Please use this identifier to cite or link to this item:
doi:10.22028/D291-36349
Title: | Using Smartphone Sensor Paradata and Personalized Machine Learning Models to Infer Participants' Well-being: Ecological Momentary Assessment |
Author(s): | Hart, Alexander Reis, Dorota Prestele, Elisabeth Jacobson, Nicholas C. |
Language: | English |
Title: | Journal of Medical Internet Research |
Volume: | 24 |
Issue: | 4 |
Publisher/Platform: | JMIR Publications |
Year of Publication: | 2022 |
Free key words: | digital biomarkers machine learning ecological momentary assessment smartphone sensors internal states paradata accelerometer gyroscope mood mobile phone |
DDC notations: | 150 Psychology |
Publikation type: | Journal Article |
Abstract: | Background: Sensors embedded in smartphones allow for the passive momentary quantification of people’s states in the context of their daily lives in real time. Such data could be useful for alleviating the burden of ecological momentary assessments and increasing utility in clinical assessments. Despite existing research on using passive sensor data to assess participants’ moment-to-moment states and activity levels, only limited research has investigated temporally linking sensor assessment and self-reported assessment to further integrate the 2 methodologies. Objective: We investigated whether sparse movement-related sensor data can be used to train machine learning models that are able to infer states of individuals’ work-related rumination, fatigue, mood, arousal, life engagement, and sleep quality. Sensor data were only collected while the participants filled out the questionnaires on their smartphones. Methods: We trained personalized machine learning models on data from employees (N=158) who participated in a 3-week ecological momentary assessment study. Results: The results suggested that passive smartphone sensor data paired with personalized machine learning models can be used to infer individuals’ self-reported states at later measurement occasions. The mean R 2 was approximately 0.31 (SD 0.29), and more than half of the participants (119/158, 75.3%) had an R 2 of ≥0.18. Accuracy was only slightly attenuated compared with earlier studies and ranged from 38.41% to 51.38%. Conclusions: Personalized machine learning models and temporally linked passive sensing data have the capability to infer a sizable proportion of variance in individuals’ daily self-reported states. Further research is needed to investigate factors that affect the accuracy and reliability of the inference. |
DOI of the first publication: | 10.2196/34015 |
URL of the first publication: | https://www.jmir.org/2022/4/e34015/ |
Link to this record: | urn:nbn:de:bsz:291--ds-363492 hdl:20.500.11880/33013 http://dx.doi.org/10.22028/D291-36349 |
ISSN: | 1438-8871 |
Date of registration: | 2-Jun-2022 |
Faculty: | HW - Fakultät für Empirische Humanwissenschaften und Wirtschaftswissenschaft |
Department: | HW - Psychologie |
Professorship: | HW - Keiner Professur zugeordnet |
Collections: | SciDok - Der Wissenschaftsserver der Universität des Saarlandes |
This item is licensed under a Creative Commons License