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Dynamical phases of a Bose-Einstein condensate in a bad optical cavity at optomechanical resonance
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We study the emergence of dynamical phases of a Bose-Einstein condensate that is optomechanically coupled
to a dissipative cavity mode and transversally driven by a laser. We focus on the regime close to the optomechani-
cal resonance, where the atoms’ refractive index shifts the cavity into resonance, assuming fast cavity relaxation.
We derive an effective model for the atomic motion, where the cavity degrees of freedom are eliminated using
perturbation theory in the atom-cavity coupling and benchmark its predictions using numerical simulations based
on the full model. Away from the optomechanical resonance, perturbation theory in the lowest order (adiabatic
elimination) reliably describes the dynamics and predicts chaotic phases with unstable oscillations. Interestingly,
the dynamics close to the optomechanical resonance are qualitatively captured only by including the corrections
to next order (nonadiabatic corrections). In this regime we find limit-cycle phases that describe stable oscillations
of the density with a well-defined frequency. We further show that such limit-cycle solutions are metastable
configurations of the adiabatic model. Our work sheds light on the mechanisms that are required to observe
dynamical phases and predict their existence in atom-cavity systems where a substantial timescale separation is

present.
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I. INTRODUCTION

Ultracold atomic gases interacting with an optical cavity
have become a very versatile platform to study out-of-
equilibrium physics. In this setup the cavity field mediates
long-range interactions and dissipation [1-4] which enables
the atoms to form new phases of matter [5-22] and exhibit
dynamical features including fast relaxation [23-27], prether-
mal dynamics [28-32], and long-lived oscillations [33-35].
The plethora of effects found in such systems along with
their simplicity makes them an ideal platform to explore and
describe new physics.

Several works [36-50] in this field study the emergence
of dynamical phases where a true stationary state is not
reached on experimentally relevant timescales. These phases
have been connected to time crystals [34,37,43,45,51,52] and
require a combination of long-range interactions, nonlinear
feedback, e.g., due to a dynamical Stark shift which depends
on the atomic pattern, and dissipation from photon losses.
Such phases have been reported for blue [36,43] and red
atom-laser detuning [42,53]. However, the mechanisms that
result in the emergence and stabilization of such dynamical
phases are still not fully understood. In particular, it is an
open question whether such dynamical phases can exist in the
presence of a large timescale separation between the atomic
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and cavity degrees of freedom, where the latter can be adia-
batically eliminated from the dynamics.

In this paper we explore the underlying mechanisms
that results in the emergence and stabilization of dynamical
phases. What is key for the existence of these dynamical
phases is the optomechanical resonance that emerges because
the atoms act as a dynamical refractive index that shifts the
cavity frequency, such that certain patterns can compensate
for the bare pump-cavity detuning. We assume the so-called
bad cavity regime where the cavity relaxation rate is the
largest characteristic frequency of the dynamics. We derive
a mean-field Hamiltonian for the atomic degrees of freedom
using perturbation theory in the atom-cavity coupling. In
second order this model includes the effects of the optome-
chanical frequency shift and of the cavity dissipation. We
determine the steady-state solution and the dynamical insta-
bility in this regime, which we denote by “adiabatic.” We then
include the next-order corrections (nonadiabatic corrections)
and identify regimes where the adiabatic approximation fails.
In particular, we find limit-cycle phases that undergo a stable
dynamical orbit only in the instability region that exists when
including nonadiabatic corrections. Surprisingly, the adiabatic
mean-field Hamiltonian is sufficient to describe the dynam-
ics of this phase indicating that the limit-cycle phase is a
metastable configuration that coexists with the ordinary sta-
tionary self-organized state. The role of nonadiabatic effects
is to destabilize the stationary state and to damp excitations
around the limit-cycle solutions.

Our paper is structured as follows. In Sec. II we introduce
the theoretical description of the coupled atom-cavity system.
In addition, we establish the parameter regime and present the
phase and stability diagrams. Next, in Sec. IIl we show the
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FIG. 1. Schematic of a experimentally realizable setup. A Bose-
Einstein condensate (BEC) of ®’Rb in the dispersive regime is
trapped inside an optical cavity and is transversely driven by a co-
herent pump laser with Rabi frequency 2 that is far red-detuned with
respect to the atomic transition of interest. The BEC is coupled to a
single dissipative mode with decay rate k.

real-time quench dynamics of the rescaled intensity for the
full, adiabatic, and nonadiabatic descriptions. We also demon-
strate the metastability of self-organized and limit-cycle states
when considering adiabatic dynamics. Finally, in Sec. IV we
summarize our results and provide a brief outlook.

II. THEORETICAL DESCRIPTION
A. Model

We consider a Bose-Einstein condensate (BEC) that is
transversely driven by coherent light far red-detuned with
respect to an atomic transition (Fig. 1). In this work we study
the dynamics of the BEC along the cavity x axis which is
strictly justified if the atoms are tightly trapped along the
two spatial dimensions transverse to the cavity x axis. The
atoms interact with a single-mode of a high-finesse cavity
with a standing-wave cavity mode function proportional to
the atom-cavity coupling strength Gycos(k.x), where G is the
vacuum Rabi frequency and k. is the cavity wave number. We
work in the dispersive regime which requires a pump detuning
|Ay| = |, — wq| > v, where 2y is the full atomic linewidth
at half maximum. In this regime the atomic excited state will
be negligibly populated and can be eliminated resulting in
the coherent scattering of pump photons into the cavity. The
Hamiltonian in second quantization is given by [1]

H = —hAdata + Hn + iUpa aB + hn@* +a)d, (1)

and is reported in a reference frame rotating at the pump laser
frequency w,. Here A, = w, — w, is the bare cavity detun-
ing with respect to the pump, a'(a) is the bosonic creation
(annihilation) operator for the cavity photons, Uy = gg /A4 s
the dynamical Stark shift, and n = QGy/A, is the coherent
scattering rate of pump photons into the cavity. We further
introduced the kinetic energy

2 2

N n h
Hiin = Wx)(——

— ¥ (odx, 2

- 8x2)w(x) x )
where m is the atomic mass and x[?*(x) (1/7(x)) is the atomic
field operator that creates (annihilates) a particle at position x.
The central quantities for describing the collective effects of

the atomic densities are the bunching parameter

B= / U f (x0)cos? (kex) ¥ (x)dx, (3)

and order parameter

B = / ¥ T (x)cos(kex)y (x)dx. 4)
A large value of (B)yp > 1/2 implies that the bunching
of atoms are close to the field antinodes. In addition, when
the order parameter is |(9)mp| > O the atoms will form an
effective Bragg grating (A, pattern) in the cavity which sup-
ports constructive interference of scattered pump photons.
Here (.)pmp denotes the expectation value taken over the many-
body state of the atoms and cavity. We mention at this point
that both of the atom-cavity couplings proportional to U
and 7 induce effective atom-atom interactions mediated by
the cavity photons. Additional atom-atom interactions such
as s-wave collisions are not taken into account in our paper
but are studied in Refs. [36,53] where it was shown that the
emergent phases possess a certain stability with respect to
weak interactions. The reason that we do not include short-
range interactions in our draft is that we want to focus on the
minimal physical mechanisms that are required to realize the
dynamical phases. Strictly speaking this limits our work to
timescales where collisions have not significantly perturbed
the dynamics.

B. Mean-field theory

We adopt a mean-field description to model the dynam-
ics of the coupled atom-cavity system with a generalized
Schrodinger equation

oY) .
ih—— = Hur(@)|¥), )
ot
where we introduce the mean-field Hamiltonian
~2
Hop(a) = ;; + ENUola’B + iW/Ni(a + )0,  (6)
m
and p = —ihd/0x is the momentum operator. In this equa-

tion we have introduced the mean-field wave function
(x||¥) = (F(xX))ms /«/ﬁ and rescaled cavity field amplitude
o = (2)mp/v/N. We define the single-particle operator de-
scribing the bunching parameter B = cos?(k.£) and order
parameter ® = cos(k.%). The mean-field atomic state is cou-
pled dynamically to the cavity field amplitude which evolves
according to

da(t
‘;ﬁ ) _ (i5, — )a(t) — iVNn®. (7
Here we introduced the effective cavity detuning
8. = A, — NUyB, ®)

and expectation values B = (B), ® = (©), where (0) =
(¥|O]yr) for any single-particle operator O. Within the mean-
field treatment we assume that we can factorize second-order
moments of annihilation and creation operators as prod-
ucts ofA first-order moments. Also, the expectatiAon values of
B = (B)mp/N, © = (§)mp/N, and (x||) = (¥ ())ms/VN
are a consequence of the definitions in Eqgs. (3) and (4).

013518-2



DYNAMICAL PHASES OF A BOSE-EINSTEIN ...

PHYSICAL REVIEW A 111, 013518 (2025)

C. Parameter regime

In this paper we want to analyze the onset of dynamical
phases for this atom-cavity system. To see their existence we
require that the atom-cavity system is close to optomechani-
cal resonance which is determined by §. = 0. Assuming the
resonant case we can calculate the corresponding value of
B = A./(NU,). Note that B being 0 < B < 1 shows that it
is important that |A.| < |[NUp|. In contrast to Ref. [36], but
similarly to Ref. [53] we work in the regime of red atom-pump
detuning A, < 0 and red bare cavity detuning A, < 0. As a
consequence, the dynamical Stark shift is negative, Uy < 0.
This means that in the presence of a nonzero cavity field the
atoms can minimize their energy by localizing close to the
antinodes of the cavity mode profile. To garner an intuition of
this process it is convenient to set d«/dt = 0 to solve for the
stationary state

_ VNn®

= . )
=S ix
Substituting this result in the Hamiltonian (6) we find
~) 202 2
N p ANUNn“®~ . 2h6.Nn~©® .
H, = — 0. 10
mf (20) o 2+ e (10)

For our parameters we have in general §. < 0 and Uy < 0
such that the mean-field potential energy can be reduced by
increasing ®2 and B. Thus a 8. < 0 favors organized and
bunched atomic ensembles. However, an increasing value of
B can result in a blue-shifted value of 5. [Eq. (8)] making
the organization of the atomic ensemble less “attractive.” This
negative feedback loop has been shown to give rise to dynam-
ical and oscillatory phases that do not reach a true stationary
state [53]. In contrast to previous theoretical papers, we study
the bad cavity situation where the cavity evolves much faster
than the atomic degrees of freedom «, |A.| > w,, \/]V n, with
recoil frequency w, = fik?/(2m). Working in this regime has
two main implications. First, because of sufficiently weak
coupling between the cavity and atoms, the occupation of
hybrid atom-cavity states is largely suppressed. This implies
that one can treat the atoms and cavity to good approximation
separately. Second, the relaxation of the cavity is fast and
therefore one can eliminate the cavity degrees of freedom
from the atomic equations using perturbation theory. Working
in this regime also makes our work experimentally relevant.
To demonstrate this we have chosen the parameters to be
similar as in the experiment of Ref. [5] for a BEC of 87Rb.
The parameters we have chosen here correspond to the top
left quadrant of Fig. 5(a) in Ref. [5] where the system is close
to optomechanical resonance and a frustrated system has been
predicted Ref. [54].

D. Imaginary time phase diagram

We follow the general intuition that the underlying mean-
field wave function is the ground state of the mean-field
Hamiltonian. To find this wave function we employ an
imaginary-time propagation method (ITPM) along with the
adiabatic elimination of the cavity field dynamics. This
method has been used in several works [13,53,55]. The sta-
tionary field of the photons is given by Eq. (9) and by

substituting T = it, Eq. (5) becomes

20— Afly) (11
ot

with AH = Hmf(a()) — (ﬂmf(a0)> and the mean-field
Hamiltonian given by Eq. (10). Evolving Eq. (11) over long
imaginary times t results in what we expect to be the ground
state. We comment at this point that Eq. (11) guides the dy-
namics to a stationary state of the mean-field equation which
is an eigenstate of Hor(oo). The properties of the numeri-
cally found eigenstates are discussed in the following. We
now present the steady-state mean-field imaginary-time phase
diagrams of the rescaled cavity field intensity |ag|?, order
parameter |®|, and effective cavity detuning §. as a function
of the bare cavity detuning and effective cavity pump strength
V/N7. In this paper we will vary ~/Nn keeping the atom
number N constant. In an experiment that corresponds to
changing the driving laser intensity. Above a critical pump
strength defined by

_ (AL'_NU0/2)2+K2 12
VNne = \/ WU, — 280 Ve (12

which has been derived in Refs. [53,55], we expect the system
to be self-organized. For small values of +/N7 and A, we find
a vanishing photon number || [see Fig. 2(a)] and order
parameter ® [see Fig. 2(b)]. Beyond the threshold marked
by Eq. (12) we find a nonvanishing photon number and self-
organized density grating ® # 0. In Fig. 2(c) we see how the
effective cavity detuning §, = (A, — NUpB) changes in the
V/Nn — A, plane. Outside of the threshold the system remains
in a homogeneous BEC with a fixed bunching parameter of
B = 1/2. Which results in §, being invariant under changes
in ~/N7. Within the threshold we see for a large range of
A, and N n, the effective cavity detuning §. is near zero.
This means the bare cavity detuning and the dynamical Stark
shift are of equal value, i.e., A, & NUpB. Interestingly, the
atoms organize into patterns which satisfy the optomechanical
resonance and therefore the state found by the imaginary-
time evolution moves onto optomechanical resonance until
A. =~ NU,. Beyond this line, for A, > NU,, the system be-
comes strongly organized as seen in Fig. 2(b). The formation
of a deep Bragg grating, |®| 5 1, requires the dispersive
cavity-mediated forces to be mostly pronounced which ap-
pears in the regime —§, > « [Fig. 2(c)]. The cavity field
intensity [Fig. 2(a)] exhibits a maximum around A, ~ NU
due to a combination of a highly organized atomic ensemble
|®] ~ 1 and a large value of 1/(5> + «2) [Eq. (9) for compar-
ison].

In this paper we are interested in the dissipative regime, i.e.,
8. < k where the effective cavity detuning vanishes due to the
dynamical Stark shift, causing a negative feedback between ®
and B. In this region dynamical phases have been found and
in order to probe dynamical instabilities within the organized
phase, we utilize the steady-state solution found by the ITPM
and perform a stability analysis with it. This analysis is pre-
sented in the following subsection.
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FIG. 2. Steady-state imaginary-time phase diagrams of the (a) rescaled cavity field intensity |aq|*, (b) order parameter |® /|, and (c) effective
cavity detuning 8./« as a function of the bare cavity detuning A. and effective cavity pump strength v/N7. We vary /N7 and fix N keeping
NU, = —2241.38w, constant and « = 344.83w,. The solid white line denotes the phase boundary from the unorganized to self-organized

phase [Eq. (12)]. We choose a momentum cutoff of 207ik,.

E. Stability analysis

In this section, we study the stability of a steady state of
the ITPM given by Eq. (11). It is important to note that the
imaginary-time solutions will also be stationary with respect
to the real-time evolution described by Egs. (5)—(9). However,
they are not necessarily stable against fluctuations. The stabil-
ity gives us insight about dynamical solutions within the orga-
nized phase when studying their real-time dynamics. This is
done by linearizing Egs. (5)—(9) for small fluctuations around
the large steady-state solution ¢ and |v). These fluctua-
tions are denoted by Sa = a — ag and |8v) = €™ |) — |vro),
where ;1 = (Hue(ag)) is the chemical potential. This approach
is valid if fluctuations in the cavity field and atomic degrees of
freedom are small. The linearized equations of motion of the
fluctuations in |§¢) and ¢ are given by

h% AR5 4 RS Se 4 8" S we). (13

where § = \/Nn(:) + NUyoB and

dda

== (=8¢ — i )det + (89 |8[v0) +

with 8, = A. — NUy(¥o|B|). Since the linearized equa-
tions couples |[6¢) and S« to their complex conjugates, we
make the ansatz

8y) = e~ |8yy) + €8y,
Sa = e S, + 8ok . (15)

+ (WolSI18y)),  (14)

Here we introduced the complex conjugate wave function
which is defined as (x||y*) = (¥||x) and ()* denotes the
complex conjugation. Using this ansatz we can derive a linear
eigenvalue problem

80{+ 8(¥+
do_ - o

L | =M v | (1o
59) 59)

where 1\7[] is a non-Hermitian matrix determined from
Eqgs. (13) and (14). The matrix is found using Eq. (15) in

Egs. (13) and (14) and given by

8. — ik 0 (¥olS (Y18
. 0 Se—i —(Yol8T  —(ygIST
1= A A ~
STo)  Slyo)  AHwe/R 0
=8Tygy =Slyg) 0 —AHys /R

a7)

Note that we have explicitly used that the complex conjugate
operation acts trivially on the Hamiltonian Hyy¢ and the oper-
ators B and © such that §* = §7.

The eigenvalues of M, describe the dynamics of fluctu-
ations around the mean-field steady state |¢p) and «p. In
particular, this enables us to access the fluctuation dynamics of
the atomic and cavity degrees of freedom on equal timescales.

Since our work is mostly focused on the regime where we
have a clear timescale separation, we derive in the following
the stability assuming that fluctuations of the cavity field in-
stantaneously follow the fluctuations of the atomic degrees.
A comparison of both approaches, with and without the adi-
abatic assumption, can therefore shed light on which effects
emerge from either the nonadiabatic corrections or from the
pure adiabatic assumption. Invoking the adiabatic assumption
we can use

(0¥ 181%0) + (YolSI6y) (18)
8 + ik

S =

Now substituting Eq. (18) into Eq. (13) one gets a reduced
eigenvalue problem

|6Y-) |6-)
(lw >) M2(|aw_>)’ (19)
with
Y, T A Amf/h +A\ B
M= ( B —[AHu/h +A*]>’ 0
4= S0 oIS Sivo)wolS™
8¢ + ik 8. — ik
T x| Q o * OF
= S0 WIS | SvolwglS" on
8¢ + ik 8. — ik
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FIG. 3. (a) Maximum imaginary eigenvalue Im(w,,; ) determined
from Eq. (16) as a function of the effective cavity pump strength
/N7 and bare cavity detuning A.. (b) Maximum imaginary eigen-
value determined from Eq. (19). The light gray shaded regions
represent the unorganized stable phase (US) and the darker gray
shaded regions represent the organized stable phase (OS). The black
dashed line is at A. = NUy/2 and the black contour is deter-
mined by Eq. (12). We vary /Ny and keep N constant and use
NUy = —2241.38w, and « = 344.83w,. We choose a momentum
cutoff of 207k,.

In what follows we will numerically study the stability of
fluctuations based on the theory where the cavity is included,
i.e., the eigenvalues of 1\7[1 [Eqg. (16)]. We then compare the
results with the stability determined by the eigenvalues of
M, describing the adiabatically eliminated cavity degrees of
freedom [Eq. (19)].

The solution |¥) and o is stable if Im(w) < 0 for all
eigenvalues of w. For this we first find |) and oy using the
ITPM and then find the eigenvalues of M, (i = 1, 2) numeri-
cally. We then determine the eigenvalue w. with the largest
imaginary part, which corresponds to the “most unstable” or
“least stable” mode. Because of the numerical limitations in
finding the steady state and eigenvalues due to the discretiza-
tion of momentum states and time steps, we call the system
unstable if Im(wgi;) > 10~*w,. The regions of instability are
visible in color in Figs. 3(a) and 3(b) for the nonadiabatic case
(M) and adiabatic case (M), respectively. The regions where
Im(weri) < 10™*w, is visible in gray colors.

First, below threshold [outside the black contour deter-
mined by Eq. (12)], the steady state is given by oy = 0 and

[Y) = |p = 0) (the zero-momentum state). Already below
threshold we find a region of instability in Fig. 3(a) which
is not visible in Fig. 3(b). The zero-momentum state and
oy = 0 is unstable for §, = A, — NUy/2 > 0 or equivalently
A, > NUy/2. The reason for this is a blue effective cavity
detuning which results in heating of the atomic ensemble. This
heating effect is not described by the adiabatic elimination and
the reason why this instability region is seen can be attributed
to the nonadiabatic terms simulated in Fig. 3(a) but not in
Fig. 3(b). We remark at this point that the gray area where
Im(wert) < 107* but A, > NUy/2 is a numerical artifact
since the heating rate becomes very small for small values of
V/N7. In fact, we expect heating for all values of /Ny > 0
provided A, > NU,/2. For regions where A, < NUj/2 and
/N7 below threshold we denote the phase as unorganized
stable (US).

When crossing the transition line we find a large parameter
space in Fig. 3(b) where the superradiant solution oy # O is
stable (visible as dark gray). This phase is called organized
stable (OS). In addition, we find two regions of instability
which appear for parameters NUy/2 > A, > NUy. In this
region the steady state also exhibits a very small effective
cavity detuning &, ~ 0 [Fig. 2(c)]. Remarkably, the instability
region is significantly extended when including nonadiabatic
corrections as visible in Fig. 3(a). In that case we find an insta-
bility almost everywhere across the phase transition provided
that NUy/2 > A, > NUy, in the regime where we have found
optomechanical resonance with the imaginary-time evolution.
We remark that this finding is in qualitative agreement with
Ref. [53] and one can expect enhanced cavity field fluctua-
tions since this is the typical region of bistability. The fact
that we find small detuning 6. [Fig. 2(c)] in this region also
implies a pronounced role of dissipation in the form of photon
losses. Thus the full dissipative response to the atoms is only
correctly described when including beyond adiabatic effects.
This can be attributed to enhanced fluctuations in the cavity
field that are not captured by the adiabatic elimination within
the region of bistability. In this context the results visible in
Fig. 3(b) show how far one can push the adiabatic elimination
for studying the linear stability close to the edge of a bistable
region. It is important to note, however, the large difference in
magnitude of Im(wcj;) when comparing the instability regions
of Figs. 3(a) and 3(b). Within the instability regions due to
the nonadiabatic corrections in Fig. 3(a) but not in Fig. 3(b)
we see the build up of fluctuations takes several orders of
magnitude longer than the red instability regions that are
present in both Figs. 3(a) and 3(b). For an actual experiment
this could mean that although the region is unstable the build
up of fluctuations might not be observed on experimentally
relevant timescales.

Our analysis has demonstrated that the mean-field steady
states are unstable in certain parameter regions. Although
we know that the initial dynamics would be governed by an
exponential increase, our theory so far cannot predict what
happens on longer timescales. For this we provide an analysis
of the mean-field real-time dynamics in the following section.

III. DYNAMICS

In this section we study the real-time dynamics of the
coupled atom-cavity system. For this our main tools are the
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FIG. 4. Real-time quench dynamics of the rescaled cavity field
intensity |a|?. (a) Heating phase with A, = —700w, and /Ny =
80w, [[J symbol in Fig. 3(a)], (b) stationary self-organized phase
with A, = —2150w, and v/Nn = 27w, [+ symbol in Fig. 3(b)],
(c) limit-cycle phase with A, = 1900w, and VN =220, [¢ symbol
in Fig. 3(a)], and (d) chaotic phase with A, = 1450w, and VNy =
60w, [0 symbol in Fig. 3(a)]. For the red lines we simulate the cavity
field expression of (7), the black lines we simulate Eq. (9), and for the
blue lines we simulate Eq. (23). The other parameters are the same
as in Fig. 2.

numerical integration of Eq. (5) and different approximations
of the cavity field in Eq. (7).

A. Quench dynamics

We analyze the real-time quench dynamics of an atom-
cavity system that is initialized in the zero momentum state,
|Y(r=0))=|p=0), with an empty cavity field, «(t =0)=0.
After this initialization we suddenly quench the system pa-
rameters to various parameter points of /N7 and A, as
signified in Fig. 3(a). In Fig. 4 we show the resulting dynamics
of the rescaled cavity field intensity |«|? as a red solid line for
four different points using Eq. (7). In addition to this red line
we have also simulated the dynamics of the cavity field that
relies on the adiabatic elimination [Eq. (9)]. The result of this
simulation is shown as a black solid line and will be compared
to the full dynamics in the following. The blue curves in Fig. 4
include the nonadiabatic corrections and are discussed at a
later point in Sec. III B.

In Fig. 4(a) we show the dynamics of the cavity field in-
tensity which represents the parameter point where v/N7 > 0
and A, > NU,/2 [0 symbol in Fig. 3(a)]. Focusing on the
red line, we see that within this regime we expect heating to
occur due to a blue effective cavity detuning. We observe such
an effect in the underlying wave function |¢) which occu-
pies higher and higher momentum states. In this context we

chose an appropriate high cutoff in momentum states for the
simulation and timescale shown. The dynamics of the cavity
field appears to be rather complex. We first observe a slow
increase in the cavity field and after a longer timescale we see
an almost chaotic time evolution of the cavity field. The black
solid line describing the adiabatic elimination predicts a cavity
field that remains at zero for all times. This is consistent with
Fig. 3(b) predicting no instability when studying the adiabatic
dynamics for A, > NU/2.

Figure 4(b) represents the parameter point in the OS phase
[+ symbol in Fig. 3(a)]. Here, for both the nonadiabatic and
adiabatic time evolutions, we expect the initial zero momen-
tum state to be unstable. The dynamics of the cavity field
are still very different for the red and black lines on long
timescales. Both show a very fast initial rise of the cavity field.
However, while the red line converges over a long timescale
a similar relaxation to a steady state is not visible for the
black line. This highlights that the nonadiabatic corrections
are important for the relaxation process on longer timescales.
After a sudden quench we have injected excitations into the
system which can only be damped when including these nona-
diabatic corrections. We have also compared the stationary
state of the real-time evolution with the stationary state of
the imaginary-time evolution |¥), &y and found very good
agreement. That indicates that the long-time stationary state
in this regime after a sudden quench is the one found by the
imaginary time.

In Fig. 4(c) we show the parameter point which is beyond
the critical value of v/N n [Eq. (12)] and within the unsta-
ble regime of Fig. 3(a) [¢ symbol] but in the stable regime
of Fig. 3(b). For such a parameter point the imaginary-time
evolution predicts an organized steady state which should be
dynamically unstable when studying the full dynamics of the
atoms and cavity field. For both simulations, red and black
lines, we see an initial quick increase of the photon numbers.
This is a consequence of the initial state |p = 0) being unsta-
ble. On longer timescales for both trajectories we see they do
not find a true stationary state. The red curve relaxes towards a
stable oscillation with a well-defined frequency. We have also
calculated the Fourier transform of the cavity field amplitude
which shows narrow peaks that correspond to a multiple of
this frequency. The emergent oscillation in the time evolution
is stable and can be understood as a limit-cycle phase. In
contrast, the black curve shows relatively chaotic dynamics
which is a consequence of the absence of correct damping
in the purely adiabatic theory. The existence of a dynamical
phase for the red curve is consistent with the instability of
the imaginary-time stationary state. These oscillations appear
to be very stable, which highlights that certain excitations are
imprinted after the sudden quench and can be damped guiding
the atom-cavity system into a stable orbit. Such phases have
been predicted in this model as seen in Refs. [36,53]; however,
here we find them in a regime with a very large timescale
separation between the atoms and cavity.

Figure 4(d) quenches the system into a regime where the
stationary state of the imaginary-time evolution is unstable for
the nonadiabatic and adiabatic theories [o symbol in Fig. 3(a)].
In this regime we find highly chaotic dynamics for the red and
black curves. After a rapid initial rise we find irregular and
fast oscillations without a clear structure. In such a regime it
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is questionable if mean-field theory is sufficient to describe
these dynamics, because we expect the fluctuations to play an
important role. Although we have checked that the momentum
cutoff is sufficient we cannot trust this description on long
timescales due to heating.

We want to emphasize that we work in a regime where the
atoms and cavity evolve on very different timescales. In such
a regime it should be possible to include nonadiabatic correc-
tions perturbatively into the dynamics. In the next section we
derive these corrections and show that they can recapture the
main features of the relaxation dynamics as seen with the full
cavity description.

B. Role of nonadiabatic corrections

We now study how nonadiabatic corrections to the field
contribute to the real-time quench dynamics. By way of for-
mal integration of Eq. (7) we obtain the expression

t -
a(t) ~ —iv/Nn / e (IA=NGBI=E=0dT (1 _ 7)d7,
0

(22)
In this equation we have included the explicit time depen-
dence of the bunching parameter and order parameter. In
addition we have dropped the initial condition «(0) which
requires that the timescale of integration ¢ to be much longer
than 1/x. We further assume that this timescale ¢ is much
shorter than the typical timescale for which ® and B evolve,
1/w, >t > 1/k. Such a coarse graining is possible only in
the regime where one has a large separation of timescales,
k > w,. Under these assumptions we can Taylor expand the
time-dependent terms to first order and carry out the integra-
tion. Arriving at the approximate form of the corrected field

_iv/Nn® = i/Nn®  /NyNU,©B 23)
i, —k (8, —K)? ’

(i8c — k)
For details we refer to Appendix A.

The expression above contains derivatives of ® and B. By
including these terms in the Hamiltonian Ho((2)) we incor-
porate certain retardation effects without explicitly evolving
the cavity degrees of freedom. This is a key feature that Eq. (9)
lacks since it does not take into account any retardation effects
that arise from the motion of the atoms. We remark that al-
though the time derivatives can be computed numerically one
can also extract an analytical formula for them which reads

. 1/~ p?
o=—(l6, 1)
1h<|: 2m]>

~
b= .l<[£e, ”—D (24)
ih 2m

We will now demonstrate that these corrections have a
critical influence in recovering the steady-state and limit-cycle
phases. For this we evolve the atomic dynamics using explic-
itly the “new” elimination of the cavity given by Eq. (23). The
results of the simulations are visible in Figs. 4(a)-4(d) as blue
lines.

While the dynamics in Fig. 4(a) could not be captured by
the adiabatic elimination, when including the nonadiabatic
corrections we already see very good qualitative and quan-
titative agreement. The blue line basically captures the slow

a(t)

initial dynamics and the more chaotic long-time dynamics.
This also shows that these retardation effects are sufficient to
describe the heating and complex dynamics.

In the OS phase [Fig. 4(b)] we find that the blue curve re-
laxes to the same stationary state as the red curve. This shows
that the first-order retardation effects describe in Eq. (23) are
sufficient for the damping. A closer look shows that the red
curve has slightly faster relaxation dynamics. We believe this
is due to higher-order retardation effects which slightly speed
up the damping behavior.

The limit-cycle dynamics in Fig. 4(c) is extremely well
reproduced by the blue curve. We only find very small differ-
ences between the red and blue curves. This demonstrates that
the retardation effects are sufficient to stabilize the limit-cycle
phase and highlights that these phases can exist despite the
large timescale separation.

At last, in Fig. 4(d) we find very similar dynamics for
all three simulation methods via the red, blue, and black
curves. We do not find perfect agreement which also means
that higher-order retardation effects are required for a better
quantitative agreement.

In conclusion, we would like to establish Eq. (23) as a
minimal model to describe the relaxation dynamics in such
a system.

C. Metastable self-organized and limit-cycle states

Ultimately, we try to obtain a deeper understanding of the
parameter regime where the limit-cycle phase has been found.
From the stability analysis in Fig. 3 we know that in this
regime the OS phase is unstable when including the full cavity
field but is stable when only considering purely adiabatic dy-
namics. The question we seek to ask is whether the adiabatic
evolution is able to describe the limit-cycle phase at all.

To answer this question we first simulate the full dynamics
of the atoms and cavity field as observed in Fig. 5(a) for a pa-
rameter point in the limit-cycle phase. After we have reached
the limit-cycle after long times we continue the simulation
with only the adiabatic time evolution using Eq. (9). The result
is visible in Fig. 5(b). We find a very clean oscillation which
highlights that the existence of a limit cycle does not require
the nonadiabatic corrections. Instead, only the relaxation dy-
namics to the limit cycle requires the nonadiabatic corrections.
In that context the limit cycle can truly be seen as a stable
orbit described by the nonlinear mean-field Hamiltonian (10).
In the purely adiabatic theory this stable orbit exists and is
metastable just like the OS phase. To demonstrate the latter
we have prepared the OS phase for the same point using the
imaginary-time evolution and is visible in Fig. 5(c). After this
we have evolved the stationary state of the imaginary-time
evolution with the adiabatic equations of motion in real time.
The result in Fig. 5(d) shows no changes in the photon field,
highlighting that this configuration is also metastable.

While both the limit cycle and OS phase are metastable
states of the adiabatic equations of motion, adding nonadia-
batic corrections will directly destabilize the OS phase and
make the limit cycle an attractor. This destabilization occurs
for long timescales at a rather slow rate [Im(werii) ~ 103w,
in Fig. 3(a)]. Meaning it exhibits a lifetime which is very
long compared to the typical dynamics of the atoms. For an
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FIG. 5. (a) Real-time quench dynamics of the rescaled cavity
field intensity for the limit-cycle phase, where we simulate Egs. (5)
and (7). (b) Real-time dynamics with adiabatic cavity field Eq. (9),
where we initialized (b) with the final point of (a). (c) Imaginary-time
dynamics using Egs. (9) and (11). (d) Real-time dynamics where
we initialized (d) with the final point of (c). The parameters
are  A.=—1900w, and ~/Nn=22w, while the other
parameters are the same as in Fig. 2.

experimental realization this can imply that although the true
stationary state is a limit cycle the OS remains stable over
experimentally accessible timescales.

Comparing the results of the phase diagram in Figs. 2 and 3
with the experiment in Ref. [5] we find qualitative agreement
although we use a simplified one-dimensional model, while
the experimental system is effectively two dimensional. In
addition, in Ref. [5] they used a different protocol where the
drive amplitude is slowly ramped up from an initial to a final
value /N ny. Instead, the dynamics we consider here would
correspond to preparing the system in the steady state of the
initial drive amplitude and then suddenly quench its value
to \/N ny. This indeed results in a qualitative difference for
large detunings A, > NU, where a sudden quench can inject
significant excitations while a slow ramp leaves the dynam-
ics close to the stationary state. Instead, at optomechanical
resonance, A, ~ NUj, both protocols will inject large exci-
tations and the dynamical behavior becomes similar again.
This might explain why the dynamical instabilities found in
Ref. [5] match our findings qualitatively.

IV. CONCLUSION

In conclusion, we have studied the emergence of dynami-
cal phases in the bad cavity limit. Dynamical phases in this
atom-cavity system emerge due to a strong dependence of
the cavity detuning on the atomic pattern that can shift the
cavity onto an optomechanical resonance. Using perturbation

theory in the atom-cavity coupling we derived a mean-field
Hamiltonian for the atomic variables that includes the effects
of the density-dependent dynamical Stark shift. At different
orders of the perturbative expansion we distinguish between
dynamical instabilities that solely require adiabatic terms and
instabilities that only exist when one includes nonadiabatic
corrections. In the former we mostly find chaotic dynam-
ics with wild dynamical oscillations of the field intensity.
In the regime where nonadiabatic corrections destabilize the
stationary state we can find limit-cycle phases that have a
well-defined oscillation frequency. Remarkably, these phases
are metastable states of the adiabatic model. The limit-cycle
phase appears to be the unique long-time limit if one treats the
cavity and atomic degrees on equal timescales.

At this point we want to remark that the dynamical phases
that we have found are not fundamentally different from the
ones in Refs. [36,53]. Our work, however, establishes that
these phases can exist in the bad cavity limit where atomic
and cavity degrees evolve on very different timescales. Inter-
estingly, even in this bad cavity limit nonadiabatic corrections
to the eliminated cavity field are needed in order recover
relaxation into these phases.

For the analysis in this work we calculated the excitation
spectrum of the unorganized and self-organized states. In
the future it would be interesting to explore excitations of
the limit-cycle solutions. Our work shows that limit-cycles
solutions can be described by the mean-field Hamiltonian.
Thus, we might expect that coherent excitations can already
be studied from this simple nonlinear Hamiltonian. Including
retardation effects, on the other hand, would also allow one to
study the relaxation into the limit-cycle phases. This is inter-
esting as one could use this insight to stabilize or destabilize
coherent oscillations.

This work sets the basis for modeling the behavior of
experimental platforms implementing optomechanical reso-
nances for sensing [56,57] and of strongly-correlated atoms
confined in optical resonators [20,58] by providing relatively
simple ansatzs for analyzing the dynamics.
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APPENDIX: DERIVATION OF NONADIABATIC
CORRECTIONS

In this section we show additional steps which we used
to calculate the eliminated cavity field with nonadiabatic
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corrections given by Eq. (23). Starting with formally integrating Eq. (7) we get

t -
a(t) ~ —iv/Nn / elo ANUBG—D—dT (¢ _ 3%, (A1)
0

Then by Taylor expanding the time-dependent collective variables to first order, followed by carrying out the integration in the

exponential we obtain

a(t) ~ —iv/Ny / exp f (A — NUSB() — 7B0Y]) — )T [0() — TOIdT.
0 0

~ —iv/NnO(t) f exp ([i(AC — NUWB(t)) — )% + iNzUOB(t)f2>df
0

R ! INUj .
+ i«/ﬁnG)(t)/ exp ([i(AC — NUB(1)) — % + - OB(t)%z) zdz. (A2)
0
We now recast Eq. (A2) in a more compact form
o0 o0
alt) ~ W/ (1 4+ Y?)e *dz + z/ e VP 1d71, (A3)
0 0
where
. . iNUj . , .
W=—iVNn®, X=—-(s—k) Y= B, Z=iJNno, (Ad)

Note that we have put the upper bound of the integral to infinity assuming that exp(—Xt) & 0 and have neglected the term
of order 3 under the assumption that A., € > w,, N n. Also, the first exponential in Eq. (A3) has been Taylor expanded to
first-order to obtain an expression that is consistent with our perturbation theory. Now solving the integrals we find

w
a)~ — 4+ —

X
which results in Eq. (23).

2WY

2N A

[1] H. Ritsch, P. Domokos, F. Brennecke, and T. Esslinger, Rev.
Mod. Phys. 85, 553 (2013).
[2] F. Mivehvar, F. Piazza, T. Donner, and H. Ritsch, Adv. Phys.
70, 1 (2021).
[3] N. Defenu, T. Donner, T. Macri, G. Pagano, S. Ruffo, and A.
Trombettoni, Rev. Mod. Phys. 95, 035002 (2023).
[4] N. Defenu, A. Lerose, and S. Pappalardi, Phys. Rep. 1074, 1
(2024).
[5] K. Baumann, C. Guerlin, F. Brennecke, and T. Esslinger, Nature
(London) 464, 1301 (2010).
[6] E. Dimer, B. Estienne, A. S. Parkins, and H. J. Carmichael,
Phys. Rev. A 75, 013804 (2007).
[7] H. Habibian, A. Winter, S. Paganelli, H. Rieger, and G. Morigi,
Phys. Rev. Lett. 110, 075304 (2013).
[8] R. Landig, L. Hruby, N. Dogra, M. Landini, R. Mottl, T.
Donner, and T. Esslinger, Nature (London) 532, 476 (2016).
[9] N. Dogra, F. Brennecke, S. D. Huber, and T. Donner, Phys. Rev.
A 94, 023632 (2016).
[10] C.-M. Halati, A. Sheikhan, H. Ritsch, and C. Kollath, Phys. Rev.
Lett. 125, 093604 (2020).
[11] S. Sharma, S. B. Jager, R. Kraus, T. Roscilde, and G. Morigi,
Phys. Rev. Lett. 129, 143001 (2022).
[12] V. Helson, T. Zwettler, F. Mivehvar, E. Colella, K. Roux, H.
Konishi, H. Ritsch, and J.-P. Brantut, Nature (London) 618, 716
(2023).

[13] F. Mivehvar, H. Ritsch, and F. Piazza, Phys. Rev. Lett. 123,
210604 (2019).

[14] B. P. Marsh, R. M. Kroeze, S. Ganguli, S. Gopalakrishnan,
J. Keeling, and B. L. Lev, Phys. Rev. X 14, 011026
(2024).

[15] Y. Guo, R. M. Kroeze, B. P. Marsh, S. Gopalakrishnan, J.
Keeling, and B. L. Lev, Nature (London) 599, 211 (2021).

[16] R. M. Kroeze, B. P. Marsh, D. A. Schuller, H. S. Hunt, A. N.
Bourzutschky, M. Winer, S. Gopalakrishnan, J. Keeling, and
B. L. Lev, arXiv:2311.04216.

[17] X. Zhang, Y. Chen, Z. Wu, J. Wang, J. Fan, S. Deng, and H. Wu,
Science 373, 1359 (2021).

[18] S. C. Schuster, P. Wolf, S. Ostermann, S. Slama, and C.
Zimmermann, Phys. Rev. Lett. 124, 143602 (2020).

[19] O. Chelpanova, K. Seetharam, R. Rosa-Medina, N. Reiter, F.
Finger, T. Donner, and J. Marino, Phys. Rev. Res. 6, 033193
(2024)..

[20] J. Larson, B. Damski, G. Morigi, and M. Lewenstein, Phys. Rev.
Lett. 100, 050401 (2008).

[21] S. B. Jdger, J. Cooper, M. J. Holland, and G. Morigi, Phys. Rev.
Lett. 123, 053601 (2019).

[22] S. B. Jdger, M. J. Holland, and G. Morigi, Phys. Rev. A 101,
023616 (2020).

[23] R. Plestid, P. Mahon, and D. H. J. O’Dell, Phys. Rev. E 98,
012112 (2018).

013518-9


https://doi.org/10.1103/RevModPhys.85.553
https://doi.org/10.1080/00018732.2021.1969727
https://doi.org/10.1103/RevModPhys.95.035002
https://doi.org/10.1016/j.physrep.2024.04.005
https://doi.org/10.1038/nature09009
https://doi.org/10.1103/PhysRevA.75.013804
https://doi.org/10.1103/PhysRevLett.110.075304
https://doi.org/10.1038/nature17409
https://doi.org/10.1103/PhysRevA.94.023632
https://doi.org/10.1103/PhysRevLett.125.093604
https://doi.org/10.1103/PhysRevLett.129.143001
https://doi.org/10.1038/s41586-023-06018-3
https://doi.org/10.1103/PhysRevLett.123.210604
https://doi.org/10.1103/PhysRevX.14.011026
https://doi.org/10.1038/s41586-021-03945-x
https://arxiv.org/abs/2311.04216
https://doi.org/10.1126/science.abd4385
https://doi.org/10.1103/PhysRevLett.124.143602
https://doi.org/10.1103/PhysRevResearch.6.033193
https://doi.org/10.1103/PhysRevLett.100.050401
https://doi.org/10.1103/PhysRevLett.123.053601
https://doi.org/10.1103/PhysRevA.101.023616
https://doi.org/10.1103/PhysRevE.98.012112

HARMON, MORIGI, AND JAGER

PHYSICAL REVIEW A 111, 013518 (2025)

[24] S. B. Jager, S. Schiitz, and G. Morigi, Phys. Rev. A 94, 023807
(2016).

[25] T. Keller, V. Torggler, S. B. Jager, S. Schiitz, H. Ritsch, and G.
Morigi, New J. Phys. 20, 025004 (2018).

[26] T. Zwettler, G. del Pace, F. Marijanovic, S. Chattopadhyay,
T. Biihler, C.-M. Halati, L. Skolc, L. Tolle, V. Helson, G.
Bolognini, A. Fabre, S. Uchino, T. Giamarchi, E. Demler, and
J.-P. Brantut, arXiv:2405.18204.

[27] E. Marijanovié, S. Chattopadhyay, L. Skolc, T. Zwettler, C.-M.
Halati, S. B. Jédger, T. Giamarchi, J.-P. Brantut, and E. Demler,
arXiv:2406.13548.

[28] S. Schiitz and G. Morigi, Phys. Rev. Lett. 113, 203002
(2014).

[29] S. Schiitz, S. B. Jdger, and G. Morigi, Phys. Rev. A 92, 063808
(2015).

[30] S. Schiitz, S. B. Jdger, and G. Morigi, Phys. Rev. Lett. 117,
083001 (2016).

[31] S. Gupta and L. Casetti, New J. Phys. 18, 103051 (2016).

[32] Z. Wu, J. Fan, X. Zhang, J. Qi, and H. Wu, Phys. Rev. Lett. 131,
243401 (2023).

[33] C.-M. Halati, A. Sheikhan, G. Morigi, and C. Kollath,
arXiv:2403.20096.

[34] F. Iemini, A. Russomanno, J. Keeling, M. Schird, M. Dalmonte,
and R. Fazio, Phys. Rev. Lett. 121, 035301 (2018).

[35] F. Carollo and I. Lesanovsky, Phys. Rev. A 105, 1040202
(2022).

[36] F. Piazza and H. Ritsch, Phys. Rev. Lett. 115, 163601 (2015).

[37] H. KeBler, J. G. Cosme, C. Georges, L. Mathey, and A.
Hemmerich, New J. Phys. 22, 085002 (2020).

[38] H. KeBler, P. Kongkhambut, C. Georges, L. Mathey, J. G.
Cosme, and A. Hemmerich, Phys. Rev. Lett. 127, 043602
(2021).

[39] D. Dreon, A. Baumgirtner, X. Li, S. Hertlein, T. Esslinger, and
T. Donner, Nature (London) 608, 494 (2022).

[40] R. Rosa-Medina, F. Ferri, F. Finger, N. Dogra, K. Kroeger, R.
Lin, R. Chitra, T. Donner, and T. Esslinger, Phys. Rev. Lett. 128,
143602 (2022).

[41] R. Lin, R. Rosa-Medina, F. Ferri, F. Finger, K. Kroeger, T.
Donner, T. Esslinger, and R. Chitra, Phys. Rev. Lett. 128,
153601 (2022).

[42] J. Skulte, P. Kongkhambut, H. KeBler, A. Hemmerich, L.
Mathey, and J. G. Cosme, Phys. Rev. A 109, 063317
(2024).

[43] P. Kongkhambut, J. Skulte, L. Mathey, J. G. Cosme, A.
Hemmerich, and H. KeBler, Science 377, 670 (2022).

[44] S. B. Jager, J. M. Giesen, I. Schneider, and S. Eggert, Phys. Rev.
A 110, 1.010202 (2024).

[45] Z. Gong, R. Hamazaki, and M. Ueda, Phys. Rev. Lett. 120,
040404 (2018).

[46] R. 1. Moodie, K. E. Ballantine, and J. Keeling, Phys. Rev. A 97,
033802 (2018).

[47] K. C. Stitely, A. Giraldo, B. Krauskopf, and S. Parkins, Phys.
Rev. Res. 2, 033131 (2020).

[48] K. C. Stitely, S. J. Masson, A. Giraldo, B. Krauskopf, and S.
Parkins, Phys. Rev. A 102, 063702 (2020).

[49] O. Adiv and S. Parkins, arXiv:2403.01716.

[50] N. Dogra, M. Landini, K. Kroeger, L. Hruby, T. Donner, and T.
Esslinger, Science 366, 1496 (2019).

[51] P. Kongkhambut, J. G. Cosme, J. Skulte, M. A. M. Armijos, L.
Mathey, A. Hemmerich, and H. KeBler, Rep. Prog. Phys. 87,
080502 (2024).

[52] X. Nie and W. Zheng, Phys. Rev. A 107, 033311 (2023).

[53] P. Gao, Z.-W. Zhou, G.-C. Guo, and X.-W. Luo, Phys. Rev. A
107, 023311 (2023).

[54] D. Nagy, J. K. Asb6th, P. Domokos, and H. Ritsch, Europhys.
Lett. 74, 254 (2006).

[55] D. Nagy, G. Szirmai, and P. Domokos, Eur. Phys. J. D 48, 127
(2008).

[56] S. Gupta, K. L. Moore, K. W. Murch, and D. M. Stamper-Kurn,
Phys. Rev. Lett. 99, 213601 (2007).

[57] T. P. Purdy, D. W. C. Brooks, T. Botter, N. Brahms, Z.-Y.
Ma, and D. M. Stamper-Kurn, Phys. Rev. Lett. 105, 133602
(2010).

[58] C. Cormick and G. Morigi, Phys. Rev. Lett. 109, 053003 (2012).

013518-10


https://doi.org/10.1103/PhysRevA.94.023807
https://doi.org/10.1088/1367-2630/aaa161
https://arxiv.org/abs/2405.18204
https://arxiv.org/abs/2406.13548
https://doi.org/10.1103/PhysRevLett.113.203002
https://doi.org/10.1103/PhysRevA.92.063808
https://doi.org/10.1103/PhysRevLett.117.083001
https://doi.org/10.1088/1367-2630/18/10/103051
https://doi.org/10.1103/PhysRevLett.131.243401
https://arxiv.org/abs/2403.20096
https://doi.org/10.1103/PhysRevLett.121.035301
https://doi.org/10.1103/PhysRevA.105.L040202
https://doi.org/10.1103/PhysRevLett.115.163601
https://doi.org/10.1088/1367-2630/ab9fc0
https://doi.org/10.1103/PhysRevLett.127.043602
https://doi.org/10.1038/s41586-022-04970-0
https://doi.org/10.1103/PhysRevLett.128.143602
https://doi.org/10.1103/PhysRevLett.128.153601
https://doi.org/10.1103/PhysRevA.109.063317
https://doi.org/10.1126/science.abo3382
https://doi.org/10.1103/PhysRevA.110.L010202
https://doi.org/10.1103/PhysRevLett.120.040404
https://doi.org/10.1103/PhysRevA.97.033802
https://doi.org/10.1103/PhysRevResearch.2.033131
https://doi.org/10.1103/PhysRevA.102.063702
https://arxiv.org/abs/2403.01716
https://doi.org/10.1126/science.aaw4465
https://doi.org/10.1088/1361-6633/ad6585
https://doi.org/10.1103/PhysRevA.107.033311
https://doi.org/10.1103/PhysRevA.107.023311
https://doi.org/10.1209/epl/i2005-10521-4
https://doi.org/10.1140/epjd/e2008-00074-6
https://doi.org/10.1103/PhysRevLett.99.213601
https://doi.org/10.1103/PhysRevLett.105.133602
https://doi.org/10.1103/PhysRevLett.109.053003

