Bitte benutzen Sie diese Referenz, um auf diese Ressource zu verweisen:
Volltext verfügbar? / Dokumentlieferung
doi:10.22028/D291-33864
Titel: | Micro-mechanical response of ultrafine grain and nanocrystalline tantalum |
VerfasserIn: | Yang, Wen Ruestes, Carlos J. Li, Zezhou Abad, Oscar Torrents Langdon, Terence G. Heiland, Birgit Koch, Marcus Arzt, Eduard Meyers, Marc A. |
Sprache: | Englisch |
Titel: | Journal of materials research and technology : jmr&t |
Bandnummer: | 12 |
Startseite: | 1804 |
Endseite: | 1815 |
Verlag/Plattform: | Elsevier |
Erscheinungsjahr: | 2021 |
Dokumenttyp: | Journalartikel / Zeitschriftenartikel |
Abstract: | In order to investigate the effect of grain boundaries on the mechanical response in the micrometer and submicrometer levels, complementary experiments and molecular dynamics simulations were conducted on a model bcc metal, tantalum. Microscale pillar experiments (diameters of 1 and 2 μm) with a grain size of ∼ 100-200 nm revealed a mechanical response characterized by a yield stress of ∼1,500 MPa. The hardening of the structure is reflected in the increase in the flow stress to 1,700 MPa at a strain of ∼0.35. Molecular dynamics simulations were conducted for nanocrystalline tantalum with grain sizes in the range of 20-50 nm and pillar diameters in the same range. The yield stress was approximately 6,000 MPa for all specimens and the maximum of the stress-strain curves occurred at a strain of 0.07. Beyond that strain, the material softened because of its inability to store dislocations. The experimental results did not show a significant size dependence of yield stress on pillar diameter (equal to 1 and 2 um), which is attributed to the high ratio between pillar diameter and grain size (∼10-20). This behavior is quite different from that in monocrystalline specimens where dislocation ‘starvation’ leads to a significant size dependence of strength. The ultrafine grains exhibit clear ‘pancaking’ upon being plastically deformed, with an increase in dislocation density. The plastic deformation is much more localized for the single crystals than for the nanocrystalline specimens, an observation made in both modeling and experiments. In the molecular dynamics simulations, the ratio of pillar diameter (20-50 nm) to grain size was in the range 0.2 to 2, and a much greater dependence of yield stress to pillar diameter was observed. A critical result from this work is the demonstration that the important parameter in establishing the overall deformation is the ratio between the grain size and pillar diameter; it governs the deformation mode as well as surface sources and sinks, which are only important when the grain size is of the same order as the pillar diameter. |
DOI der Erstveröffentlichung: | 10.1016/j.jmrt.2021.03.080 |
URL der Erstveröffentlichung: | https://www.sciencedirect.com/science/article/pii/S2238785421003070 |
Link zu diesem Datensatz: | hdl:20.500.11880/31434 http://dx.doi.org/10.22028/D291-33864 |
ISSN: | 2238-7854 |
Datum des Eintrags: | 25-Jun-2021 |
Fakultät: | NT - Naturwissenschaftlich- Technische Fakultät |
Fachrichtung: | NT - Materialwissenschaft und Werkstofftechnik |
Professur: | NT - Prof. Dr. Eduard Arzt |
Sammlung: | SciDok - Der Wissenschaftsserver der Universität des Saarlandes |
Dateien zu diesem Datensatz:
Es gibt keine Dateien zu dieser Ressource.
Alle Ressourcen in diesem Repository sind urheberrechtlich geschützt.