusion filtering
in 1D. Afterwards, using random masks instead of regular masks, we empirically extend
those results to the 2D setting.

4.1 Regular masks
Regular masks are created by generating a pattern with each rth pixel in the x- and each
sth pixel in the y-direction being added to the mask. We can then shift such a mask in both
directions to obtain multiple masks. If we assume an nx ×ny pixel grid, we can create such
a regular mask via

ci,j =

⎧
⎨
⎩

1 if i mod r = 0 and j mod s = 0,

0 else.
(45)
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Figure 2 Comparison of homogeneous diffusion (HD) and denoising by inpainting with regular masks
(DbI-R) on the test image peppers with σn = 30. Figures 2(c) and 2(d) show the visual similarities of both
methods. Figures 2(d) and 2(e) illustrate the influence of the expected density 1T

E[c]/N on the smoothness of
the reconstruction: Fig. 2(e) was intentionally chosen with a density that is too low, resulting in too much
smoothing

We have r options of shifting this regular mask in the x-direction and s options in the y-
direction, adding up to n = rs total possible configurations. Denoting by p ∈ {0, . . . , r – 1}
and q ∈ {0, . . . , s–1} the shift in the x- and y-direction, respectively, we can write the shifted
masks as

cps+q+1
i,j =

⎧
⎨
⎩

1 if i mod r = p and j mod s = q,

0 else.
(46)

Clearly, the created masks are independent of the image. Furthermore, the mask density
is constant over the entire image, leading to the same smoothing strength at all locations,
solely determined by the total mask density, i.e., by the spacing. If r = s, this smoothing is
equally strong in the x- and y-direction. Visually one then observes a smoothing behavior
that resembles the one of homogeneous diffusion filtering (see Figs. 2(c) and 2(d)). The
influence of the mask density on the smoothing strength can be observed in Figs. 2(d) and
2(e).

The similarity between the methods can not only be observed visually, but also estab-
lished theoretically. Next we provide a derivation in the 1D case for regular masks relating
the diffusion time of homogeneous diffusion to the mask density in DbI.

4.2 Mathematical analysis in 1D
We consider a discrete 1D signal f and regular inpainting masks with spacing r and shift
p ∈ {0, . . . , r – 1}. It is known that in 1D, homogeneous diffusion inpainting and linear
interpolation are equivalent. Thus, an inpainted pixel at position i can be described in
terms of its two neighboring mask pixels. We denote the distance between the pixel i and
its neighboring mask pixel on the left by � := |i – p| mod r, which implies that for mask
pixels we have � = 0. Accordingly, the distance to the mask pixel on the right is given by
r – �. The interpolated value at pixel i for mask � + 1 is then

v�+1
i =

r – �

r
fi–� +

�

r
fi+r–�. (47)
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To obtain the final result, the inpaintings from the r shifted masks are averaged. We get

ui =
1
r

r–1∑
�=0

v�+1
i =

1
r

(
fi +

r–1∑
�=1

r – �

r
fi–� +

�

r
fi+r–�

)

=
1
r2

(
r fi +

r–1∑
�=1

�
(
fi–(r–�) + fi+(r–�)

)
)

,

(48)

where the last line reveals the general form of the filter in dependence of the spacing r.
The filter is given by a hat kernel with central weight 1/r and width 2r – 1. In Theorem 4
we demonstrate that this kernel can be seen as a consistent discretization of ∂tu = ∂xxu.
Consequently, convolution with such a kernel approximates Gaussian smoothing, which
explains the visual similarity of the results in Fig. 2. Since the spacing r determines the size
of the smoothing kernel, we explicitly see the connection between the mask density and
the smoothing strength. For the special case of r = 2, (48) yields

ui =
fi–1 + 2 fi + fi+1

4
, (49)

which is exactly a single step of an explicit scheme for homogeneous diffusion with step
size T = 1

4 and initial signal f (assuming grid size h = 1). If we reformulate (48) in a way that
resembles an explicit scheme for homogeneous diffusion, we can derive a general connec-
tion between the spacing r (and thus the density) of denoising by inpainting with regular
masks and the time step size of such an explicit scheme, which we state in Theorem 4.

Theorem 4 (Connection between Mask Density and Diffusion Time) Given the r shifted
regular inpainting masks in 1D, each of density d = 1/r, denoising by inpainting approxi-
mates explicit homogeneous diffusion at time

T =
1 – d2

12d2 . (50)

Proof In (48) we derived the general form of the filter corresponding to denoising by in-
painting with regular masks of spacing r as

ui =
1
r2

(
r fi +

r–1∑
�=1

�
(
fi–(r–�) + fi+(r–�)

)
)

. (51)

We can rewrite this in the following manner:

ui =
1
r2

(
r fi +

r–1∑
�=1

�
(
fi–(r–�) + fi+(r–�)

)
)

=
1
r2

(
r2 fi – 2

r–1∑
�=1

� fi +
r–1∑
�=1

�
(
fi–(r–�) + fi+(r–�)

)
)

= fi +
1
r2

r–1∑
�=1

�
(
fi–(r–�) – 2 fi + fi+(r–�)

)
,

(52)
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where we have used that
∑r–1

�=1 � = (r–1)r
2 . Then we may write

ui – fi =
1
r2

r–1∑
�=1

�
(
fi–(r–�) – 2 fi + fi+(r–�)

)

=
1
r2

r–1∑
�=1

�(r – �)2 fi–(r–�) – 2 fi + fi+(r–�)

(r – �)2

=
r–1∑
�=1

�(r – �)2

r2
fi–(r–�) – 2 fi + fi+(r–�)

(r – �)2 .

(53)

By approximating fi±(r–�) via a Taylor expansion and using the sampling distance h, we can
derive the time step size as

ui – fi =
r–1∑
�=1

�(r – �)2

r2
fi–(r–�) – 2 fi + fi+(r–�)

(r – �)2

=
r–1∑
�=1

(
�(r – �)2

r2

)(
h2 dxx f

∣∣
i +

h4(r – �)2

12
dxxxx f

∣∣
i + O(h6)

)

= h2
r–1∑
�=1

(
�(r – �)2

r2

)(
dxx f

∣∣
i + O(h2)

)

≈ h2
r–1∑
�=1

(
�(r – �)2

r2

)
dxx f

∣∣
i .

(54)

We end up with an approximation of an explicit scheme with time step size

T = h2
r–1∑
�=1

�(r – �)2

r2 =
h2(r2 – 1)

12
. (55)

Using that the density is the inverse of the grid spacing and setting h = 1, we derive the
final relation between T and the density d, given by

T =
1 – d2

12d2 . (56)
□

4.3 Empirical extension to 2D
To derive the relationship to the diffusion time in the 1D case we used the fact that the
solution of the Laplace equation with Dirichlet boundaries is given by linear interpolation.
That is, we know the closed form of the inpainting echoes in 1D. In 2D a closed form
solution for those is not known, however, it may be computed numerically. Thus our goal
is to establish a relationship between the diffusion time and the density numerically.

We take as a starting point the ansatz from the 1D case that the diffusion time T is given
as 1–d2

12d2 , but generalize it to the form T ≈ 1–dγ

βdγ . Provided that this conjecture is correct,
we only need to find the constants β and γ . Since regular masks only allow for a stepwise
adaptation of the mask density, they are not well suited for generating a large number of
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Figure 3 The fit based on the ansatz 1–dγ

βdγ
with β = 4.58, γ = 1.3 and the tabulated correspondence

between density and diffusion time. The results are obtained with denoising by inpainting with uniform
randommasks and an implicit scheme for homogeneous diffusion. They show that also in 2D our ansatz
captures the relation between mask density and diffusion time very accurately

data points at different densities. Therefore, we use uniform random masks instead, which
also have a spatially flat expectation, i.e., E[c] = const.

First, we numerically tabulate the relationship between the density and the diffusion
time. That is, given a density d we find the diffusion time T(d) which minimizes the dif-
ference between the filter matrices,

T(d) = argmin
T≥0

‖ADbI(d) – AHD(T)‖2
F . (57)

Here ‖ · ‖F is the Frobenius norm, and the matrices are the DbI filter matrix resulting from
a probability mass function for masks with expected density d, and the matrix modeling
homogeneous diffusion at time T using an implicit Euler discretization:

ADbI(d) := E
[
(C + (I – C) L)–1 C

]
,

1
N

1T
E[c] = d, (58)

AHD(T) := (I + TL)–1 . (59)

We estimate ADbI using 1024 sampled masks. Then, having the relationship d �→ T(d) we
find that T(d) ≈ 1–dγ

βdγ for β = 4.58, γ = 1.3, which is illustrated in Fig. 3. Note the high
quality of the data fit, which confirms the accuracy of the derived relation.

5 Spatial optimization for denoising by inpainting
As we have seen in Sect. 4, the use of nonadaptive masks restricts the DbI framework, as
it entails a nonadaptive smoothing behavior. Furthermore, our results from Sect. 3.1 em-
phasize the importance of spatial optimization in the context of image denoising. In [10],
an adaptive mask selection approach enables the framework to perform edge-preserving
image filtering, although the simple homogeneous diffusion inpainting operator by itself
is space-invariant. This approach thus implies a different paradigm for image denoising:
Instead of optimizing the denoising operator, one can optimize the data. In this section, we
will first present the strategy that was proposed in [10]. Then we propose an alternative,
simpler approach that eventually gains its power by the application of tonal optimization.
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5.1 Densification method
Two well-known mask selection strategies from image compression are probabilistic spar-
sification [39] and densification [42], which build the mask in an iterative way using a top-
down and a bottom-up strategy, respectively.

In probabilistic sparsification, we start with a full mask and take away the least important
pixels from a number of randomly selected candidates in each iteration. To identify those
pixels, we temporarily exclude all candidates from the mask and compute an inpainting.
Then the candidate locations with the highest local (i.e., pixelwise) reconstruction error
are added back to the mask as they are assumed to be the most important, while the others
remain permanently excluded. This process is repeated until the desired mask density is
reached. In probabilistic densification, the initial mask is empty and again a number of
candidate pixels are selected. Given an inpainting with the current mask (in the first step
some pixels have to be chosen at random) we select and add those candidates to the mask
that have the highest local reconstruction error.

In the noisy setting, special care is required as the pixel selection based on the local
reconstruction error is not reliable. The local error does not allow the algorithm to dis-
tinguish between noise and important image structures, such as edges. If a pixel contains
strong noise, this creates a large local error because – just like edges – the noise cannot
be reconstructed by the smooth inpainting. Introducing such a noisy pixel into the mask
is not desirable. We cure this problem by judging the importance of a pixel based on its
effect on the global reconstruction error. We do this by calculating a full inpainting for
each candidate pixel. While this improves the quality of the selected mask, it drastically
increases the run time.

Even though in the noise-free setting densification and sparsification yield results of
comparable quality [38], this is different when handling noisy data. For sparsification, we
initially have very dense masks. If we exclude candidate pixels from such masks, the re-
constructions often only differ at the locations of these pixels. Therefore, sparsification
tends to keep noisy pixels in the mask, even when a global reconstruction error is com-
puted. This problem does not occur in probabilistic densification, as for a sparse mask,
the candidate pixels have a global influence. The result of this effect is illustrated in Fig. 4.
Here, densification is able to select appropriate pixels that lead to an almost perfect result
while sparsification fails to reconstruct the image properly.

Thus, we opt for a probabilistic densification algorithm based on a global error compu-
tation, which is described in Algorithm 1 and has been proposed in [10]. An additional
advantage of this probabilistic densification method is that it does not only select pixels
at useful locations (e.g., close to edges), but also implicitly avoids picking pixels that are
too noisy, as they would have a negative impact on the reconstruction quality. The method
can be interpreted according to the probabilistic mask generation framework from Sect. 3,
and we provide the implied mask probabilities in the following proposition.

Proposition 5 (Mask Probabilities implied by the Densification Method) A mask c gen-
erated by probabilistic densification has the conditional probability density function

p(c|f) =
∑
σ∈Sm

pσ (c|f), (60)
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Figure 4 Comparison of sparsification and densification on a synthetic test image with σn = 30 [10]. For both
methods, the mask density d was optimized with a grid search with respect to the MSE. The noisy gradient
image is not reconstructed adequately by sparsification, since it favors keeping noisy pixels in the first
iterations due to localization. Densification does not suffer from this problem and thereby achieves a better
denoised reconstruction

where m = ‖c‖0 is the number of mask pixels, the sum is taken over the group Sm of permu-
tations of the ordering of the m mask pixels, and pσ (c|f) denotes the probability that the m
mask points were introduced in the order σ . The latter is the product of the probabilities of
selecting one mask pixel at each step,

pσ (c|f) = pm
σ (c|f) · · ·p1

σ (c|f). (61)

The probability of picking the kth mask pixel (according to the permutation σ ) at step k
has the following form:

pk
σ (c|f) =

α∑
β=1

1
β

(Neq–1
β–1

)(Ngt
α–β

)
(N–k

α

) , (62)

where α is the number of candidates considered per step, Ngt is the number of nonmask
pixels at step k that would have resulted in an inpainting with a higher MSE if they were
chosen instead of the kth mask pixel in σ , and Neq is the number of nonmask pixels that
would have resulted in the same MSE.

Proof We present the proof of this result in Appendix A. □

5.2 Acceleration via the analytic results of Belhachmi et al
As the global error computation in the previous approach requires calculating an inpaint-
ing for each candidate pixel, the run time is substantial. Therefore, we propose another
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Algorithm 1 Mask densification with global error computation [10]
Input: Noisy image f ∈R

N , number of candidates α, desired final mask density d.
Initialization: Mask c = 0 is empty.
Compute:

do
1. Choose randomly a set A ⊂ {k ∈ {1, . . . , N} | ck = 0} with α candidates.

for all i ∈ A do
2. Set temporary mask mi such that ∀k ∈ {1, . . . ,α} \ {i} : mi

k = ck , mi
i = 1.

3. Compute reconstruction ui from mask mi and image data f .
end for

4. Set c = argmin
mi , i∈A

MSE(ui, f). This adds one mask point to c.

while pixel density of c smaller than d.
Output: Mask c of density d.

approach, with the goal of a faster mask generation process. We refer to this method as
the analytic method. It is based on the results of Belhachmi et al. [20]. They have shown
that the mask density for homogeneous diffusion inpainting should be proportional to the
pointwise magnitude of the Laplacian |Lf |. Additionally, they suggest using the Gaussian-
smoothed version fσ := Kσ ∗ f of f even in the noise-free setting. Here Kσ is a discrete
approximation of a Gaussian with standard deviation σ . This step proves even more ben-
eficial in our setting, since we are calculating the Laplacian of noisy data, and regularizing
f helps considerably for constructing a reasonable guidance image |Lfσ |.

As we require multiple different binary masks for our framework, we sample from |Lfσ |
by using a simple and fast Poisson sampling. Given a density image d ∈ [0, 1]N , we can
sample a mask according to it by generating a uniform random number vi ∼ U[0, 1] for
each pixel i and then thresholding at di:

ci =

⎧
⎨
⎩

1 if vi ≤ di,

0 if vi > di.
(63)

Then the probability mass function pd for sampling a mask c given the density image d is

pd(c) =
1
P

N∏
i=1

(di)
ci (1 – di)

1–ci , P =
∑

c∈{0,1}N

N∏
i=1

(di)
ci (1 – di)

1–ci . (64)

By construction the mask would have an expected density equal to the mean value of d.
In our approach we set the per pixel probabilities to

d = min
{

C|Lfσ |, 1
}

, (65)

where the minima are taken pointwise, and C is a constant chosen such that the mean value
of d is equal to the desired mask density. Figure 5 shows the pipeline for mask generation
with this method. One can observe in Fig. 5(b) that d is strongly affected by the noise
despite the presmoothing. This is because we calculate second-order derivatives that are
even more sensitive to noise. When sampling from this image the mask is drawn towards
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Figure 5 Pipeline for mask generation with the analytic method. (a) Test image trui with σn = 30. (b) Target
image (without postsmoothing) from which masks are sampled. (c) Three examples of Poisson-sampled
masks. (d) Corresponding homogeneous diffusion inpaintings. (e) Averaged inpaintings (from 32 masks), final
denoising result

noisy pixels. To counteract this, we propose to perform an additional outer smoothing of
the probability image d, after the absolute value of the Laplacian is taken, thus modifying
it to

d = min
{

C
(

Kρ ∗ |Lfσ |) , 1
}

, (66)

with a postsmoothing parameter ρ . Our proposed selection strategy offers an instant gen-
eration of adaptive masks, in a sense that it does not require the calculation of any in-
painting. Furthermore, it provides a transparent formulation of the mask PMF (see (64))
and as such exhibits a specifically simple interpretation in the context of our probabilistic
framework in Sect. 3.1. On the other hand, contrary to probabilistic densification it does
not have a mechanism to avoid noisy mask pixels. To obtain the best possible results, the
presmoothing parameter σ , the postsmoothing parameter ρ , and the desired mask density
have to be optimized depending on the image content and the noise level.

Note that Belhachmi et al. [20] apply Floyd–Steinberg dithering [92], which includes an
error diffusion in the binarization process. This strategy can be equipped with a random
component in order to generate multiple masks, which makes it an alternative to Poisson
sampling for us. We have tested both methods and found that there is no advantage in us-
ing Floyd–Steinberg dithering. Thus, we opt for the simple Poisson sampling. Nonetheless,
we give the mask probabilities for sampling with error diffusion methods in Appendix B.

6 Experiments
In this section, we present our experiments. They evaluate our theories and compare the
different DbI strategies in practice. Firstly, we confirm the accuracy of the 1D relation
that we derived for DbI with regular mask in Sect. 4.2. We also display the corresponding
results in 2D. Next, we show that the theoretical convergence estimates from Sect. 3.1.4
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Figure 6 Comparison of denoising by inpainting with shifted regular masks (DbI-R) and homogeneous
diffusion (HD) on a one-dimensional signal (128th row of the test image peppers). We display a section from
the original signal and filtered versions obtained with denoising by inpainting with regular masks of spacing r
and homogeneous diffusion filtering with diffusion time T , calculated according to Theorem 4. We see that
both filters lead to very similar results, confirming that the approximation from the theorem is indeed realistic

also hold in practice and evaluate the gain through low-discrepancy-based sampling (see
Sect. 3.1.5). Furthermore, we assess the spatial and tonal mask optimization approaches.
To this end, we compare DbI to PDE-based methods of similar structural complexity.
Aside from homogeneous diffusion, we choose linear space-variant diffusion and nonlin-
ear diffusion as representatives of methods that are based on operator optimization. Lastly,
we consider the denoising by biharmonic inpainting to further investigate the question of
data optimization vs. operator optimization.

6.1 Relation between DbI and homogeneous diffusion
In Sect. 4.2 we derived a relation between the mask density d and the diffusion time T ,
given by T = (1 – d2)/(12d2). To confirm that this relation allows for a good estimate of the
diffusion time in practice, we perform an experiment on a 1D signal, which is generated
by extracting the 128th row of the peppers test image. Homogeneous diffusion is imple-
mented using explicit Euler and the spatial discretization from (49) with the number of
iterations chosen such that the desired diffusion time T is reached. The result in Fig. 6
demonstrates that the diffusion time obtained via Theorem 4 is a good approximation.

In Sect. 4.3 we extended this relation to 2D, yielding T = (1–dγ )/(βdγ ) with β = 4.58 and
γ = 1.3. To confirm this, we now consider the 2D peppers test image. We perform denois-
ing by inpainting with 1024 randomly selected masks, as well as homogeneous diffusion
filtering with the diffusion time calculated according to the above relation and compare
the results. The experiments in Fig. 7 visually and qualitatively confirm the accuracy of
the relation in 2D.

6.2 Convergence
As we have shown in Sect. 3.1.4 the estimator converges to its expectation at a rate of
O(n–1/2) with respect to the RMSE. In Sect. 3.1.5 we introduced the idea of using low-
discrepancy sequences. Theoretically, they should lead to much faster convergence, thus
here we test whether this also holds in practice. In the experiments we again use the
256 × 256 test image peppers. We use two sampling strategies for the masks, whose sam-
ple means c = 1

n
∑n

�=1 c� converge to the same expectation E[c|f]. As a representative of a
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Figure 7 Comparison of denoising by inpainting with 1024 randommasks (DbI-Ran) and homogeneous
diffusion (HD) on the test image peppers. The diffusion times T corresponding to the mask densities d are
calculated according to the result from Sect. 4.3. The MSE between (a) and (b) is 0.61 and the MSE between (c)
and (d) is 6.37. This shows that the empirically derived relation is accurate, even for longer diffusion times

low-discrepancy sequence we use the R2 sequence [93] to create a sampling threshold in
each pixel (see [93] for details). This leads to a more regular sampling pattern compared to
using a purely random threshold. To make the experiment relevant to realistic scenarios,
we use the analytic mask selection method from Sect. 5.2. We first test the mask conver-
gence. To this end, we create 216 = 65,536 masks via Poisson sampling and consider their
average as converged to the expectationE[c|f]. Then we sample masks with both sampling
strategies and observe how the RMSE between sample mean and expectation evolves with
n. Of course, we are more interested in the convergence of the DbI result 〈u〉n. Therefore,
following a similar approach as for the masks, we create an individual “converged” DbI
result for the two sampling methods, and again consider the RMSE between 〈u〉n and the
respective reference images. Figure 8 shows that the simple Poisson sampling leads to a
convergence rate of O(n–1/2) for the masks as well as for the DbI result, which is perfectly
in line with the theory from Sect. 3.1.4. Through low-discrepancy sampling this rate ap-
proaches O(n–1). By fitting a curve through the data, we get a convergence rate of O(n–0.77)

for the masks and O(n–0.78) for the DbI result. The O(n–1) estimate is typically achieved for
low dimensions, so the difference of our results can be explained by the high dimension-
ality of our sampling problem. The experiments confirm that the sampling strategy based
on low-discrepancy sequences is indeed able to improve the convergence in practice.

6.3 Data optimization for denoising by inpainting
In the next step, we investigate the edge-preserving filtering behavior achieved by the use
of adaptive masks. We first test the two spatial optimization methods and compare the
results to classical diffusion models. We show that DbI can yield results comparable to
certain space-variant diffusion methods. Then we discuss the effect of tonal optimization
in the DbI setting. It should be noted that these experiments are meant to provide an illus-
tration of the mask optimization strategies and not to achieve the best denoising quality.
As we have shown, these strategies can be applied in a more general setting than DbI with
homogeneous diffusion inpainting. They are valid for the general probabilistic framework
from Sect. 3.1, and as such they also extend to more complex operators (including non-
linear ones).

We perform experiments on the three standard test images trui, peppers, and walter with
a resolution of 256 × 256, that are corrupted with additive Gaussian noise with standard
deviations σn ∈ {10, 20, 30} that we do not clip. To ensure a fair comparison, we optimize
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Figure 8 Convergence results for denoising by inpainting with the analytic method with Poisson sampling
(PS) vs. low-discrepancy-based sampling (LD): (a) the convergence of the masks; (b) the convergence of the
DbI result

the mask density and if required the pre- and postsmoothing parameter for the denoising
by inpainting methods with respect to the MSE to the original image. We do this individ-
ually for each image and for each noise level using a grid search. In practice, these param-
eters need to be adapted to the noise level and the image content. We create 32 masks
with each of the mask selection methods, except for the regular masks where the num-
ber is determined by the spacing and thus by the density. For the proposed probabilistic
densification algorithm we set the number of candidate pixels per iteration to 16.

6.3.1 Spatial optimization
Firstly, we investigate the different spatial selection strategies proposed in Sect. 5 and com-
pare the denoising results with the standard diffusion methods presented in Sect. 2.1. For
the diffusion methods, which we discretize with an explicit scheme, we optimize the stop-
ping time and if required the contrast parameter of the Charbonnier diffusivity [88].

As can be seen in Table 1, inpainting with regular masks leads to unsatisfying results,
slightly worse than those obtained with homogeneous diffusion filtering. This is expected
given the connections derived in Sect. 4.1. Note that the stopping time in homogeneous
diffusion filtering can be tuned continuously, while the spacing of the regular mask can
only be adapted in integer steps. The analytic method based on Poisson sampling of the
smoothed Laplacian magnitude improves the results, especially at lower noise levels. Fig-
ure 9(c) shows how the mask pixels accumulate around important image structures, en-
abling an edge-preserving filtering behavior. The densification method is able to further
improve those results. The reason for this improvement can be seen in Fig. 9(d). On top of
selecting pixels at reasonable positions, the error in the mask is reduced drastically in com-
parison to the analytic method, because densification implicitly avoids noisy pixels. The
adaptive mask selection strategies enable the denoising by inpainting method to produce
results that are comparable to linear space-variant diffusion filtering. However, it cannot
reach the quality of nonlinear diffusion. This is not surprising, as a feedback mechanism
throughout the inpainting process is missing. Nonetheless, the results reveal that proper
data optimization enables DbI to compete with methods that optimize the operator, if they
are of comparable complexity.

Although qualitatively the densification approach is better than the analytic method, its
required run time is orders of magnitude larger, and this only gets worse for images of
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Table 1 Results (MSE) for denoising by inpainting with regular masks, the densification method and
the analytic method with 32 masks (fewer masks for the regular mask method). Comparison to
classical diffusion-based denoising methods

trui peppers walter

noise level σn 10 20 30 10 20 30 10 20 30

DbI regular 27.30 57.29 86.46 35.31 64.40 91.79 22.63 50.13 79.16
densification 19.34 42.72 68.01 24.36 47.27 69.89 13.40 29.65 47.65
analytic 21.49 49.71 79.79 25.14 51.70 79.91 16.41 37.83 62.08

Diff homogeneous 24.12 50.18 76.12 32.16 59.77 84.58 19.65 42.76 66.87
lin. space-var. 17.89 42.62 69.57 24.03 47.47 72.67 13.31 32.30 55.37
nonlinear 16.21 34.99 54.66 22.63 40.48 57.54 11.89 25.31 39.49

Figure 9 Results for denoising by inpainting with 32 masks (six masks for the regular mask method) for the
different spatial optimization methods on the test image peppers with σn = 20: (top) (a) original image, (b)–(d)
one representative out of all the masks for every method. The MSE is computed at mask pixels; (bottom) (a)
noisy image, (b)–(d) denoising by inpainting results with optimized parameters and the MSE in the entire
image. We see that our analytic method and the densification method adapt the mask point locations to the
structure of the image. Densification additionally avoids choosing noisy mask pixels, leading to a smaller error
in the mask pixels and eventually to a better reconstruction

higher resolution. Due to the required number of inpaintings, the densification method
takes about an hour to create a single mask with 10% density for our 256 × 256 pixel test
images. In contrast, the analytic and the regular approaches allow instant mask generation
in approximately a millisecond. Thus, the analytic method yields a reasonable spatial mask
pixel distribution in a very short time and clearly has potential, if the error in the mask
pixels can be reduced. We show next that this can be achieved by complementing the
mask selection strategies with tonal optimization.

6.3.2 Tonal optimization
As mentioned in Sect. 3.1.1, tonal optimization leads to an MMSE estimate that is approx-
imating instead of interpolating. If one assumes that mask pixels are erroneous due to the
noise, this is certainly a desirable behavior. We will evaluate its effect in the following. To
this end, we apply tonal optimization to the masks obtained by each of our spatial opti-
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Table 2 Results (MSE) for denoising by inpainting with regular masks, the densification method and
the analytic method with 32 masks (less masks for the regular mask method) including tonal
optimization. Comparison to classical diffusion-based denoising methods

trui peppers walter

noise level σn 10 20 30 10 20 30 10 20 30

DbI regular 22.32 48.77 76.06 32.65 60.92 87.05 16.36 39.54 64.45
densification 18.46 41.56 67.72 24.42 47.28 70.21 12.35 28.13 45.92
analytic 17.24 39.49 63.17 23.68 46.43 68.55 12.08 27.66 45.36

Diff homogeneous 24.12 50.18 76.12 32.16 59.77 84.58 19.65 42.76 66.87
lin. space-var. 17.89 42.62 69.57 24.03 47.47 72.67 13.31 32.30 55.37
nonlinear 16.21 34.99 54.66 22.63 40.48 57.54 11.89 25.31 39.49

mization methods. We optimize the tonal values for each individual mask, before once
again averaging the respective inpaintings to obtain the final denoised result.

The results in Table 2 reveal that the methods that do not consider the noise in the se-
lection process get the greatest boost in performance. This confirms the conjecture that
tonal optimization is able to mitigate the negative effect of noisy mask pixels selection. We
also observe that tonal optimization decreases the error in the mask pixels for those meth-
ods. In Fig. 9, the MSE at mask locations decreases from 405.09 to 271.80 for the regular
mask, and from 410.63 to 306.62 for the analytic method. For probabilistic densification,
tonal optimization barely changes the final results, as well as the mask MSE (which even
increases slightly from 345.23 to 356.12 in the example).

We see that tonal optimization enables the analytic method to produce results of quality
comparable to those of the densification method, and of better quality than space-variant
diffusion. Although the tonal optimization step takes some additional seconds, the ana-
lytic method is still orders of magnitude faster than the densification method. Figure 10
shows a selection of resulting images comparing the two adaptive mask selection meth-
ods with tonal optimization and linear space-variant diffusion, as the diffusion method
that leads to the most similar results.

6.4 Denoising by biharmonic inpainting
Our previous results reveal that optimizing the data instead of the operator constitutes an
interesting alternative for image denoising. To further substantiate this idea, we now adapt
the inpainting operator within the DbI framework. We consider biharmonic inpainting as
a representative of a higher-order polyharmonic operator.

It has been shown that the biharmonic operator can have quality advantages over homo-
geneous diffusion (i.e., the harmonic operator) in classical sparse inpainting [18, 36, 49].
Biharmonic inpainting is given by the PDE

(
c(x) + (1 – c(x))Δ2)u(x) = c(x)f (x) for x ∈ Ω, (67)

with Δ2u = ∂xxxxu + 2∂xxyyu + ∂yyyyu and reflecting boundary conditions ∂nu(x) = 0 and
∂nΔu(x) = 0 for x ∈ ∂Ω. It can be derived from the following variational formulation (anal-
ogously to (12)):

min
u

∫

Ω

(Δu(x))2 dx, such that u(x) = f (x) for x ∈ K . (68)
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Figure 10 Visual comparison of linear space-variant diffusion and denoising by inpainting with the
densification method and the analytic method on three test images with noise. Both DbI methods are using
tonal optimization

This shows that biharmonic inpainting penalizes second-order derivatives. Biharmonic
inpainting does not suffer from the typical singularities at mask points that homogeneous
diffusion inpainting produces. On the other hand it can produce over- and undershoots,
since it does not guarantee a maximum–minimum principle. We evaluate the potential of
biharmonic inpainting for denoising by comparing it to homogeneous diffusion inpaint-
ing. To ensure that the results reflect the quality of the operators, we first perform the
experiment on fully random masks.

Our results in Table 3 show that biharmonic inpainting does lead to an improvement,
and it is largest at low noise levels. This is to be expected, as the method is not as radi-
cal as homogeneous diffusion inpainting, since it penalizes second- instead of first-degree
derivatives. However, already tonal optimization as a first data optimization step neutral-
izes this advantage and the two methods perform similarly. These results support our
reasoning that data optimization plays a significant role for the denoising abilities of our
framework, being more important than the use of more complex, higher-order models.
Further experiments on spatially optimized masks (see Table 4) confirm our findings, and
even shift the advantage towards homogeneous diffusion inpainting. When comparing
to previous results from classical sparse image inpainting, one has to consider that the
singularities, that homogeneous diffusion inpainting suffers from, are suppressed by the
averaging in the DbI framework. Thus, this disadvantage of homogeneous diffusion in-
painting does not come into play in our scenario. Lastly, one should keep in mind that
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Table 3 Results (MSE) for denoising by inpainting with 32 randommasks using homogeneous
diffusion (HD) and biharmonic (BI) inpainting, without and with tonal optimization (TO)

trui peppers walter

noise level σn 10 20 30 10 20 30 10 20 30

HD, without TO 30.53 65.51 100.51 36.01 71.20 104.21 26.93 60.21 94.37
BI, without TO 24.23 56.37 93.51 33.28 66.61 102.49 19.16 48.19 82.92

HD, with TO 23.10 49.83 76.57 31.98 59.75 85.28 18.09 41.79 66.40
BI, with TO 22.21 49.74 77.25 33.27 61.84 87.92 16.52 39.53 65.03

Table 4 Results (MSE) for denoising by inpainting with 32 masks obtained with the analytic method
using homogeneous diffusion (HD) and biharmonic (BI) inpainting, without and with tonal
optimization (TO)

trui peppers walter

noise level σn 10 20 30 10 20 30 10 20 30

HD, without TO 21.49 49.71 79.79 25.14 51.70 79.91 16.41 37.83 62.08
BI, without TO 19.01 47.47 82.39 25.83 55.42 90.28 14.16 37.15 68.25

HD, with TO 17.24 39.49 63.17 23.68 46.43 68.55 12.08 27.66 45.36
BI, with TO 17.18 40.45 66.13 25.35 49.27 72.68 11.74 27.22 45.70

biharmonic inpainting leads to a higher condition number of the inpainting matrix, and
consequently each inpainting is numerically more burdensome and less efficient.

7 Conclusions
Our work is the first that links the tasks of PDE-based image inpainting and denoising in a
systematic way, by providing an explicit connection between homogeneous diffusion in-
painting and denoising through a relation between the diffusion time and the mask density.
Our denoising by inpainting (DbI) framework achieves denoising by averaging inpainting
results with different sparse masks of the same density. It constitutes a means to investigate
the connections between PDE-based denoising and inpainting and allows us to evaluate
the denoising potential of PDE-based inpainting methods. We have established a proba-
bilistic theory with convergence estimates for the framework, and have extended it to a
deterministic version by the use of low-discrepancy sequences. We have further shown
that this framework computes an approximation to an MMSE estimate. For nonadaptive
masks, we have linked the framework to classical diffusion via a one-to-one relationship
between the mask density and the diffusion time. We have demonstrated that a simple
operator can exhibit space-variant filtering behavior, when supplemented with adaptive
data selection strategies. Experiments with a higher-order inpainting operator, which can
be more powerful than homogeneous diffusion inpainting [18, 36, 49], have underlined
the importance of choosing appropriate data over more complex operators. For data opti-
mization specific to denoising by inpainting, we have presented two distinct, fundamental
strategies. The densification method from our conference paper [10] aims at finding pixels
that represent the data well. Thereby, it implicitly avoids the selection of noisy mask pixels
during spatial optimization. On the contrary, we have proposed a new approach, where
the selection of noisy pixels is tolerated in the spatial optimization but is compensated for
by the tonal optimization.

Our work constitutes an unconventional, new viewpoint on image denoising. By using
a simple inpainting operator but focusing on adequate data selection, we shift the priority
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from optimizing the filter model to optimizing the considered data. Moreover, our densifi-
cation strategy allows us to find the most trustworthy pixels in the data. This shows that
simple filter operators such as homogeneous diffusion can give deep insights into data. Last
but not least, we have seen that the filling-in effect is not only useful in variational optic
flow models and in PDE-based inpainting, but also in denoising. This emphasizes its fun-
damental role in digital image analysis, which is in full agreement with classical results
from biological vision [94].

While our focus in the present paper is on gaining fundamental insights into the poten-
tial of inpainting ideas for denoising, our future work will deal with various modifications
to make these ideas also applicable to more recent denoising methods. To this end, we are
going to consider more sophisticated inpainting operators [49] and data selection strate-
gies [95], including neural ones [96], and the incorporation of more advanced types of
data [97]. Such future work should also extend our theory to, e.g., space-variant and non-
linear operators.

Appendix A: Proof of Proposition 5
We derive the expression for the stated probability in Proposition 5 for step k + 1 here. At
the beginning of step k + 1, Algorithm 1 has already inserted k mask pixels yielding the
mask ck . At the end of step k + 1, we want to have inserted a new mask pixel that is not
in ck . Consequently, we can select a pixel only from the set Ik of remaining empty mask
pixel locations, with |Ik| = N – k. The algorithm samples a set X of α distinct candidates
from Ik uniformly at random (there are CN–k

α different ways to do so):

X = {X1, . . . , Xα ∈ Ik : Xi = Xj for i = j}. (69)

Then one chooses the candidate X∗ ∈X with lowest reconstruction error (with respect to
the noisy image f ):

X∗ ∈X ∗ = argmin
X∈X

Ek(X), Ek(X) := ‖r(ck + eX , f) – f‖2
2, (70)

where eX ∈ R
N is the zero vector modified with a one at the location corresponding to

mask point X. The minimizer does not have to be unique; in fact the set of minimizers

X ∗ = {Xi ∈X : Ek(Xi) = min
X∈X

Ek(X)} (71)

may have more than one element (|X ∗| > 1) in which case we choose X∗ uniformly at
random from X ∗ with probability 1

|X ∗| . This completes step k + 1, now with a specific
X∗ = x∗ and corresponding mask ck+1 = ck + ex∗ . If the desired number of mask points
have been achieved the algorithm ends, otherwise one proceeds to step k + 2 in the exact
same manner.

After we have inserted mask pixel x∗ ∈ Ik , we want to be able to compute the probability
Pr(X∗ = x∗) of this occurring. This is equal to the probability of x∗ having been selected as
a candidate,

Pr(x∗ ∈X ) = CN–k–1
α–1 /CN–k

α =
α

N – k
, (72)
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multiplied by the probability Pr(x∗ ∈ X ∗ |x∗ ∈ X ) that x∗ ends up in X ∗, which is in turn
multiplied by the probability Pr(X∗ = x∗ |x∗ ∈ X ∗) = 1

|X ∗| of having picked x∗ from X ∗

uniformly at random. We thus have the following chain of conditional probabilities:

Pr(X∗ = x∗) = Pr(X∗ = x∗ |x∗ ∈X ∗) Pr(x∗ ∈X ∗)

= Pr(X∗ = x∗ |x∗ ∈X ∗) Pr(x∗ ∈X ∗ |x∗ ∈X ) Pr(x∗ ∈X )

=
1

|X ∗| Pr(x∗ ∈X ∗ |x∗ ∈X )
α

N – k
.

(73)

We can write the terms involving X ∗ in the following manner:

1
|X ∗| Pr(x∗ ∈X ∗ |x∗ ∈X ) =

α∑
β=1

1
β

Pr(x∗ ∈X ∗ ∧ |X ∗| = β |x∗ ∈X ). (74)

The probability on the right-hand side can be rewritten as requiring β of the candidates
to have energy equal to Ek(x∗) and the remaining α – β having a strictly larger energy:

Pr(x∗ ∈X ∗ ∧ |X ∗| = β |x∗ ∈X )

= Pr

⎛
⎝

(
β∧

i=1

Ek(Xi) = Ek(x∗)

)
∧

⎛
⎝

α∧
j=β+1

Ek(Xj) > Ek(x∗)

⎞
⎠

∣∣∣∣∣x∗ ∈X

⎞
⎠ .

(75)

To compute the above probabilities, we would need to know the total number of pixels
from Ik with energy equal to Ek(x∗),

Neq := |{x ∈ Ik : Ek(x) = Ek(x∗)}|, (76)

and the total number of pixels from Ik having a strictly higher energy,

Ngt := |{x ∈ Ik : Ek(x) > Ek(x∗)}|. (77)

From the requirement |X ∗| = β , it follows that we need to choose β pixels that have energy
equal to Ek(x∗). However, x∗ ∈ X so Ek(X) = Ek(x∗) with probability 1 for at least one
candidate X = x∗. Then β – 1 elements Xi remain to be selected from Neq – 1 locations, the
total number of possibilities being CNeq–1

β–1 . Finally, the remaining α – β candidates must
be selected from Ngt locations, resulting in CNgt

α–β options. Using this we can compute the
probability

1
|X ∗| Pr(x∗ ∈X ∗ |x∗ ∈X ) =

α∑
β=1

1
β

CNeq–1
β–1 CNgt

α–β

CN–k–1
α–1

. (78)

Ultimately, we get the following probability for step k + 1:

Pr(X∗ = x∗) =
α

N – k

α∑
β=1

1
β

CNeq–1
β–1 CNgt

α–β

CN–k–1
α–1

=
α∑

β=1

1
β

CNeq–1
β–1 CNgt

α–β

CN–k
α

. (79)



Gaa et al. Advances in Continuous and Discrete Models         (2025) 2025:74 Page 34 of 38

Through the probabilistic densification procedure, the exact same mask c, with ‖c‖0 mask
pixels, can be constructed in ‖c‖0! different ways (the same set of mask pixels being in-
troduced in all possible orders). That is, we get the probability mass function pσ (c|f) over
masks that also retain the order of insertion of their mask pixels (e.g., we can modify c by
setting entries equal to one, to be equal to k – the step in which those were inserted). To
get the usual probability mass function over binary masks we need to sum up the above
probabilities over all ‖c‖0! permutations of point insertion orders. The main issue for prac-
ticality is that Neq and Ngt must be known, which would require evaluating all possible
|Ik| = N – k inpaintings for a single step. Nevertheless, Monte Carlo can be used to esti-
mate the probabilities.

Appendix B: Probability for error diffusion masks
Error diffusion half-toning (e.g., Floyd–Steinberg dithering [92]) can be used to produce
a binary mask c ∈ {0, 1}N from a continuous density image d ∈ [0, 1]N . The process in-
volves iterating over the image pixels (e.g., in serpentine order), binarizing a single pixel
at a given step, and then diffusing the error arising from the binarization to the set of cur-
rently nonvisited pixels. This results in a sequence of images d = d1, d2, . . . , dN+1 = c. The
binarization happens according to a thresholding step, which usually reads as

ck = dk+1
k =

⎧
⎨
⎩

0 for dk
k < 0.5,

1 for dk
k ≥ 0.5.

(80)

Since we want to get multiple masks stochastically, we randomize the process by sampling
a uniform random number vk ∈ [0, 1] for pixel k, and then perform thresholding:

ck = dk+1
k =

⎧
⎨
⎩

0 for dk
k < vk ,

1 for dk
k ≥ vk .

(81)

Then the probability mass function for mask c constructed from density image d is

pd(c) =
1
P

N∏
k=1

(dk
k (c))ck (1 – dk

k (c))1–ck , P =
∑

c∈{0,1}N

N∏
k=1

(dk
k (c))ck (1 – dk

k (c))1–ck . (82)

In the above dk
k (c) are assumed to be clamped to [0, 1]. Note that while this bears similarity

to Poisson sampling (see (64)), the probability dk
k (c) is conditioned on the probabilities in

the k previous steps. Algorithmically, it is trivial to compute the numerator of the proba-
bility during the error diffusion process.
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