Bitte benutzen Sie diese Referenz, um auf diese Ressource zu verweisen: doi:10.22028/D291-36131
Volltext verfügbar? / Dokumentlieferung
Titel: Predicting the adhesion strength of micropatterned surfaces using supervised machine learning
VerfasserIn: Samri, Manar
Thiemecke, Jonathan
Prinz, Eva
Dahmen, Tim
Hensel, René
Arzt, Eduard
Sprache: Englisch
Titel: Materials today : reviews, news, and comment on the diverse field of materials research for tommorrow's technology
Bandnummer: 53
Startseite: 41
Endseite: 50
Verlag/Plattform: Elsevier
Erscheinungsjahr: 2022
Dokumenttyp: Journalartikel / Zeitschriftenartikel
Abstract: Fibrillar dry adhesives have shown great potential in many applications thanks to their tunable adhesion, notably for pick-and-place handling of fragile objects. However, controlling and monitoring alignment with the target objects is mandatory to enable reliable handling. In this paper, we present an in-line monitoring system that allows optical analysis of an array of individual fibrils (with a contact radius of 350 µm) in contact with a smooth glass substrate, followed by the prediction of their adhesion performance. Images recorded at maximum compressive preload represent characteristic contact signatures that were used to extract visual features. These features, in turn, were used to create a linear model and to train different linear and non-linear regression models for predicting adhesion force depending on the misalignment angle. Support vector regression and boosted tree models exhibited highest accuracies and outperformed an analytical model reported in literature. Overall, this new approach enables predictions in gripping objects by contact observations in near real-time, which likely improves the reliability of handling operations.
DOI der Erstveröffentlichung: 10.1016/j.mattod.2022.01.018
URL der Erstveröffentlichung: https://www.sciencedirect.com/science/article/abs/pii/S1369702122000189
Link zu diesem Datensatz: hdl:20.500.11880/32918
http://dx.doi.org/10.22028/D291-36131
ISSN: 1873-4103
1369-7021
Datum des Eintrags: 17-Mai-2022
Fakultät: NT - Naturwissenschaftlich- Technische Fakultät
Fachrichtung: NT - Materialwissenschaft und Werkstofftechnik
Professur: NT - Prof. Dr. Eduard Arzt
NT - Keiner Professur zugeordnet
Sammlung:SciDok - Der Wissenschaftsserver der Universität des Saarlandes

Dateien zu diesem Datensatz:
Es gibt keine Dateien zu dieser Ressource.


Alle Ressourcen in diesem Repository sind urheberrechtlich geschützt.