Please use this identifier to cite or link to this item: doi:10.22028/D291-43808
Volltext verfügbar? / Dokumentlieferung
Title: Understanding Rate and Capacity Limitations in Li-S Batteries Based on Solid-State Sulfur Conversion in Confinement
Author(s): Senol Gungor, Ayca
von Mentlen, Jean-Marc
Ruthes, Jean G. A.
García-Soriano, Francisco J.
Drvarič Talian, Sara
Presser, Volker
Porcar, Lionel
Vizintin, Alen
Wood, Vanessa
Prehal, Christian
Language: English
Title: ACS applied materials & interfaces
Volume: 16
Issue: 49
Pages: 67651-67661
Publisher/Platform: ACS
Year of Publication: 2024
Free key words: Lithium−sulfur batteries
Nanoporous carbons
Operando scattering
Impedance spectroscopy
Solid-state sulfur conversion
Electrochemical performance
DDC notations: 620 Engineering and machine engineering
Publikation type: Journal Article
Abstract: Li-S batteries with an improved cycle life of over 1000 cycles have been achieved using cathodes of sulfur-infiltrated nanoporous carbon with carbonate-based electrolytes. In these cells, a protective cathode-electrolyte interphase (CEI) is formed, leading to solid-state conversion of S to Li2S in the nanopores. This prevents the dissolution of polysulfides and slows capacity fade. However, there is currently little understanding of what limits the capacity and rate performance of these Li-S batteries. Here, we aim to deepen our understanding of the capacity and rate limitation using a variety of structure-sensitive and electrochemical techniques, such as operando small-angle neutron scattering (SANS), operando X-ray diffraction (XRD), electrochemical impedance spectroscopy, and galvanostatic charge/discharge. Operando SANS and XRD data give direct evidence of CEI formation and solid-state sulfur conversion occurring inside the nanopores. Electrochemical measurements using two nanoporous carbons with different pore sizes suggest that charge transfer at the active material interfaces and the specific CEI/active material structure in the nanopores play the dominant role in defining capacity and rate performance. This work helps define strategies to increase the sulfur loading while maximizing sulfur usage, rate performance, and cycle life.
DOI of the first publication: 10.1021/acsami.4c13183
URL of the first publication: https://pubs.acs.org/doi/10.1021/acsami.4c13183
Link to this record: urn:nbn:de:bsz:291--ds-438085
hdl:20.500.11880/39238
http://dx.doi.org/10.22028/D291-43808
ISSN: 1944-8252
1944-8244
Date of registration: 2-Jan-2025
Faculty: NT - Naturwissenschaftlich- Technische Fakultät
Department: NT - Materialwissenschaft und Werkstofftechnik
Professorship: NT - Prof. Dr. Volker Presser
Collections:SciDok - Der Wissenschaftsserver der Universität des Saarlandes

Files for this record:
There are no files associated with this item.


Items in SciDok are protected by copyright, with all rights reserved, unless otherwise indicated.