Bitte benutzen Sie diese Referenz, um auf diese Ressource zu verweisen: doi:10.22028/D291-43907
Volltext verfügbar? / Dokumentlieferung
Titel: Dry Electrode Processing for Free‐Standing Supercapacitor Electrodes with Longer Life, Higher Volumetric Outputs, and Reduced Environmental Impact
VerfasserIn: Pameté, Emmanuel
Ruthes, Jean G. A.
Hermesdorf, Marius
Seltmann, Anna
Tarimo, Delvina J.
Leistenschneider, Desirée
Presser, Volker
Sprache: Englisch
Titel: Energy & Environmental Materials : EEM
Bandnummer: 8
Heft: 1
Verlag/Plattform: Wiley
Erscheinungsjahr: 2025
DDC-Sachgruppe: 620 Ingenieurwissenschaften und Maschinenbau
Dokumenttyp: Journalartikel / Zeitschriftenartikel
Abstract: Supercapacitors are efficient and versatile energy storage devices, offering remarkable power density, fast charge/discharge rates, and exceptional cycle life. As research continues to push the boundaries of their performance, electrode fabrication techniques are critical aspects influencing the overall capabilities of supercapacitors. Herein, we aim to shed light on the advantages offered by dry electrode processing for advanced supercapacitors. Notably, our study explores the performance of these electrodes in three different types of electrolytes: organic, ionic liquids, and quasi-solid states. By examining the impact of dry electrode processing on various electrode and electrolyte systems, we show valuable insights into the versatility and efficacy of this technique. The supercapacitors employing dry electrodes demonstrated significant improvements compared with conventional wet electrodes, with a lifespan extension of +45% in organic, +192% in ionic liquids, and +84% in quasi-solid electrolytes. Moreover, the increased electrode densities achievable through the dry approach directly translate to improved volumetric outputs, enhancing energy storage capacities within compact form factors. Notably, dry electrode-prepared supercapacitors outperformed their wet electrode counterparts, exhibiting a higher energy density of 6.1 Wh cm−3 compared with 4.7 Wh cm−3 at a high power density of 195 W cm−3, marking a substantial 28% energy improvement in the quasi-solid electrolyte.
DOI der Erstveröffentlichung: 10.1002/eem2.12775
URL der Erstveröffentlichung: https://onlinelibrary.wiley.com/doi/10.1002/eem2.12775
Link zu diesem Datensatz: urn:nbn:de:bsz:291--ds-439077
hdl:20.500.11880/39293
http://dx.doi.org/10.22028/D291-43907
ISSN: 2575-0356
Datum des Eintrags: 7-Jan-2025
Fakultät: NT - Naturwissenschaftlich- Technische Fakultät
Fachrichtung: NT - Materialwissenschaft und Werkstofftechnik
Professur: NT - Prof. Dr. Volker Presser
Sammlung:SciDok - Der Wissenschaftsserver der Universität des Saarlandes

Dateien zu diesem Datensatz:
Es gibt keine Dateien zu dieser Ressource.


Alle Ressourcen in diesem Repository sind urheberrechtlich geschützt.