Bitte benutzen Sie diese Referenz, um auf diese Ressource zu verweisen:
doi:10.22028/D291-46838 | Titel: | A Deep Learning-Based Graphical User Interface for Predicting Corneal Ectasia Scores from Raw Optical Coherence Tomography Data |
| VerfasserIn: | Mirsalehi, Maziar Langenbucher, Achim |
| Sprache: | Englisch |
| Titel: | Diagnostics |
| Bandnummer: | 16 |
| Heft: | 2 |
| Verlag/Plattform: | MDPI |
| Erscheinungsjahr: | 2026 |
| Freie Schlagwörter: | CNN cornea deep learning ectasia eye keratoconus OCT raw data vision |
| DDC-Sachgruppe: | 610 Medizin, Gesundheit |
| Dokumenttyp: | Journalartikel / Zeitschriftenartikel |
| Abstract: | Background/Objectives: Keratoconus, a condition in which the cornea becomes thinner and steeper, can cause visual problems, particularly when it is progressive. Early diagnosis is important for preserving visual acuity. Raw data, unlike preprocessed data, are unaffected by software modifications. They retain their native structure across versions, providing consistency for analytical purposes. The objective of this study was to design a deep learning-based graphical user interface for predicting the corneal ectasia score using raw optical coherence tomography data. Methods: The graphical user interface was developed using Tkinter, a Python library for building graphical user interfaces. The user is allowed to select raw data from the cornea/anterior segment optical coherence tomography Casia2, which is generated in the 3dv format, from the local system. To view the predicted corneal ectasia score, the user must determine whether the selected 3dv file corresponds to the left or right eye. Extracted optical coherence tomography images are cropped, resized to 224 × 224 pixels and processed by the modified EfficientNet-B0 convolutional neural network to predict the corneal ectasia score. The predicted corneal ectasia score value is displayed along with a diagnosis: ‘No detectable ectasia pattern’ or ‘Suspected ectasia’ or ‘Clinical ectasia’. Performance metric values were rounded to four decimal places, and the mean absolute error value was rounded to two decimal places. Results: The modified EfficientNet-B0 obtained a mean absolute error of 6.65 when evaluated on the test dataset. For the two-class classification, it achieved an accuracy of 87.96%, a sensitivity of 82.41%, a specificity of 96.69%, a positive predictive value of 97.52% and an F1 score of 89.33%. For the three-class classification, it attained a weighted-average F1 score of 84.95% and an overall accuracy of 84.75%. Conclusions: The graphical user interface outputs numerical ectasia scores, which improves other categorical labels. The graphical user interface enables consistent diagnostics, regardless of software updates, by using raw data from the Casia2. The successful use of raw optical coherence tomography data indicates the potential for raw optical coherence tomography data to be used, rather than preprocessed optical coherence tomography data, for diagnosing keratoconus. |
| DOI der Erstveröffentlichung: | 10.3390/diagnostics16020310 |
| URL der Erstveröffentlichung: | https://doi.org/10.3390/diagnostics16020310 |
| Link zu diesem Datensatz: | urn:nbn:de:bsz:291--ds-468386 hdl:20.500.11880/41036 http://dx.doi.org/10.22028/D291-46838 |
| ISSN: | 2075-4418 |
| Datum des Eintrags: | 29-Jan-2026 |
| Bezeichnung des in Beziehung stehenden Objekts: | Supplementary Materials |
| In Beziehung stehendes Objekt: | https://www.mdpi.com/article/10.3390/diagnostics16020310/s1 |
| Fakultät: | M - Medizinische Fakultät |
| Fachrichtung: | M - Augenheilkunde |
| Professur: | M - Univ.-Prof. Dr. Dipl.-Ing. Achim Langenbucher |
| Sammlung: | SciDok - Der Wissenschaftsserver der Universität des Saarlandes |
Dateien zu diesem Datensatz:
| Datei | Beschreibung | Größe | Format | |
|---|---|---|---|---|
| diagnostics-16-00310-v4.pdf | 4,79 MB | Adobe PDF | Öffnen/Anzeigen |
Diese Ressource wurde unter folgender Copyright-Bestimmung veröffentlicht: Lizenz von Creative Commons

