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Quantum theory of the diamond maser: Stimulated and superradiant emission
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We present a quantum theory of diamond masers operating at any temperature using a cavity quantum
electrodynamical framework. Special attention is paid to the recently demonstrated room-temperature solid-state
masers based on nitrogen-vacancy (NV) defect centers in diamond, but the model can easily be modified for
other photoexcited chromophores such as pentacene-doped paraterphenyl, vacancies in silicon-carbide or boron
nitride. We show that the eight energy levels involved in the optically pumped NV center polarization process
can be mapped to a simple pumped two-level-system. We then derive simple analytical expressions for the
optical pump threshold condition for masing as well as the steady-state microwave output power which can be
used to design and predict maser performance. Finally, we investigate second-order correlations and find that
typical diamond masers operate in an intermediate regime between the good and bad cavity limits where photon
emission is driven by both stimulated and superradiant processes.
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I. INTRODUCTION

After its invention in 1954 [1], the maser became a
vital technology for deep-space communication, radio as-
tronomy, and time-keeping due to its unparalleled ultralow
noise and frequency stability [2–4]. However, the spectrum
of maser applications was narrow due to reliance on bulky
cryogenic and high-vacuum systems. With the recent real-
ization of solid-state maser oscillators at room-temperature
and ambient pressure [5,6], masers could become integral to
radio-frequency and microwave systems and find application
in quantum computing, communications, sensing, medicine,
and security. There has been a flurry of experimental work
on solid-state room-temperature maser amplifiers [7–9], mode
coolers [10–14], and alternative gain media [15] yet theoret-
ical investigation has been less active. The room-temperature
diamond maser [6] and subsequent experimental work was
motivated by the seminal theoretical proposal by Jin et al.
[16]. Although this work proposed a room-temperature maser,
the theory was only valid for very low temperatures, result-
ing in overestimation of pump rates required to achieve a
sufficient population inversion for masing. Here we present
a diamond maser theory that is valid at any temperature
and can be modified for alternative gain media. We ana-
lyze steady-state dynamics up to second-order correlations
to derive simple expressions for the maser threshold, cavity
photon population, output power, and propose design criteria
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for maser performance. Finally, we discuss spin-photon and
spin-spin correlation, and find that microwave photon emis-
sion is a combination of superradiant and stimulated emission,
with spontaneous emission playing a lesser role. Our findings
provide a comprehensive theoretical framework for future
solid-state maser research and highlight the importance of
many-body correlations.

II. POPULATION DYNAMICS OF PUMPED NV CENTERS

The electronic ground-state 3A2 of a charged nitrogen-
vacancy (NV−) defect in diamond is a spin-triplet (S = 1)
[17]. The |ms = ±1〉 sublevels are quasidegenerate and
lie approximately 2.87 GHz above the |ms = 0〉 sublevel,
characterized by the zero-field splitting parameter D. The de-
generacy of the |ms = ±1〉 levels can be lifted by strain or an
externally applied static magnetic field B0. In the following we
will neglect strain effects and focus on the Zeeman effect for
tuning the energy levels. Figure 1(a) shows the energy level
diagram for the electronic ground and first excited states of
NV− centers in diamond at zero magnetic field and finite field
applied along a 〈111〉 NV defect axis. The ground-state triplet
3A2 population can be optically pumped into the excited-state
triplet by light of wavelength shorter than the zero-phonon
line, λ < 640 nm. Typically, laser light of λ ∼ 532 nm is used
due to a local maximum of the absorption coefficient [18].
Electrons in the |ms = ±1〉 sublevels undergo spin-selective
intersystem crossing into metastable singlet states 1A1 which
rapidly relax to 1E singlet states, then subsequently decay
to the ground-state triplets. The spin selective intersystem
crossing results in preferential population of the |ms = 0〉
sublevels. Under sustained optical pumping a steady-state
non-Boltzmann population is established with excess popu-
lation in the ground state |ms = 0〉 sublevel. Masing requires
a population inversion between the |ms = 0〉 and |ms = −1〉
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FIG. 1. Energy levels of NV center and cavity-coupled spins.
(a) Energy diagram depicting the energy levels involved in the spin
population dynamics of photoexcited NV− centers. The ground-
state and excited spin-triplet sublevels are labeled 1 to 6 in order
of increasing energy when sufficient external magnetic field (B0 >

102.5 mT) is applied and the metastable singlet states can be re-
garded as a single level since the decay rate 1A1 �→ 1E is faster than
other processes. (b) Simplified model for incoherently pumped spins
coupled to a cavity.

sublevels. Under continuous pumping, this condition is ful-
filled when |ms = −1〉 is Zeeman shifted below |ms = 0〉 by a
magnetic field B0 (parallel to a NV 〈111〉 axis). An ensemble
in an inverted state can be brought into emission by matching
the energy difference of the |ms = 0〉 and |ms = −1〉 sublevels
to microwave photons in a resonant cavity [Fig. 1(a)].

Focusing on the two sublevels active during mas-
ing, ground state |g〉 ≡ |ms = −1〉 and excited state |e〉 ≡
|ms = 0〉, it can be shown (see the Appendix) that the full
eight-level energy level scheme in Fig. 1(a) can be directly
mapped onto the simpler two-level system shown in Fig. 1(b)
with w = ηwopt, the effective pump rate of the two-level sys-
tem is proportional to the NV-center optical pump rate wopt

through a pump efficiency η. The inversion of the pumped
two-level system is then given by σ z = (1 + γ /ηwopt )−1 =
(1 + γ /w)−1. This expression is only valid if the spin-triplet
states are pure with no mixing between them. State mix-
ing of excited triplet sublevels leads to non-zero intersystem

crossing rates into 1A1 from the excited |ms = 0〉 sublevel,
reducing spin-selectivity and spin polarization. This can be ac-
counted for by scaling the inversion, σ z = ξ (1 + γ /ηwopt )−1,
where parameter ξ = 1 for zero mixing and ξ < 1 otherwise.
Mixing can be caused by misalignment of the magnetic field
B0 with respect to the NV− defect axis [19,20]. The pa-
rameters η and ξ can be determined by fitting the two-level
inversion equation to the inversion obtained from the full
set of rate equations [8,19], including all NV− energy levels
involved in the optical pumping process (see the Appendix).
The rates of spin-lattice relaxation, fluorescence decay and
intersystem crossing are given in Fig. 1(a) for the individual
transitions. Note, we assume equal rates of the spin-lattice
relaxation for phonon driven decay and excitation (γ⇓ = γ⇑)
which is approximately true for high temperatures where
h̄ωs 
 kBT . Mapping the full NV energy level scheme onto
a two-level system in this way enables a simple theory to be
developed that analytically predicts maser parameters crucial
for the design and development of new and improved maser
devices. In the remainder of the discussion, we assume a
perfect alignment of B0 to a 〈111〉 NV− defect axis to retain
pure spin states. Note that misalignment will formally not
change the analytical results, only affecting the final absolute
values for masing threshold pump rate and microwave output
power.

III. MICROWAVE CAVITY

The cavity provides the basis for resonant emission from
the spin ensemble. To achieve stable and continuous emission
of microwave power the cavity losses need to be low. The
figure of merit describing cavity losses is the quality factor,
defined by Q = ωc/2κ , where ωc is the resonant frequency
and κ is the (half-width) linewidth. The measured linewidth is
the sum of the intrinsic loss rate κ0 due to resistive, dielectric,
and radiative losses and κe, the coupling of the cavity to ex-
ternal circuitry: κ = κ0 + κe. The degree of external coupling
is characterized by a coupling factor β = κe/κ0. The cavity
is overcoupled if β > 1, undercoupled for β < 1 and criti-
cally coupled for β = 1. In the latter case, external circuity is
impedance matched to the cavity, allowing for optimal energy
transfer.

IV. MASTER EQUATION: TAVIS-CUMMINGS
HAMILTONIAN

Consider an ensemble of j = 1, . . . , N spins with tran-
sition frequencies ωs between the |g〉 and |e〉 states of the
reduced two-level system of the NV centers if a magnetic field
of B0 > γeD ∼ 102.5 mT is applied along a 〈111〉 crystal axis
[as shown in Fig. 1(b)] where γe is the gyromagnetic ratio for
NV− electron spins. Each spin with frequency ωs = γeB0 − D
is coupled to the cavity mode of frequency ωc by a single-
spin–single-photon coupling rate g. The coherent dynamics of
this system can be described by the Tavis-Cummings Hamil-
tonian (under rotating-wave approximation) [21,22]:

H = h̄ωcâ†â + 1

2
h̄ωs

N∑
j=1

σ̂ z
j + h̄g

N∑
j=1

(σ̂+
j â + σ̂−

j â†), (1)
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where â†(â) are cavity-field creation (annihilation) operators,
σ̂+

j = |e j〉 〈g j | and σ̂−
j = |g j〉 〈e j | are the spin raising and

lowering operators for the jth spin, and σ̂ z
j = [σ̂+

j , σ̂−
j ] =

|e j〉 〈e j | − |g j〉 〈g j | is the inversion operator. The first and
second terms describe the uncoupled cavity resonator and the
ensemble of spins. The third term is the sum of individual
interactions between spins and cavity photons, where g is as-
sumed to be homogeneous for all spins. The coupling strength
is g = Bvacμ/h̄ = γe

√
μ0 h̄ωc/2Vm, where Bvac is the oscillat-

ing vacuum magnetic field in the cavity, μ is the magnetic
moment of the spin, μ0 is the free-space magnetic permeabil-
ity, and Vm is the magnetic mode volume of the cavity.

The time derivative of the expectation value of an operator
ô can be found by taking the trace of the operator acting upon
the time derivative of the reduced density matrix ρ, d〈ô〉/dt =
Tr(ôρ̇ ) where ρ̇ = (ih̄)−1[H, ρ] + L[ρ]. The Liouvillian
L[ρ] = Lc[ρ] + Lph[ρ] + Ls[ρ] + Lw[ρ] accounts for the
dissipative and incoherent processes of cavity decay, phonon-
induced spin-lattice relaxation, spin dephasing, and pumping,
respectively, given by Lc[ρ] = κ (n̄ + 1)D[â]ρ + κ n̄D[â†]ρ,
Lph[ρ] = 1

2

∑N
j=1(γ⇓ D [σ̂−

j ]ρ + γ⇑D [σ̂+
j ]ρ), Ls[ρ] = γ⊥

4∑N
j=1 D[σ̂ z

j ]ρ, and Lw[ρ] = w
2

∑N
j=1 D[σ̂+

j ]ρ where D[ô]
ρ = 2ôρô† − {ô†ô, ρ} is the Lindblad superoperator and n̄ is
the mean number of thermal photons in the cavity given by
Bose-Einstein statistics as n̄ = [exp(h̄ωc/kBT ) − 1]−1. γ⊥ =
1/T ∗

2 describes the spin dephasing rate (half-width linewidth)
and γ⇓ and γ⇑ are the temperature-dependent rates of phonon-
induced [23] relaxation and excitation, respectively. For
temperatures T 
 h̄ωs/kB, the excitation probability becomes
negligible, γ⇑ → 0. Here we consider maser operation at
room temperature, where γ⇓ ∼ γ⇑ ∼ γ /2 and γ = 1/T1 is
given by the spin-lattice relaxation time T1, but the theory can
be applied to any temperature if T1 is known.

V. FIRST-ORDER DYNAMICAL EQUATIONS

Using the Hamiltonian in Eq. (1) and the Liouvillian a
closed set of first-order optical-Bloch equations can be derived
[24,25] using the mean-field approximation 〈ab〉 ≈ 〈a〉 〈b〉,
collective spin operators defined by Ŝ± = ∑N

j σ̂±
j = N σ̂±

j ,

Ŝz = ∑N
j σ̂ z

j = N σ̂ z
j , and assuming κ, γ⊥ � γ ,w:

〈ȧ〉 = −(iωc + κ ) 〈a〉 − ig 〈S−〉, (2)

〈Ṡ−〉 = −(iωs + γ⊥) 〈S−〉 + ig 〈a〉 〈Sz〉, (3)

〈Ṡz〉 = wN − (w + γ ) 〈Sz〉 − 2ig(〈S+〉 〈a〉 − 〈a†〉 〈S−〉).
(4)

VI. INVERSION, COOPERATIVITY,
AND PUMP THRESHOLD

Assuming a harmonic time dependence for the cavity field
〈a(t )〉 = 〈a〉 e−iωt and transverse collective spin polarization
〈S−(t )〉 = 〈S−〉 e−iωt , we can rewrite Eqs. (2) and (3) to yield

〈a〉 = −ig 〈S−〉 [κ + i(ωc − ω)]−1, (5)

〈S−〉 = +ig 〈a〉 〈Sz〉 [γ⊥ + i(ωs − ω)]−1. (6)

Substituting Eq. (5) into Eq. (6), we can derive an expression
for the collective spin inversion

〈Sz〉 = g−2[κ + i(ωc − ω)][γ⊥ + i(ωs − ω)], (7)

which must be real-valued. Equating the imaginary part
to zero, (ωc − ω)γ⊥ + (ωs − ω)κ = 0, and solving for fre-
quency ω reveals the maser frequency ωm = (ωcγ⊥ +
ωsκ )/(γ⊥ + κ ). Substitution of the maser frequency into
Eq. (7) yields the above-threshold inversion

〈Sz〉 = κγ⊥
g2

(1 + �2), (8)

where � = (ωc − ωs)/(κ + γ⊥) is a cavity-spin detuning pa-
rameter. At resonance (ωc = ωs, � = 0) and above threshold
the inversion is 〈Sz〉 = κγ⊥/g2. Substitution of the maser fre-
quency into the equations for the cavity field 〈a〉 in Eq.(5) and
transverse spin polarization 〈S−〉 in Eq. (6) yields

〈a〉 = −ig 〈S−〉 [κ (1 + i�)]−1, (9)

〈S−〉 = +ig 〈a〉 〈Sz〉 [γ⊥(1 − i�)]−1. (10)

Examining the last term of the equation of motion for 〈Sz〉
in Eq. (4) and substituting 〈S−〉 in Eq. (10) and its complex
conjugate 〈S+〉, we find it is proportional to the cavity photon
population nc = 〈a†〉 〈a〉 ≡ |a|2:

2ig(〈S+〉 〈a〉 − 〈a†〉 〈S−〉) = 4g2 〈Sz〉 nc

γ⊥(1 + �2)
, (11)

and equal to twice the net microwave photon emission rate
since the inversion changes by two upon emission of one pho-
ton. The maser pump threshold wthr is derived by requiring a
steady-state cavity photon number greater than zero (nc > 0).
Combining Eq. (11) with Eq. (4) the condition is found to
be w > γ/(N/ 〈Sz〉 − 1). We identify the term N/ 〈Sz〉 as the
collective cooperativity C:

C = N

〈Sz〉 = g2N

κγ⊥
(1 + �2)−1, (12)

which reduces to C = g2N/κγ⊥ at resonance (� = 0). The
threshold pump rate is then wthr = γ /(C − 1), which is valid
for high temperatures. This equation shows that a coop-
erativity C greater than unity is needed and that, perhaps
counterintuitively, when C > 2 the threshold pump rate is less
than the spin-lattice relaxation rate. The mean inversion per
spin is 〈σ z〉 = 1/C. For C = 2, spins in the ground state need
only be pumped at half the spin-lattice relaxation rate (a single
electron promoted from |g〉 to |e〉 changes the inversion by
+2) to maintain the inversion or in equation form: wσ̂−σ̂+ �
1
2γ σ̂ z.

VII. PURCELL-ENHANCED EMISSION

Masing requires a collective cooperativity C greater than
unity (C > 1), where C represents the collective strength of
interaction between the spin ensemble and the cavity photon
in the presence of spin dephasing and cavity decay. The cav-
ity contribution to the cooperativity, g2/κ , is proportional to
the magnetic Purcell factor Fm ∝ Q/Vm [26] which provides
two important design criteria for the cavity: (i) maximize the
spin-photon coupling g (minimize mode-volume Vm) and (ii)
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minimize the cavity decay rate κ (maximize the Q factor). The
spin ensemble contribution N/γ⊥ sets a requirement for maser
gain media to have high spin concentration while maintain-
ing low spin decoherence rates. Optimizing both quantities
is challenging since increased spin densities typically results
in increased spin dephasing due to higher probabilities of
creating additional paramagnetic defects and impurities. For
a diamond of volume Vs and spin concentration n = N/Vs a
minimum Purcell factor that satisfies C > 1 can be derived:
Q/Vm > (γ⊥/nVs)/γ 2

e μ0 h̄. Cavity engineering of the Purcell
factor is therefore the easiest route to collective cooperativ-
ity enhancement since spin ensemble properties can only be
engineered to a limited extent, e.g., by isotopic purification.

VIII. CAVITY PHOTON POPULATION
AND OUTPUT POWER

Using the steady-state equation for the collective inversion
(4) and substituting Eq. (11) yields an expression for the
cavity-mode photon population above threshold

nc = 1

4

[
wN

κ
− γ⊥

g2
(w + γ )(1 + �2)

]

= N

4κC
[w(C − 1) − γ ]. (13)

For high pump rates significantly above threshold (w � wthr)
and high collective cooperativity (C � 1) the cavity photon
population is linearly dependent on the pump rate w and num-
ber of spins: nc ≈ wN/4κ . To extract microwave power from
the maser, it is necessary to couple the cavity to an external
waveguide or transmission line, quantified by the coupling
factor β. The output power is proportional to the number of
photons in the cavity, their energy and the rate at which they
exit the cavity, according to Pout = nch̄ωcκe. Substituting this
expression into the cavity photon population Eq. (13) yields
the output power:

Pout = 1

4
h̄ωcβκ0

[
wN

(1 + β )κ0
− γ⊥

g2
(w + γ )(1 + �2)

]
.

(14)

The coupling β for which maximal output power is achieved
can be found by differentiating with respect to β and solving
for β > 0, yielding

β =
√

1

1 + γ /w

1

1 + �2

g2N

κ0γ⊥
− 1. (15)

The optimal coupling depends on three different terms: the
unsaturated inversion σ z = (1 + γ /w)−1, a detuning term
(1 + �2)−1 and a term resembling the collective cooperativity
C that depends on the intrinsic cavity loss rate κ0 instead
of the total cavity loss rate κ . For diamond masers reported
in the literature [6,27], w/(w + γ ) � 0.2 (w � 50 s−1, γ �
200 s−1) and g2N/κ0γ⊥ � 20, leading to an optimal coupling
of β ∼ 0.96 which is very close to critical coupling. Figure 2
plots a map of output power as a function of β and w. For
pump rates close to wthr the optimal coupling is small and
increases with increasing pump rate (see dashed line in Fig. 2).
This is bounded by limw→∞ w/(w + γ ) = 1 where the

FIG. 2. Output power as a function of pump rate and coupling
factor. Yellow line: Masing threshold. White dashed line: Coupling
for optimal output power for given pump rate. Blue dashed line:
Optimal coupling for infinite pump β = √

C0 − 1. The cooperativity
for unloaded cavity is C0 = 19.

optimal coupling approaches limw→∞ β =
√

g2N/κ0γ⊥ − 1.
The values for wthr are in good agreement with recent ex-
perimental results and are about two orders of magnitude
smaller than the values proposed in Ref. [16]. Higher pump
rates will incur two penalties; (i) increased temperature of the
diamond, which increases the spin-lattice relaxation rate γ

and diminishes the effects of increased pump rates [27], and
(ii) the spin decoherence rate γ⊥ increases due to pumping
and high spin-lattice relaxation rates. The effect on γ⊥ can be
assumed negligible since typical diamonds grown by chemical
vapor deposition have T ∗

2 of the order of ∼1 µs therefore
elevated pump rates >104 s−1 would be necessary to have an
impact upon γ⊥. We employ our model on a recently reported
experimental maser threshold characterization in Ref. [27].
Figure 3 shows a comparison of experimental [Fig. 3(a)] and
theoretical [Fig. 3(b)] output power as a function of w and β,
using experimental parameters. The masing phase is recon-
structed accurately, when considering a pump rate dependent
spin-lattice relaxation rate due to heating effects. Peak out-
put powers in the experiment are about −56 dBm, while the
model produces a maximum of about −70 dBm. We attribute
the difference to amplification effects [9], where thermal pho-
tons inside the cavity are amplified by spontaneous emission
from the maser. Our first-order analytical model does not ac-
count for below threshold amplification effects. Second-order
dynamical effects are required for the description, however,
preventing a simple analytical expression. Nevertheless, our
model can faithfully predict the maser phase and the coherent
output power.

IX. SECOND-ORDER DYNAMICAL EQUATIONS

An exact expression for the rate of change of cavity photon
number nc = 〈a†a〉 can be derived from the Hamiltonian (1)
and Liouvillian

d

dt
〈a†a〉 = −2κ 〈a†a〉 + 2κ n̄ + ig(〈S+a〉 − 〈a†S−〉). (16)
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FIG. 3. Experimental and simulated output power as a function
of optical pump rate and quality factor. (a) Experimental maser
output power in logarithmic scale as presented in Ref. [27]. (b) Mod-
eled Pout in logarithmic scale, using Eq. (14) with parameters from
Ref. [27], as well as considering heating effects due to the laser
pump.

The cavity field couples collectively to the spin polarization
through the spin-photon coherence 〈S+a〉 and its complex
conjugate 〈a†S−〉. The spin-photon coherence rate is

d

dt
〈S+a〉 = − (κ + γ⊥ + iδ) 〈S+a〉

− ig

( 〈Sz〉 + N

2
+ 〈S+S−〉 + 〈a†a〉 〈Sz〉

)
, (17)

where the third-order cumulant expansion is approximated as
〈a†aSz〉 � 〈a†a〉 〈Sz〉 since the system is not driven or pumped
by coherent fields so there is no defined phase (time invariant)
(〈a〉 = 〈a†〉 = 〈S±〉 = 0). δ = ωc − ωs is the cavity-spin de-
tuning, decay terms due to spin-lattice relaxation and pumping
are neglected since κ, γ⊥ � w, γ and the number of spins as-
sumed to be large, N � 1. The rate of change of the inversion
〈Sz〉 is exact:

d

dt
〈Sz〉 = wN − (w + γ ) 〈Sz〉 − 2ig(〈S+a〉 − 〈a†S−〉),

(18)

and finally, the set of equations is closed by the spin-spin cor-
relation (multipartite entanglement) 〈S+S−〉 = N2 〈σ+

i σ−
j 〉:

d

dt
〈S+S−〉 = −2γ⊥ 〈S+S−〉 + ig 〈Sz〉 (〈S+a〉 − 〈a†S−〉).

(19)

X. SPONTANEOUS, SUPERRADIANT,
AND STIMULATED EMISSION

While maser oscillation is usually ascribed to stimulated
emission, there are also spontaneous and superradiant emis-
sion processes. This can be seen by examining the final term
of Eq. (16), the net photon emission into the cavity mode


 = ig(〈S+a〉 − 〈a†S−〉). Inserting the steady-state spin-
photon coherence derived from Eq. (17) yields


 = 2g2

κ + γ⊥

(
1

1 + �2

)( 〈Sz〉 + N

2
+ 〈S+S−〉 + 〈a†a〉 〈Sz〉

)
.

(20)

The first term γP = 2g2/(κ + γ⊥) is the Purcell-enhanced
single-spin emission rate. The second term is a detuning
factor and the final term sums the collective spontaneous,
superradiant, and stimulated emission into the cavity. Using
parameters previously reported for diamond masers [6,27]
(nc ≡ 〈a†a〉 � 108, N � 4 × 1013, κ � 106 s−1, γ⊥ � 2 ×
106 s−1, g � 0.7 s−1, � = 0) yields a Purcell rate of γP ∼
3 × 10−7 s−1 and a collective spontaneous emission rate
of 
sp = γP(〈Sz〉 + N )/2 ≈ 7 × 106 s−1. Far above thresh-
old where nc � n̄ an estimate for the steady-state emission
can be derived from Eq. (16): 
ss � 2κnc. Together with the
clamped inversion 〈Sz〉ss = κγ⊥/g2 and Eq. (19), the steady-
state superradiant emission rate can be calculated: 
SR �
γP 〈S+S−〉ss ≈ γP(κ2/g2)nc ≈ 6.6 × 1013 s−1. The stimulated
emission rate is 
st = γP 〈a†a〉 〈Sz〉 = γP(κγ⊥/g2)nc ≈ 1.3 ×
1014 s−1. The spontaneous emission rate is seven orders of
magnitude smaller than the other emission processes and is
also smaller than the thermal photon emission rate at room
temperature (2κ n̄ ∼ 109 s−1), so can be neglected. However,
it is noteworthy that superradiant emission accounts for one
third of the total emission and that the fractions of superradi-
ant and stimulated emission are κ/(κ + γ⊥) and γ⊥/(κ + γ⊥),
respectively. If κ 
 γ⊥ the maser is in the good-cavity regime
where coherence is mostly stored in the cavity and stimulated
emission is dominant. Conversely, if κ � γ⊥ the maser is
in the bad-cavity regime where coherence is mostly stored
in the spin ensemble and superradiance is dominant. In the
intermediate regime where κ ∼ γ⊥ the coherence is stored
equally in both the cavity and the spin-ensemble and su-
perradiant and stimulated contribute equally to the emission
rate.

XI. CONCLUSION AND OUTLOOK

The presented theoretical analysis of steady-state maser
dynamics provides an accessible framework for further room-
temperature maser research. Our discussion is based on a
Lindbladian master equation approach from which we derive
the first and second-order time dependence of expectation val-
ues for spin inversion, spin-spin, and spin-photon correlations,
and the cavity photon number. For the steady-state we find
analytic expressions which could form the basis of design
rules for masers operating at room temperature and can be
easily extended to any temperature. Finally, we highlight that
maser photon emission is not solely governed by stimulated
emission, but is accompanied by a significant amount of su-
perradiance. The difference between a good cavity and a bad
cavity limit is identified by the ratio of cavity loss rate κ and
spin dephasing rate γ⊥. These results provide a comprehensive
theory that enables the conception of new experiments to
explore and improve the state-of-the-art in maser technology.
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APPENDIX

Here, we present in detail the construction of a rate equa-
tion model for the multienergy level scheme of NV centers in
diamond and consecutive mapping onto a two-level model.

1. NV center population dynamics under optical pumping

The dynamics of the eight sublevels involved in the optical
pumping process of a single NV center subjected to an optical
pump of rate wopt can be written

d

dt
R = MR,

where

R = [−1g 0g +1g −1e 0e +1e
1A1

1E ]T

is a vector whose components are the probabilities (popula-
tions) of finding an electron in a particular state and

M =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−wopt − 1
2 (γ + γ ′) 1

2 γ 1
2 γ ′ 
 0 0 0 k81

1
2 γ −wopt − 1

2 (γ + γ ′′) 1
2 γ ′′ 0 
 0 0 k82

1
2 γ ′ 1

2 γ ′′ −wopt − 1
2 (γ ′ + γ ′′) 0 0 
 0 k83

wopt 0 0 −
 − k47 0 0 0 0

0 wopt 0 0 −
 − k57 0 0 0

0 0 wopt 0 0 −
 − k67 0 0

0 0 0 k47 k57 k67 −k78 0

0 0 0 0 0 0 k78 −(k81 + k82 + k83)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

is a matrix that couples the sublevels with transition rates,
where wopt is the NV center optical pump rate, 
 is the
excited triplet state fluorescent lifetime, γ , γ ′, and γ ′′ are
the (high-temperature) spin-lattice relaxation rates between
the ground-state triplet sublevels, k47, k57, k67 are the inter-
system crossing rates from the excited state triplets to 1A1, k78

is the singlet decay rate from 1A1 to 1E and k81, k82, k83 are
the nonradiative decay rates from 1E to the |−1〉 , |0〉 , |+1〉
ground-state triplet sublevels, respectively. The steady-state
populations of the eight sublevels can be found by solving
the linear homogeneous matrix equation MR = 0. Values for
the rate parameters used in the main text are given in Table I.
Figure 4 presents results from solving the matrix equation for
the inversion σ z, corresponding to the population difference
between 0g and −1g. The two solid lines are results with
and without assuming a finite mixing of the triplet sublevels.

TABLE I. Values for rate parameters used in full eight-level
pumping dynamics of a single NV center.

Parameter Ref. [28]


 65.9 µs−1

γ 200 s−1

γ ′ 200 s−1

γ ′′ 200 s−1

k47 53.3 µs−1

k57 7.9 µs−1

k67 53.3 µs−1

k78 1 ns−1

k81 0.7 µs−1

k82 1.0 µs−1

k83 0.7 µs−1

The mixing results in changes of intersystem crossing rates,
specifically a finite rate k57. This can be caused by a mis-
alignment of the magnetic field to the NV− defect axis. The
inversion from a full eight sublevel model can be mapped
onto an effective two-level system. As described in the main
text, the inversion is given by σ z = ξ (1 + γ /ηwopt )−1, where
η represents the pump efficiency between the effective pump

FIG. 4. Inversion σ z for optical pump rate wopt. Inversion as a
function of optical pump rate obtained from the full eight sublevel
rate equation model (solid lines) and by optimizing a simplified
two-level model to the results of the full model (dashed lines).
No and a finite triplet state mixing was assumed (red, dashed and
blue, dash-doted lines, respectively), represented by k57 = 0 µs−1 and
k57 = 7.9 µs−1. State mixing results in a reduced maximal achievable
inversion.
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rate w of the two-level system and the applied optical pump
rate wopt and a scaling parameter ξ accounting for the state
mixing. Both parameters can be determined by fitting the sim-
plified inversion to the full eight sublevel model. Comparing
both models, we find that the simple two-level system (dashed

lines in Fig. 4) can fully reproduce the eight sublevel model.
The pump efficiency η and mixing scale ξ were found to be
η = 0.124 for zero mixing and η = 0.166 and ξ = 0.623 for
nonzero mixing due to a 7.9 µs−1 transition rate between the
excited ms = 0 state and the singlet 1A1 [28].
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