Please use this identifier to cite or link to this item:
Volltext verfügbar? / Dokumentlieferung
doi:10.22028/D291-30320
Title: | Local Effects on Airway Inflammation and Systemic Uptake of 5 nm PEGylated and Citrated Gold Nanoparticles in Asthmatic Mice |
Author(s): | Omlor, Albert J. Le, Duc D. Schlicker, Janine Hannig, Matthias Ewen, Raphael Heck, Sebastian Herr, Christian Kraegeloh, Annette Hein, Christina Kautenburger, Ralf Kickelbick, Guido Bals, Robert Nguyen, Juliane Thai, Dinh Q. |
Language: | English |
Title: | Small |
Volume: | 13 |
Issue: | 10 |
Startpage: | 1603070 |
Publisher/Platform: | Wiley-VCH |
Year of Publication: | 2017 |
Publikation type: | Journal Article |
Abstract: | Nanotechnology is showing promise in many medical applications such as drug delivery and hyperthermia. Nanoparticles administered to the respiratory tract cause local reactions and cross the blood-air barrier, thereby providing a means for easy systemic administration but also a potential source of toxicity. Little is known about how these effects are influenced by preexisting airway diseases such as asthma. Here, BALB/c mice are treated according to the ovalbumin (OVA) asthma protocol to promote allergic airway inflammation. Dispersions of polyethylene-glycol-coated (PEGylated) and citrate/tannic-acid-coated (citrated) 5 nm gold nanoparticles are applied intranasally to asthma and control groups, and (i) airway resistance and (ii) local tissue effects are measured as primary endpoints. Further, nanoparticle uptake into extrapulmonary organs is quantified by inductively coupled plasma mass spectrometry. The asthmatic precondition increases nanoparticle uptake. Moreover, systemic uptake is higher for PEGylated gold nanoparticles compared to citrated nanoparticles. Nanoparticles inhibit both inflammatory infiltrates and airway hyperreactivity, especially citrated gold nanoparticles. Although the antiinflammatory effects of gold nanoparticles might be of therapeutic benefit, systemic uptake and consequent adverse effects must be considered when designing and testing nanoparticle-based asthma therapies. |
DOI of the first publication: | 10.1002/smll.201603070 |
URL of the first publication: | https://onlinelibrary.wiley.com/doi/full/10.1002/smll.201603070 |
Link to this record: | hdl:20.500.11880/28738 http://dx.doi.org/10.22028/D291-30320 |
ISSN: | 1613-6829 1613-6810 |
Date of registration: | 19-Feb-2020 |
Faculty: | NT - Naturwissenschaftlich- Technische Fakultät M - Medizinische Fakultät |
Department: | NT - Chemie M - Zahn-, Mund- und Kieferheilkunde |
Professorship: | NT - Prof. Dr. Guido Kickelbick M - Prof. Dr. Matthias Hannig |
Collections: | SciDok - Der Wissenschaftsserver der Universität des Saarlandes |
Files for this record:
There are no files associated with this item.
Items in SciDok are protected by copyright, with all rights reserved, unless otherwise indicated.