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Highlights

What are the main findings?

• Hypoxic preconditioning at 1% O2 for 24 h activates nanofat and shifts its protein
expression profile towards a pro-angiogenic phenotype without affecting its viability.

• The applied hypoxic preconditioning protocol does not improve the in vivo vascular-
ization capacity of nanofat after its seeding on implanted dermal substitutes.

What are the implications of the main findings?

• Hypoxic preconditioning at 1% O2 for 24 h may be too stressful for nanofat that is
subsequently exposed to prolonged in vivo hypoxia.

• Milder preconditioning protocols should be alternatively tested in future studies.

Abstract

Hypoxic preconditioning is increasingly explored to enhance the survival and vasculariza-
tion of fat grafts. In this study, nanofat from donor mice was exposed to hypoxia (1% O2)
for 24 h to investigate the effects of this preconditioning protocol on the viability, gene ex-
pression and vascularization capacity of this mechanically processed fat derivative. Ex vivo
analyses revealed that hypoxic preconditioning does neither affect apoptotic nor necrotic
cell death within nanofat but significantly upregulates the expression of hypoxia-inducible
factor (HIF)-1α and stromal cell-derived factor (SDF)-1 compared to non-preconditioned
nanofat. Moreover, preconditioned nanofat exhibited a pro-angiogenic protein expression
profile. For in vivo analyses, dermal substitutes were either seeded with preconditioned or
non-preconditioned nanofat and transferred into dorsal skinfold chambers of mice to assess
their vascularization by intravital fluorescence microscopy. Unexpectedly, implants seeded
with preconditioned nanofat exhibited a significantly reduced functional microvessel den-
sity when compared to non-preconditioned controls. Immunohistochemical analyses also
confirmed a lower microvessel density within the implants of the preconditioned group.
These findings suggest that hypoxic preconditioning at 1% O2 for 24 h cannot be rec-
ommended for enhancing the regenerative in vivo vascularization capacity of nanofat.
Therefore, milder preconditioning protocols with shorter periods of hypoxia or higher
oxygen levels should be alternatively tested in future studies.
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1. Introduction
Preconditioning is a strategy, which involves the exposure of cells or tissues to dif-

ferent stimuli to induce adaptive mechanisms that enhance their resistance to subsequent
stressors. This process leads to the activation of survival pathways, the upregulation of
stress-response genes and the secretion of cytokines, ultimately improving cellular via-
bility [1,2]. Several preconditioning methods, including hypoxic, pharmacological and
mechanical approaches, have been tested for various clinical applications [3]. Among these,
hypoxic preconditioning, i.e., transient exposure to reduced oxygen levels, has shown ben-
eficial effects in cardiovascular surgery, organ transplantation and plastic surgery, where
it is also known as the ‘delay phenomenon’ [4–7]. Hypoxic preconditioning is known to
stabilize hypoxia-inducible factor (HIF)-1α, which stimulates blood vessel formation by
the expression of vascular endothelial growth factor (VEGF) and enhances cell survival by
shifting metabolism towards glycolysis [8–12].

Recent studies investigated hypoxic preconditioning of autologous adipose tissue to
improve the survival rates of fat grafts. Evidence from animal experiments suggests that
short-term hypoxic exposure before transplantation by means of tourniquet application
(also known as remote preconditioning) or adipose flap elevation before fat harvesting
enhances the long-term survival of adipose tissue grafts [13,14]. Moreover, hypoxia-mimetic
agents, such as deferoxamine, have been used to replicate these effects pharmacologically,
further supporting the potential of this strategy in optimizing fat graft survival [15].

Fat grafting is a widely used technique in reconstructive and esthetic surgery, which
involves the harvesting and reinjection of autologous adipose tissue to restore volume
and/or promote tissue regeneration. This procedure has been used effectively for various
indications from scar remodeling and soft tissue augmentation to the management of
chronic wounds and fistulas [16–19]. In recent years, different processing techniques
have been developed to further enhance the regenerative properties of adipose tissue.
Notably, nanofat is a mechanically emulsified and filtered adipose derivative that contains
a low number of mature adipocytes while preserving adipose-derived stem cells (ASCs),
microvascular fragments and growth factors [20–22]. Due to these components with a
strong regenerative potential, nanofat was effective in the treatment of chronic wounds,
skin aging, scars and androgenic alopecia [23–26]. However, despite the increasing use
of nanofat in clinical practice, the effects of hypoxic preconditioning on this mechanically
processed fat derivative have not yet been analyzed.

Accordingly, the objective of this study was to investigate the effects of hypoxic
preconditioning on the viability of nanofat and its expression of angiogenesis-related
factors. Furthermore, the regenerative in vivo vascularization capacity of nanofat was
tested in a well-established mouse model [27].

2. Materials and Methods
2.1. Animals

The in vivo experiments were conducted following the National Institutes of Health
(NIH) Guidelines on the Care and Use of Laboratory Animals (NIH publication #85-23 Rev.
1985) and the European legislation on the protection of animals (Directive 2010/63/EU).
Protocols were approved by the local authorities (permission number: 06-2022; State Office
for Consumer Protection, Saarbrücken, Germany).
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For ex vivo analyses, subcutaneous inguinal adipose tissue was harvested from
C57BL/6J wild-type mice (Institute for Clinical and Experimental Surgery, Saarland Uni-
versity, Homburg, Germany) with an average age of 4 months and a body weight of 25 g.
For in vivo experiments, C57BL/6-Tg (CAG-EGFP)131Osb/LeySopJ mice (The Jackson
Laboratory, Bar Harbor, ME, USA) with an average age of 4 months and a body weight
of 30 g served as donors of green fluorescent protein (GFP)+ adipose tissue. C57BL/6J
wild-type mice with an average age of 4 months and a body weight of 25 g were equipped
with dorsal skinfold chambers and housed individually to prevent mutual injuries due
to the chambers at a temperature of 22–24 ◦C, a relative humidity of 50–60% and a 12 h
light/dark cycle for the entire duration of the experiment. All mice had free access to tap
water and pellet chow (Altromin, Lage, Germany).

2.2. Anesthesia

At the beginning of all surgical procedures, the mice received an intraperitoneal injec-
tion (i.p.) of ketamine hydrochloride (100 mg/kg; Ketabel®; Bela-pharm GmbH & Co. KG,
Vechta, Germany) and xylazine (12 mg/kg; Rompun®; Bayer, Leverkusen, Germany). Peri-
operative pain management was performed by subcutaneous administration of carprofen
(10 mg/kg; Rimadyl®; Zoetis Deutschland GmbH, Berlin, Germany).

2.3. Generation and Hypoxic Preconditioning of Nanofat

Nanofat was generated as previously performed in [22]. For this, anesthetized donor
mice were euthanized via cervical dislocation. Their inguinal subcutaneous fat pads were
harvested, washed, minced and mechanically emulsified and filtered to obtain nanofat [22].

The nanofat from each donor mouse was split into two equal portions. The first aliquot
(preconditioned nanofat; hypoxia) was exposed at 37 ◦C in a tri-gas incubator (CB-S 170,
Binder, Tuttlingen, Germany) to hypoxic conditions (1% O2, 5% CO2) for 24 h. Thereafter,
the preconditioned samples were analyzed ex vivo or used for in vivo experiments. The
second aliquot (non-preconditioned nanofat; control) was not exposed to hypoxia but
investigated ex vivo or in vivo directly after its generation.

2.4. Ex Vivo Analysis of Nanofat

The viability of control (n = 4) and preconditioned nanofat (n = 4) was analyzed by flow
cytometric measurements [28]. Briefly, individual cells obtained by enzymatic dissociation
of nanofat with Accutase® (BioLegend, Fell, Germany) were washed, resuspended in
incubation buffer and stained for 15 min with propidium iodide (50 µg/mL; BD Biosciences,
Heidelberg, Germany) and annexin V (100 µg/mL; ImmunoTools, Friesoythe, Germany)
according to the manufacturer’s protocol. Subsequently, the stained cells were analyzed
using a FACSLyric (BD Biosciences) to quantify the fraction of vital, apoptotic, necroptotic
and necrotic cells, which were expressed as the percentage of totally analyzed cells.

Moreover, total RNA was extracted from nanofat samples (control: n = 4; precon-
ditioned nanofat: n = 4) using QIAzol lysis reagent (Qiagen, Hilden, Germany). The
corresponding cDNA was generated using c-DNA Synthesis Kit (iScript cDNA Synthesis
Kit; BioRad, Hercules, CA, USA) and subjected to quantitative real-time polymerase chain
reaction (qRT-PCR) using SYBR-Green Supermix (SsoAdvanced Universal SYBR Green
Supermix; BioRad) and a CFX96 RT-PCR System (BioRad). Murine β-actin served as control.
The concentration of forward and reverse primers (dissolved in RNase/DNase-free H2O)
was 500 nM. Primer sequences were: 5′-CGGCGACATGGTTTACATTT-3′ (forward) and 5′-
TTTCTCACTGGGCCATTTCT-3′ (reverse) for HIF-1α; 5′-CCAACGTCAAGCATCTGAAA-
3′ (forward) and 5′-AATTTCGGGTCAATGCACAC-3′ (reverse) for stromal cell-derived
factor (SDF)-1.

https://doi.org/10.3390/cells15020100

https://doi.org/10.3390/cells15020100


Cells 2026, 15, 100 4 of 19

For histological and immunohistochemical investigations, nanofat samples (control:
n = 4; preconditioned nanofat: n = 4) were fixed in 4% formalin, embedded in paraffin and
cut into 3 µm thick sections. Sections were stained with hematoxylin–eosin (HE) as well as
with rabbit anti-cleaved caspase (Casp)-3 (1:100; Cell Signaling, Leiden, The Netherland)
and rabbit anti-HIF-1α (1:100; Abcam, Cambridge, UK) antibodies. A biotinylated goat-anti-
rabbit IgG antibody (ready-to-use; Abcam) served as secondary antibody. Subsequently, a
BX53 microscope and the imaging software CellSens Dimension (version 1.11; Olympus,
Hamburg, Germany) were used to quantitatively analyze the numbers of Casp-3+ and
HIF-1α+ cells expressed as the percentage of totally analyzed cells.

Finally, a mouse angiogenesis proteome profiler array kit (R&D Systems, Bio-Techne;
Wiesbaden-Nordenstadt, Germany) was used to compare angiogenesis-related protein
expression profiles in the different nanofat samples (control: n = 4; preconditioned nanofat:
n = 4), as previously described [28].

2.5. Seeding of Dermal Substitutes with Nanofat

Dermal substitutes (Integra® single layer; 1.3 mm-thick; Integra Life Sciences, Gent,
Belgium) were punched into discs with a diameter of 4 mm (biopsy punch; Kai Europe
GmbH, Solingen, Germany) and incubated for 10 min in either control or preconditioned
nanofat for proper seeding, as previously established [27].

2.6. Dorsal Skinfold Chamber Model

The impact of preconditioned and control nanofat on the vascularization and tissue
integration of dermal substitutes was analyzed in the dorsal skinfold chamber model [27].
For this purpose, two titanium frames (Irola Industriekomponenten GmbH & Co. KG,
Schonach, Germany) were surgically implanted onto the back of anesthetized C57BL/6J
wild-type mice, following shaving and chemical depilation (asid-med depilation cream;
Asid Bonz GmbH, Herrenberg, Germany). A circular area of skin including the panniculus
carnosus muscle (~15 mm in diameter) was excised to expose the panniculus carnosus
muscle and skin of the other side of the skinfold for later analyses through the observation
window in the middle of the titanium frames. After 48 h of recovery, a dermal substitute
seeded with control (n = 8) or preconditioned nanofat (n = 8) was implanted into the
chamber, which was then sealed with a cover slip and snap ring.

2.7. Intravital Fluorescence Microscopy

The implants were repeatedly analyzed using intravital fluorescence microscopy over
14 days. For this purpose, the anesthetized animals received an intravenous retrobulbar
injection of 0.05 mL fluorescein isothiocyanate (FITC)-labeled dextran (5%, 150,000 Da;
Sigma-Aldrich, Taufkirchen, Germany) and 0.05 mL rhodamine 6 G (0.1%; Sigma-Aldrich)
for the staining of blood plasma and leukocytes, respectively. Thereafter, the chambers
were examined under a fluorescence epi-illumination microscope (Zeiss Axiotech; Carl
Zeiss Microscopy, Oberkochen, Germany). The microscopic images were recorded with
a charge-coupled device camera (Axiocam 702 mono; Carl Zeiss Microscopy), stored
on an external hard drive and analyzed offline using CapImage (version 8.10.1; Zeintl,
Heidelberg, Germany).

The quantitative analysis of the microscopic images included the assessment of the
total number of perfused regions of interest (ROIs) (%), the functional microvessel density
(cm/cm2) as well as microhemodynamic parameters (diameter (µm), centerline red blood
cell (RBC) velocity (µm/s), shear rate (s−1) and volumetric blood flow (pL/s)) of individual
microvessels in 8 ROIs (center: n = 4; border zones: n = 4) of each implant. Addition-
ally, microhemodynamic parameters and leukocyte–endothelial cell interactions (rolling
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leukocytes (min−1) and adherent leukocytes (mm−2)) were measured in postcapillary and
collecting venules within the host tissue next to the implants in 4 different ROIs [27].

2.8. Histological and Immunohistochemical Analysis of Implants

At the end of the in vivo experiments, the implants with the surrounding chamber host
tissue were carefully excised, fixed in 4% formalin, embedded in paraffin and sectioned.
HE stainings and immunostainings were performed, as previously described [28]. Briefly,
antibodies against CD31, lymphatic vessel endothelial hyaluronan receptor (LYVE)-1 and
GFP as well as collagen (Col) I, Col III, CD68, myeloperoxidase (MPO) and CD3 were used.

The microvessel density (mm−2), lymph vessel density (mm−2) as well as CD31+/GFP+

microvessels (%) and LYVE-1+/GFP+ lymph vessels (%) were quantitatively assessed in
one representative section per sample using a BX53 microscope and the software cellSens
Dimension (version 1.11; Olympus, Hamburg, Germany). Moreover, the numbers of CD68+

macrophages (mm−2), MPO+ neutrophilic granulocytes (mm−2) and CD3+ lymphocytes
(mm−2) as well as the total Col I and Col III ratio (implant/skin) were analyzed in 4 ROIs
(center: n = 2; border zones: n = 2) of each implant.

2.9. Statistical Analysis

Statistical analyses were performed using GraphPad Prism 10.1.2 (GraphPad Software,
San Diego, CA, USA). The group sizes were chosen according to previous studies using the
herein described model [27,28]. Following the 3R principle in animal testing, the number
of animals per group was reduced to a minimum while guaranteeing sufficient statistical
power (0.8) to detect biological meaningful differences. Data were first evaluated for
normal distribution and equal variance. Comparison between two groups was conducted
using the unpaired Student’s t-test for parametric data or Mann–Whitney rank sum test for
non-parametric data. Corrections for multiple comparisons were not performed. Results
were given as mean ± standard error of the mean (SEM). A p-value < 0.05 was considered
statistically significant.

3. Results
3.1. Ex Vivo Analysis of Nanofat

Macroscopically, the consistency and coloration of preconditioned and control nanofat
did not differ. Flow cytometric viability analyses demonstrated that hypoxic precondition-
ing at 1% O2 for 24 h does not affect apoptotic or necrotic cell death within nanofat when
compared to non-preconditioned control (Figure 1A). Accordingly, immunohistochemical
evaluation of nanofat samples showed a low rate of Casp-3+ apoptotic cells (< 1%) in both
groups without statistical difference (Figure 1B,C).

RT-PCR revealed a marked upregulation of the mRNA expression of hypoxia-
responsive HIF-1α and SDF-1 in preconditioned nanofat, indicating a strong transcriptional
response to hypoxic stress (Figure 1D). In line with these results, preconditioned nanofat
also contained more HIF-1α+ cells compared to control (Figure 1E,F).

To characterize the expression profile of angiogenesis-related factors within control and
preconditioned nanofat, an in vitro proteome profiler angiogenesis array was conducted.
This array revealed a clear trend towards a pro-angiogenic protein expression profile in
preconditioned nanofat with 28 out of 39 pro-angiogenic factors being upregulated and 11
out of 14 anti-angiogenic factors being downregulated when compared to control (Table 1).
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Figure 1. Ex vivo analysis of nanofat. (A) Fraction (%) of vital, apoptotic, necroptotic and necrotic
cells in non-preconditioned (control; white bars, n = 4) and preconditioned nanofat (hypoxia; black
bars, n = 4), as assessed by flow cytometry. Mean ± SEM. (B,C) Immunohistochemical detection
of Casp-3+ apoptotic cells ((B), arrows) and their quantification (C) in non-preconditioned (control;
white bar, n = 4) and preconditioned nanofat (hypoxia; black bar, n = 4). Means ± SEM. (D) HIF-1α
and SDF-1 expression in non-preconditioned (control; white bars, n = 4) and preconditioned nanofat
(hypoxia; black bars, n = 4). Means ± SEM; * p < 0.05 vs. control. (E,F) Immunohistochemical
detection of HIF-1α+ cells ((E), arrows) and their quantification (F) in non-preconditioned (control;
white bar, n = 4) and preconditioned nanofat (hypoxia; black bar, n = 4). Means ± SEM; * p < 0.05
vs. control.

Table 1. Expression of pro- and anti-angiogenic proteins (% of control) in preconditioned nanofat, as
assessed by a proteome profiler mouse angiogenesis array. Data are presented in a descending order
as mean of two technical replicates.

Protein Expression (% of Control)

Pro-angiogenic

HGF 1027
Coagulator Factor III/Tissue Factor 436
MMP-8 285
GM-CSF 226
FGF basic/FGF-22 206
HB-EGF 195
Osteopontin 193

MMP-9 188
MIP-1alpha 182
IL-1alpha 167
Amphiregulin 161
IGFBP-1 160
Angiopoietin-1 153
Fractalkine/CX3CL1 148
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Table 1. Cont.

Protein Expression (% of Control)

PIGF-2 141
DLL4 141
IGFBP-3 133
KC/CXCL1/CINC-1/GRO-alpha 128
Angiogenin 127
VEGF/VPF 127
KGF/FGF-7 126
MMP-3 118
Cyr61/CCN1, IGFBP10 118
MCP-1/CCL2/JE 115
IL-10/CSIF 107
Leptin/OB 106
FGF acid/FGF-1/ECGF/HBGF-1 103
EGF 101
IL-1beta 99
SDF-1/CXCL12 96
CXCL 16 90
PD-ECGF 80
Proliferin 73
IGFBP-2 71
Endothelin-1 70
Endoglin/CD105 63
VEGF B/VRF 54
NOV/CCN3/IGFBP-9 48
PDGF-AA 35

Anti-angiogenic

TIMP-1 231
IP-10/CXCL 10/CRG-2 128
Endostatin/Collagen VIII 118
TIMP-4 86
DPP IV/CD26 85
Serpin F1/PEDF 80
Serpin E1/PAI-1 72
Pentraxin-3/TSG-14 72
ADAMTS1/METH1 64
PDFG-AB/BB 63
Thrombospondin-2 59
Prolactin 51
Platelet facto 4/CXCL4 49
Angiopoietin-3 43

ADAMTS: A Disintegrin And Metalloproteinase with Thrombospondin Motifs; CCL: Chemokine (C-C motif)
Ligand; CCN: Cellular Communication network factor; CD: Cluster of Differentiation; CINC: Cytokine-Induced
Neutrophil Chemoattractant; CRG: Cytokine-Responsive Gene; CSIF: Cytokine Synthesis Inhibitory Factor;
CX3CL: Chemokine (C-X3-C motif) Ligand; CXCL: Chemokine (C-X-C motif) Ligand; Cyr: Cysteine-Rich An-
giogenic Inducer; DLL: Delta-Like Ligand; DPP: Dipeptidyl Peptidase; ECGF: Endothelial Cell Growth Factor;
EGF: Epidermal Growth Factor; FGF: Fibroblast Growth Factor; GM-CSF: Granulocyte–Macrophage Colony-
Stimulating Factor; GRO: Growth-Related Oncogene; HB-EGF: Heparin-Binding Epidermal Growth Factor; HBGF:
Heparin-Binding Growth Factor; HGF: Hepatocyte Growth Factor; IGFBP: Insulin-Like Growth Factor Binding
Protein; IL: Interleukin; IP: Interferon Gamma-Inducible Protein; KC: Keratinocyte Chemoattractant; KGF: Ker-
atinocyte Growth Factor; MCP: Monocyte Chemoattractant Protein; MIP: Major Intrinsic Protein; MMP: Matrix
Metalloproteinase; NOV: Nephroblastoma Overexpressed; OB: Obese; PAI: Plasminogen Activator Inhibitor;
PD-ECGF: Platelet-Derived Endothelial Cell Growth Factor; PDGF: Platelet-Derived Growth Factor; PEDF: Pig-
ment Epithelium-Derived Factor; PIGF: Placental Growth Factor; SDF: Stromal Cell-Derived Factor; TIMP: Tissue
Inhibitor of Metalloproteinases; TSG: Tumor Necrosis Factor-Induced Protein; VEGF: Vascular Endothelial Growth
Factor; VPF: Vascular Permeability Factor; VRF: Vascular Remodeling Factor.
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3.2. In Vivo Microscopy of Nanofat-Seeded Dermal Substitutes

To analyze the in vivo vascularization capacity of control and preconditioned nanofat,
dermal substitutes were seeded with both nanofat types and implanted into dorsal skinfold
chambers. This enabled the repeated assessment of implant vascularization by means of
intravital fluorescence microscopy (Figure 2A,B). This process was characterized by the
stepwise ingrowth of microvessels from the surrounding host tissue into the border zones
of the implants. Quantitative analyses of the newly developing microvascular networks
revealed a comparable fraction of perfused ROIs in the border zones of dermal substitutes
seeded with control and preconditioned nanofat (Figure 2C). However, implants seeded
with preconditioned nanofat exhibited a significantly lower functional microvessel density
in their border zones between day 10 and 14 when compared to controls (Figure 2E). Almost
no vascular ingrowth was observed in the center of both implant types throughout the
14-day observation period (Figure 2D,F). Accordingly, microhemodynamic parameters
of individual microvessels, including diameter, centerline RBC velocity, shear rate and
volumetric blood flow, were only measured in the border zones of the implants (Table 2).
In contrast to dermal substitutes seeded with preconditioned nanofat, these parameters
could already be measured on day 6 for dermal substitutes seeded with control nanofat due
to their accelerated vascularization (Table 2). There were only minor differences between
the two groups with a tendency towards improved blood perfusion of microvessels in the
control group.

Table 2. Diameter (µm), centerline RBC velocity (µm/s), shear rate (s−1) and volumetric blood
flow (pL/s) of microvessels within the border and center zones of dermal substitutes seeded with
non-preconditioned (control; n = 8) and preconditioned nanofat (hypoxia; n = 8). Mean ± SEM. No
significant differences.

d0 d3 d6 d10 d14

diameter (µm):
border: control - - 22.5 ± 6.5 19.6 ± 1.1 15.2 ± 0.9

hypoxia - - - 18.6 ± 1.0 15.5 ± 1.3
center: control - - - - -

hypoxia - - - - -

centerline RBC velocity (µm/s):
border: control - - 60.0 ± 30.0 93.5 ± 14.8 151.2 ± 18.4

hypoxia - - - 84.1 ± 8.9 109.9 ± 16.9
center: control - - - - -

hypoxia - - - - -

shear rate (s−1):
border: control - - 19.9 ± 4.9 41.8 ± 6.6 97.7 ± 18.8

hypoxia - - 36.3 ± 3.5 65.9 ± 15.0
center: control - - - - -

hypoxia - - - - -

volumetric blood flow (pL/s):
border: control - - 20.5 ± 16.7 20.2 ± 4.1 18.0 ± 3.4

hypoxia - - 15.8 ± 2.3 12.1 ± 0.8
center: control - - - - -

hypoxia - - - - -

https://doi.org/10.3390/cells15020100

https://doi.org/10.3390/cells15020100


Cells 2026, 15, 100 9 of 19

Figure 2. In vivo microscopy of nanofat-seeded dermal substitutes. (A,B) Intravital fluorescence
microscopy of dermal substitutes seeded with non-preconditioned ((control, (A) and preconditioned
nanofat ((hypoxia, (B) on day 14 (implant border = closed line; border of non-vascularized implant
area = broken line). (C–F) Perfused ROIs (%) (C,D) and functional microvessel density (cm/cm2) (E,F)
in the border (C,E) and center zones (D,F) of dermal substitutes seeded with non-preconditioned
(control; white circles, n = 8) and preconditioned nanofat (hypoxia; black circles, n = 8) throughout
the 14-day observation period, as assessed by intravital fluorescence microscopy. Means ± SEM.
* p < 0.05 vs. control.

Postcapillary and collecting venules in the host tissue next to the implants provided
comparable microhemodynamic conditions for the investigation of leukocytes (Table 3).
This investigation did not reveal marked differences in the number of rolling or adherent
leukocytes between dermal substitutes seeded with control or preconditioned nanofat
(Figure 3A–C), indicating a comparable inflammatory response to the implants of the
two groups.
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Table 3. Diameter (µm), centerline RBC velocity (µm/s), shear rate (s−1) and volumetric blood flow
(pL/s) of postcapillary and collecting venules in the direct vicinity of dermal substitutes seeded
with non-preconditioned (control; n = 8) and preconditioned nanofat (hypoxia; n = 8). Mean ± SEM.
* p < 0.05 vs. control.

d0 d3 d6 d10 d14

diameter (µm):
control 41.5 ± 2.2 * 36.6 ± 0.3 38.2 ± 1.4 35.1 ± 0.9 34.5 ± 1.1
hypoxia 35.8 ± 0.6 * 34.8 ± 1.1 33.7 ± 0.9 33.7 ± 0.9 33.2 ± 1.0

centerline RBC velocity (µm/s):
control 516.5 ± 80.6 490.1 ± 55.9 646.9 ± 80.0 526.8 ± 86.3 562.8 ± 111.7
hypoxia 726.5 ± 101.7 471.5 ± 66.8 516.4 ± 81.8 445.5 ± 96.3 370.5 ± 53.4

shear rate (s−1):
control 100.7 ± 15.3 106.7 ± 12.2 139.7 ± 17.6 120.0 ± 21.1 128.3 ± 27.3
hypoxia 166.6 ± 24.9 * 108.2 ± 16.3 122.4 ± 18.6 102.9 ± 21.7 88.3 ± 12.4

volumetric blood flow (pL/s):
control 478.4 ± 110.0 462.2 ± 37.5 516.7 ± 93.4 336.0 ± 56.4 372.7 ± 64.3
hypoxia 448.5 ± 58.8 298.4 ± 44.4 319.9 ± 58.6 274.6 ± 63.6 239.0 ± 40.7

Figure 3. Leukocyte–endothelial cell interactions in response to nanofat-seeded dermal substitutes.
(A) Intravital fluorescence microscopy of a collecting venule in direct vicinity to a dermal substitute
seeded with non-preconditioned nanofat on day 3 (blue light epi-illumination, contrast enhancement
by 5% FITC-labeled dextran (left panel); green light epi-illumination, in situ staining of leukocytes
with 0.1% rhodamine 6G (right panel); white arrows = leukocytes). (B,C) Rolling leukocytes (min−1)
(B) and adherent leukocytes (mm−2) (C) within postcapillary and collecting venules in direct vicinity
to dermal substitutes seeded with non-preconditioned (control; white bars, n = 8) and preconditioned
nanofat (hypoxia; black bars, n = 8) throughout the 14-day observation period, as assessed by
intravital fluorescence microscopy. Means ± SEM. * p < 0.05 vs. control.

3.3. Histological and Immunohistochemical Analysis of Nanofat-Seeded Dermal Substitutes

On day 14, the implanted nanofat-seeded dermal substitutes were processed for
additional histological and immunohistochemical analyses. HE-stained sections revealed a
comparable integration of the implants seeded with control and preconditioned nanofat
into the surrounding tissue (Figure 4A,B). This was characterized by the formation of a
dense granulation tissue in the border zones of the implants, which also reached into the
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outer pores of the dermal substitutes. The Col I and III content of this granulation tissue
was comparable in both groups (Figure 4C–F). In contrast, the center of the implants mainly
contained individual cells and only low amounts of extracellular matrix (Figure 4A–F).

Figure 4. Tissue integration of nanofat-seeded dermal substitutes. (A,B) HE-stained sections of dermal
substitutes seeded with non-preconditioned ((control, (A)) and preconditioned nanofat ((hypoxia,
(B)) on day 14 after implantation (implant border = closed line; border zone = broken line; ROIs in
the border and center zones of the implants shown in higher magnification = blue and red frame;
panniculus carnosus muscle = arrows; granulation tissue = asterisks). (C,E) Immunohistochemical
detection of Col I (C) and III (E) in the border and center zones of dermal substitutes seeded with
non-preconditioned (control) and preconditioned nanofat (hypoxia) on day 14. (D,F) Total Col I (D)
and Col III (F) ratio (implant/skin) in the border and center zones of dermal substitutes seeded with
non-preconditioned (control; white bars, n = 8) and preconditioned nanofat (hypoxia; black bars,
n = 8) on day 14, as assessed by immunohistochemistry. Means ± SEM.
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In line with our in vivo microscopic results, dermal substitutes seeded with control
and preconditioned nanofat markedly differed in terms of their vascularization. In fact,
implants seeded with preconditioned nanofat presented with a significantly lower den-
sity of CD31+ microvessels in their border and center zones (Figure 5A–C). Moreover,
GFP/CD31 double stainings demonstrated that almost no microvessels were GFP+ in these
implants (Figure 5B,D). In contrast, implants seeded with control nanofat contained ~80%
GFP+ microvessels, indicating their origin from the seeded nanofat of GFP+ donor mice
(Figure 5A,D). Furthermore, immunohistochemical staining of LYVE-1 expression revealed
a few lymph vessels in the border and center zones of dermal substitutes seeded with
control nanofat (Figure 6A,B). Most of these lymph vessels were GFP+ (Figure 6C,D). In
contrast, no lymph vessels were detectable in implants seeded with preconditioned nanofat
(Figure 6A–D).

 
Figure 5. Vascularization of nanofat-seeded dermal substitutes. (A,B) Immunohistochemical detection
of CD31+/GFP− (arrowheads) and CD31+/GFP+ (arrows) microvessels in dermal substitutes seeded
with non-preconditioned ((control, (A)) and preconditioned nanofat ((hypoxia, (B)) on day 14 (implant
border = closed line; border zone = broken line). (C) Microvessel density (mm−2) of dermal substitutes
seeded with non-preconditioned (control; white bars, n = 8) and preconditioned nanofat (hypoxia;
black bars, n = 8) on day 14, as assessed by immunohistochemistry. Means ± SEM. * p < 0.05 vs.
control. (D) CD31+/GFP+ microvessels (%) in the border and center zones of dermal substitutes
seeded with non-preconditioned (control; white bars, n = 8) and preconditioned nanofat (hypoxia;
black bars, n = 8) on day 14, as assessed by immunohistochemistry. Means ± SEM. * p < 0.05
vs. control.
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Figure 6. Lymph vessels in nanofat-seeded dermal substitutes. (A) Immunohistochemical detection of
LYVE-1+ lymph vessels in the border zones (arrowhead) and the center (arrow) of dermal substitutes
seeded with non-preconditioned (control) and preconditioned nanofat (hypoxia) on day 14 (implant
border = closed line; border zone = broken line). (B) Lymph vessel density (mm−2) of dermal
substitutes seeded with non-preconditioned (control; white bars, n = 8) and preconditioned nanofat
(hypoxia; black bars, n = 8) on day 14, as assessed by immunohistochemistry. Means ± SEM.
(C) Immunohistochemical detection of a LYVE-1+/GFP+ lymph vessel (arrow) in a dermal substitute
seeded with non-preconditioned nanofat (control) on day 14. (D) LYVE-1+/GFP+ microvessels (%) in
the border and center zones of dermal substitutes seeded with non-preconditioned (control; white
bars, n = 1–4) and preconditioned nanofat (hypoxia; black bars, n = 0) on day 14, as assessed by
immunohistochemistry. Means ± SEM.

The quantification of immune cell infiltration via immunohistochemical CD68
(macrophages), MPO (neutrophilic granulocytes) and CD3 (lymphocytes) stainings re-
vealed no significant differences between the two groups, indicating a comparable host
immune response to implants seeded with control or preconditioned nanofat (Figure 7A–F).
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Figure 7. Ex vivo immune cell infiltration into nanofat-seeded dermal substitutes. (A,C,E) Im-
munohistochemical detection of CD68+ macrophages ((A), arrows), MPO+ neutrophilic granulocytes
((C), arrows) and CD3+ lymphocytes ((E), arrows) in the border and center zones of dermal sub-
stitutes seeded with non-preconditioned (control) and preconditioned nanofat (hypoxia) on day
14. (B,D,F) CD68+ macrophages (mm−2) (B), MPO+ neutrophilic granulocytes (mm−2) (D) and
CD3+ lymphocytes (mm−2) (F) in the border and center zones of dermal substitutes seeded with
non-preconditioned (control; white bars, n = 8) and preconditioned nanofat (hypoxia; black bars,
n = 8) on day 14, as assessed by immunohistochemistry. Means ± SEM. * p < 0.05 vs. control.

4. Discussion
Hypoxic preconditioning has emerged as a promising strategy to enhance organ

and tissue survival in cardiovascular surgery, organ transplantation, flap surgery and fat
grafting [4–7]. This effect has mainly been attributed to the upregulation of HIF-1α under
hypoxic conditions, which plays a crucial role in metabolic adaptation and induction of
pro-angiogenic genes [8]. However, in this study, we found that hypoxic preconditioning
of nanofat does not improve its regenerative vascularization capacity in vivo. In fact, we
even found that dermal substitutes seeded with preconditioned nanofat exhibit a markedly
reduced microvessel density when compared to controls.

Commonly tested hypoxic preconditioning protocols involve either intermittent or
continuous exposure to low oxygen levels, with specific parameters varying depending
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on the target tissue and intended application. The most frequently applied protocols
involve oxygen concentrations between 1% and 5% for various durations ranging from
10 min to 48 h [29–33]. Notably, a 24 h exposure to 1% oxygen has often been used for the
preconditioning of stem cells [30,34–36]. Accordingly, we also used this approach for the
preconditioning of nanofat, which is known to be a rich source of ASCs. The current ex vivo
analyses proved that this preconditioning protocol does not affect the viability of nanofat.
On the other hand, it effectively activated the tissue, as indicated by the upregulation
of HIF-1α and SDF-1 expression. Moreover, hypoxic preconditioning shifted the protein
expression profile of nanofat towards a pro-angiogenic phenotype.

Based on the promising ex vivo results, we assumed that hypoxic preconditioned
nanofat may also improve the in vivo vascularization and tissue integration of seeded
dermal substitutes. However, this was not the case. In fact, the in vivo experiments in the
dorsal skinfold chamber model showed that dermal substitutes seeded with preconditioned
nanofat exhibited a markedly reduced vascularization throughout the 14-day observation
period compared to controls. This unexpected outcome may be explained by the fact
that directly after implantation into the dorsal skinfold chamber, the implants lacked
their own blood supply and were dependent on oxygen and nutrient diffusion from the
surrounding vessels. Therefore, we hypothesize that in addition to the ex vivo hypoxic
preconditioning period of 24 h, the cells within the seeded nanofat may have still suffered
from prolonged hypoxia under in vivo conditions, resulting in the loss of their intrinsic
vascularization capacity. In line with this view, Jian et al. [37] reported that exposure of
endothelial progenitor cells to hypoxia for 24 h promotes their motility and tube formation,
while these beneficial effects are reversed by prolonged hypoxia for 48 and 72 h. Moreover,
it is well known that long hypoxic phases are typically associated with mitochondrial
dysfunction, increased reactive oxygen species (ROS) formation and the accumulation of
deleterious metabolites, resulting in cellular injury and final cell death [38]. An excessive
activity of the HIF pathway may have additionally led to maladaptive outcomes, such as
the induction of apoptosis [39]. In fact, the effects of HIF-1 signaling have been described as
a double-edged sword, which may be particularly dependent on the degree and duration
of hypoxia [39].

In previous studies we have shown that the intrinsic vascularization capacity of
nanofat is markedly driven by microvascular fragments [22,27]. These microvascular frag-
ments rapidly interconnect with each other and surrounding blood vessels to develop
new blood-perfused microvascular networks within the implants [27,40,41]. Accordingly,
we found that dermal substitutes seeded with control nanofat contained ~80% GFP+ mi-
crovessels, indicating their origin from the seeded nanofat. On the other hand, implants
seeded with preconditioned nanofat exhibited almost no GFP+ microvessels on day 14 after
implantation into the dorsal skinfold chamber. Moreover, we have recently demonstrated
that nanofat also contains lymphatic vessel fragments that actively contribute to lymph
vessel formation [25]. Accordingly, we detected some LYVE- 1+/GFP+ lymph vessels in
control nanofat-seeded dermal substitutes, whereas the hypoxic preconditioned group did
not contain any GFP+ lymph vessels. These observations further support our assumption
that prolonged hypoxia may have destroyed the blood and lymphatic vessels inside the
preconditioned nanofat through the mechanisms mentioned before.

Finally, it should be considered that hypoxic preconditioning may have also negatively
affected extracellular matrix proteins or altered the inflammatory activity of nanofat. In
fact, HIF-1α has been shown to induce excessive deposition and abnormal cross-linking of
collagen in adipose tissue, driving local fibrosis [42]. Moreover, hypoxia has been described
as a cause of increased inflammation of adipose tissue [43]. Considering the important and
complex link between fibrosis, inflammation and angiogenesis [44], we additionally evalu-
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ated whether hypoxic preconditioning also changes collagen deposition and inflammation
in nanofat. Accordingly, we measured the numbers of rolling and adherent leukocytes
in venules next to nanofat-seeded dermal substitutes using intravital fluorescence mi-
croscopy. Furthermore, the immune cell infiltration as well as Col I and Col III content
of the implanted dermal substitutes were assessed by means of histology and immuno-
histochemistry. However, no marked differences could be detected in dermal substitutes
seeded with hypoxic preconditioned nanofat when compared to controls. Hence, it can be
excluded that the reduced vascularization capacity of hypoxic preconditioned nanofat has
been induced by an altered fibrosis or inflammatory activity. Rather, as previously assumed,
it most likely resulted from the excessive cumulative exposure to hypoxia during the 24 h
in vitro preconditioning period followed by the subsequent in vivo hypoxic environment
in the initial avascular phase after implantation of the dermal substitutes.

5. Conclusions
This study demonstrates that hypoxic preconditioning at 1% O2 for 24 h cannot be

recommended for enhancing the regenerative in vivo vascularization capacity of nanofat.
However, it should be considered that we only tested a single preconditioning protocol
with a very low O2 concentration and rather long duration of hypoxia in combination with
a specific dorsal skinfold chamber implantation model. Hence, our approach may have
been too stressful for the nanofat, carrying the risk of transitioning potential beneficial
effects of preconditioning into cell damage and death. Therefore, our findings should not
be generalized. Instead, milder preconditioning protocols with shorter periods of hypoxia
(e.g., 6 or 12 h) or higher oxygen levels (e.g., 5% O2) should be alternatively tested in future
studies to achieve more favorable results. In doing so, it may be highly interesting to
perform proteomic and lipidomic profiling of nanofat, as previously described [45,46], to
analyze the effects of hypoxic preconditioning on its regenerative capacity at a molecular
level. Moreover, because nanofat is a heterogeneous mixture of many different cell types,
including stem cells, vascular cells and immune cells, sophisticated single-cell multi-omics
analyses may give additional insights into cell-specific responses to hypoxia and oxidative
stress [47,48].
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Abbreviations
The following abbreviations are used in this manuscript:

ASC adipose-derived stem cell
Casp-3+ cleaved caspase-3-positive
Col collagen
FITC fluorescein isothiocyanate
GFP green fluorescent protein
HE hematoxylin–eosin
HIF hypoxia-inducible factor
LYVE lymphatic vessel hyaluronan receptor
MPO myeloperoxidase
NIH National Institutes of Health
qRT-PCR quantitative real-time polymerase chain reaction
RBC red blood cell
ROI region of interest
ROS reactive oxygen species
SDF stromal cell-derived factor
SEM standard error of the mean
VEGF vascular endothelial growth factor
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