Bitte benutzen Sie diese Referenz, um auf diese Ressource zu verweisen:
Volltext verfügbar? / Dokumentlieferung
doi:10.22028/D291-31069
Dateien zu diesem Datensatz:
Es gibt keine Dateien zu dieser Ressource.
Titel: | Rejection-Based Simulation of Non-Markovian Agents on Complex Networks |
VerfasserIn: | Großmann, Gerrit ![]() Bortolussi, Luca Wolf, Verena ![]() |
HerausgeberIn: | Cherifi, Hocine Gaito, Sabrina Mendes, José Fernendo Moro, Esteban Rocha, Luis M. |
Sprache: | Englisch |
In: | |
Titel: | Complex networks and their applications VIII : proceedings of the Eighth International Conference on Complex Networks and Their Applications |
Startseite: | 349 |
Endseite: | 361 |
Verlag/Plattform: | Springer |
Erscheinungsjahr: | 2020 |
Erscheinungsort: | Cham |
Titel der Konferenz: | COMPLEX NETWORKS 2019 |
Konferenzort: | Lisbon, Portugal |
Dokumenttyp: | Konferenzbeitrag (in einem Konferenzband / InProceedings erschienener Beitrag) |
Abstract: | Stochastic models in which agents interact with their neighborhood according to a network topology are a powerful modeling framework to study the emergence of complex dynamic patterns in real-world systems. Stochastic simulations are often the preferred—sometimes the only feasible—way to investigate such systems. Previous research focused primarily on Markovian models where the random time until an interaction happens follows an exponential distribution. In this work, we study a general framework to model systems where each agent is in one of several states. Agents can change their state at random, influenced by their complete neighborhood, while the time to the next event can follow an arbitrary probability distribution. Classically, these simulations are hindered by high computational costs of updating the rates of interconnected agents and sampling the random residence times from arbitrary distributions. We propose a rejection-based, event-driven simulation algorithm to overcome these limitations. Our method over-approximates the instantaneous rates corresponding to inter-event times while rejection events counter-balance these over-approximations. We demonstrate the effectiveness of our approach on models of epidemic and information spreading. |
DOI der Erstveröffentlichung: | 10.1007/978-3-030-36687-2_29 |
URL der Erstveröffentlichung: | https://link.springer.com/chapter/10.1007/978-3-030-36687-2_29 |
Link zu diesem Datensatz: | hdl:20.500.11880/29209 http://dx.doi.org/10.22028/D291-31069 |
ISBN: | 978-3-030-36686-5 978-3-030-36687-2 |
Datum des Eintrags: | 29-Mai-2020 |
Bemerkung/Hinweis: | Studies in computational intelligence ; volume 881 |
Fakultät: | MI - Fakultät für Mathematik und Informatik |
Fachrichtung: | MI - Informatik |
Professur: | MI - Prof. Dr. Verena Wolf |
Sammlung: | SciDok - Der Wissenschaftsserver der Universität des Saarlandes |
Alle Ressourcen in diesem Repository sind urheberrechtlich geschützt.