Please use this identifier to cite or link to this item: doi:10.22028/D291-45528
Title: Classification of symplectic birational involutions of manifolds of OG10 type
Author(s): Marquand, Lisa
Muller, Stevell
Language: English
Title: Mathematische Zeitschrift
Volume: 309
Issue: 4
Publisher/Platform: Springer Nature
Year of Publication: 2025
Free key words: Hyperkähler manifolds
Cubic fourfold
Symplectic involutions
Birational transformations
DDC notations: 510 Mathematics
Publikation type: Journal Article
Abstract: We give a complete classification of symplectic birational involutions of manifolds of OG10 type. We approach this classification with three techniques—via involutions of the Leech lattice, via involutions of cubic fourfolds, and finally lattice enumeration via a modified Kneser’s neighbour algorithm. The classification consists of three involutions with an explicit geometric realisation via cubic fourfolds, and three exceptional involutions which cannot be obtained by any known construction.
DOI of the first publication: 10.1007/s00209-025-03697-8
URL of the first publication: https://link.springer.com/article/10.1007/s00209-025-03697-8
Link to this record: urn:nbn:de:bsz:291--ds-455280
hdl:20.500.11880/40084
http://dx.doi.org/10.22028/D291-45528
ISSN: 1432-1823
0025-5874
Date of registration: 4-Jun-2025
Faculty: MI - Fakultät für Mathematik und Informatik
Department: MI - Mathematik
Professorship: MI - Prof. Dr. Vladimir Lazić
Collections:SciDok - Der Wissenschaftsserver der Universität des Saarlandes

Files for this record:
File Description SizeFormat 
s00209-025-03697-8.pdf458,52 kBAdobe PDFView/Open


This item is licensed under a Creative Commons License Creative Commons