Bitte benutzen Sie diese Referenz, um auf diese Ressource zu verweisen: doi:10.22028/D291-46838
Titel: A Deep Learning-Based Graphical User Interface for Predicting Corneal Ectasia Scores from Raw Optical Coherence Tomography Data
VerfasserIn: Mirsalehi, Maziar
Langenbucher, Achim
Sprache: Englisch
Titel: Diagnostics
Bandnummer: 16
Heft: 2
Verlag/Plattform: MDPI
Erscheinungsjahr: 2026
Freie Schlagwörter: CNN
cornea
deep learning
ectasia
eye
keratoconus
OCT
raw data
vision
DDC-Sachgruppe: 610 Medizin, Gesundheit
Dokumenttyp: Journalartikel / Zeitschriftenartikel
Abstract: Background/Objectives: Keratoconus, a condition in which the cornea becomes thinner and steeper, can cause visual problems, particularly when it is progressive. Early diagnosis is important for preserving visual acuity. Raw data, unlike preprocessed data, are unaffected by software modifications. They retain their native structure across versions, providing consistency for analytical purposes. The objective of this study was to design a deep learning-based graphical user interface for predicting the corneal ectasia score using raw optical coherence tomography data. Methods: The graphical user interface was developed using Tkinter, a Python library for building graphical user interfaces. The user is allowed to select raw data from the cornea/anterior segment optical coherence tomography Casia2, which is generated in the 3dv format, from the local system. To view the predicted corneal ectasia score, the user must determine whether the selected 3dv file corresponds to the left or right eye. Extracted optical coherence tomography images are cropped, resized to 224 × 224 pixels and processed by the modified EfficientNet-B0 convolutional neural network to predict the corneal ectasia score. The predicted corneal ectasia score value is displayed along with a diagnosis: ‘No detectable ectasia pattern’ or ‘Suspected ectasia’ or ‘Clinical ectasia’. Performance metric values were rounded to four decimal places, and the mean absolute error value was rounded to two decimal places. Results: The modified EfficientNet-B0 obtained a mean absolute error of 6.65 when evaluated on the test dataset. For the two-class classification, it achieved an accuracy of 87.96%, a sensitivity of 82.41%, a specificity of 96.69%, a positive predictive value of 97.52% and an F1 score of 89.33%. For the three-class classification, it attained a weighted-average F1 score of 84.95% and an overall accuracy of 84.75%. Conclusions: The graphical user interface outputs numerical ectasia scores, which improves other categorical labels. The graphical user interface enables consistent diagnostics, regardless of software updates, by using raw data from the Casia2. The successful use of raw optical coherence tomography data indicates the potential for raw optical coherence tomography data to be used, rather than preprocessed optical coherence tomography data, for diagnosing keratoconus.
DOI der Erstveröffentlichung: 10.3390/diagnostics16020310
URL der Erstveröffentlichung: https://doi.org/10.3390/diagnostics16020310
Link zu diesem Datensatz: urn:nbn:de:bsz:291--ds-468386
hdl:20.500.11880/41036
http://dx.doi.org/10.22028/D291-46838
ISSN: 2075-4418
Datum des Eintrags: 29-Jan-2026
Bezeichnung des in Beziehung stehenden Objekts: Supplementary Materials
In Beziehung stehendes Objekt: https://www.mdpi.com/article/10.3390/diagnostics16020310/s1
Fakultät: M - Medizinische Fakultät
Fachrichtung: M - Augenheilkunde
Professur: M - Univ.-Prof. Dr. Dipl.-Ing. Achim Langenbucher
Sammlung:SciDok - Der Wissenschaftsserver der Universität des Saarlandes

Dateien zu diesem Datensatz:
Datei Beschreibung GrößeFormat 
diagnostics-16-00310-v4.pdf4,79 MBAdobe PDFÖffnen/Anzeigen


Diese Ressource wurde unter folgender Copyright-Bestimmung veröffentlicht: Lizenz von Creative Commons Creative Commons