Bitte benutzen Sie diese Referenz, um auf diese Ressource zu verweisen: doi:10.22028/D291-30602
Volltext verfügbar? / Dokumentlieferung
Titel: Choosing the right carbon additive is of vital importance for high-performance Sb-based Na-ion batteries
VerfasserIn: Pfeifer, Kristina
Arnold, Stefanie
Budak, Öznil
Luo, Xianlin
Presser, Volker
Ehrenberg, Helmut
Dsoke, Sonia
Sprache: Englisch
Titel: Journal of materials chemistry
Bandnummer: 8
Heft: 12
Startseite: 6092
Endseite: 6104
Verlag/Plattform: RSC
Erscheinungsjahr: 2020
Dokumenttyp: Journalartikel / Zeitschriftenartikel
Abstract: Electrodes based on alloying reactions for sodium-ion batteries (NIB) offer high specific capacity but require bespoken electrode material design to enable high performance stability. This work addresses that issue by systematically exploring the impact of carbon properties on antimony/carbon composite electrodes for NIBs. Since the Sb surface is covered by an insulating oxide layer, carbon additives are crucial for the percolation and electrochemical activity of Sb based anodes. Instead of using complex hybridization strategies, the ability of mechanical mixing to yield stable high-performance Sb/C sodium-ion battery (NIB) electrodes is shown. This is only possible by considering the physical, chemical, and structural features of the carbon phase. A comparison of carbon nanohorns, onion-like carbon, carbon black, and graphite as conductive additives is given in this work. The best performance is not triggered by the highest or lowest surface area, and not by highest or lowest heteroatom content, but by the best ability to homogenously distribute within the Sb matrix. The latter provides an optimum interaction between carbon and Sb and is best enabled by onion-like carbon. A remarkable rate performance is attained, electrode cracking caused by volume expansion is successfully prevented, and the homogeneity of the solid/electrolyte interphase is significantly improved as a result of it. With this composite electrode, a reversible capacity of 490 mA h g−1 at 0.1 A g−1 and even 300 mA g−1 at 8 A g−1 is obtained. Additionally, high stability with a capacity retention of 73% over 100 cycles is achieved at charge/discharge rates of 0.2 A g−1.
DOI der Erstveröffentlichung: 10.1039/D0TA00254B
URL der Erstveröffentlichung: https://pubs.rsc.org/en/content/articlehtml/2020/ta/d0ta00254b
Link zu diesem Datensatz: hdl:20.500.11880/28932
http://dx.doi.org/10.22028/D291-30602
ISSN: 2050-7488
2050-7496
Datum des Eintrags: 1-Apr-2020
Fakultät: NT - Naturwissenschaftlich- Technische Fakultät
Fachrichtung: NT - Materialwissenschaft und Werkstofftechnik
Professur: NT - Prof. Dr. Volker Presser
Sammlung:SciDok - Der Wissenschaftsserver der Universität des Saarlandes

Dateien zu diesem Datensatz:
Es gibt keine Dateien zu dieser Ressource.


Alle Ressourcen in diesem Repository sind urheberrechtlich geschützt.