Bitte benutzen Sie diese Referenz, um auf diese Ressource zu verweisen: doi:10.22028/D291-35246
Volltext verfügbar? / Dokumentlieferung
Titel: Porous Mixed-Metal Oxide Li-Ion Battery Electrodes by Shear-Induced Co-assembly of Precursors and Tailored Polymer Particles
VerfasserIn: Boehm, Anna K.
Husmann, Samantha
Besch, Marie
Janka, Oliver
Presser, Volker
Gallei, Markus
Sprache: Englisch
Titel: ACS applied materials & interfaces
Bandnummer: 13
Heft: 51
Startseite: 61166
Endseite: 61179
Verlag/Plattform: ACS
Erscheinungsjahr: 2021
Dokumenttyp: Journalartikel / Zeitschriftenartikel
Abstract: Due to their various applications, metal oxides are of high interest for fundamental research and commercial usage. Per applications as catalysts or electrochemical devices, the tailored design of metal oxides featuring a high specific surface area and additional functionalities is of the utmost importance for the performance of the resulting materials. We report a new method for preparing free-standing films consisting of hierarchically porous metal oxides (titanium and niobium based) by combining emulsion polymerization and shear-induced monodisperse particle self-assembly in the presence of sol–gel precursors. After thermal treatment, the resulting porous materials can be used as electrodes in Li-ion batteries. The titanium and niobium sol–gel precursors were partially immobilized to the surface of organic core–interlayer particles featuring hydroxyl groups to obtain hybrid organic–inorganic particles through the melt–shear organization process. Free-standing particle-based films, in analogy to elastomeric opal films and colloidal crystals, can be prepared in a convenient one-step preparation process. After thermal treatment, ordered pores are obtained, while the pristine metal oxide precursor shell can be converted to the (mixed) metal oxide matrix. Heat treatment under CO2 leads to mixed-TiNb oxide/carbon hybrid materials. The highly porous derivative structure enhances electrolyte permeation. When tested as Li-ion battery electrodes, it shows a specific capacity of 335 mAh·g–1 at a rate of 10 mA·g–1. After 1000 cycles at 250 mA·g–1, the electrodes still provided a specific capacity of 191 mAh·g–1.
DOI der Erstveröffentlichung: 10.1021/acsami.1c19027
URL der Erstveröffentlichung: https://pubs.acs.org/doi/10.1021/acsami.1c19027
Link zu diesem Datensatz: hdl:20.500.11880/32177
http://dx.doi.org/10.22028/D291-35246
ISSN: 1944-8252
1944-8244
Datum des Eintrags: 12-Jan-2022
Fakultät: NT - Naturwissenschaftlich- Technische Fakultät
Fachrichtung: NT - Chemie
NT - Materialwissenschaft und Werkstofftechnik
Professur: NT - Prof. Dr. Markus Gallei
NT - Prof. Dr. Volker Presser
Sammlung:SciDok - Der Wissenschaftsserver der Universität des Saarlandes

Dateien zu diesem Datensatz:
Es gibt keine Dateien zu dieser Ressource.


Alle Ressourcen in diesem Repository sind urheberrechtlich geschützt.